Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125008, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39182400

RESUMEN

N-acetyl-L-cysteine (NAC) as a class of thiols is commonly used in the treatment of lung diseases, detoxification and prevention of liver damage. In this paper, 4-mercaptobenzoic acid (4-MBA) coated and polyvinylpyrrolidone (PVP) attached copper nanoclusters (4-MBA@PVP-CuNCs) were successfully synthesized using a simple one-pot method with an absolute quantum yield of 10.98 %, and its synthetic conditions (like effects of single/double ligands and temperature) were studied intensively. Then Hg2+ could quench the fluorescence of the 4-MBA@PVP-CuNCs and its fluorescence was restored with the addition of NAC. Based on the above principles, an off-on switching system was established to detect NAC. That is, the 4-MBA@PVP-CuNCs-Hg probe was prepared by adding Hg2+ to switch off the fluorescence of the CuNCs by static quenching, and then NAC was added to switch on the fluorescence of the probe based on the chelation of NAC and Hg2+. Moreover, the effects of metal ion types and mercury ion doses for the probe construction were also further discussed. The method showed excellent linearity in the range of 0.05-1.25 µM and low detection limit of 16 nM. Meanwhile, good recoveries in real urine, tablets and pellets were observed, which proved the reliability of the method and provided a convenient, fast and sensitive method for NAC detection.


Asunto(s)
Acetilcisteína , Cobre , Límite de Detección , Nanopartículas del Metal , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo , Acetilcisteína/química , Acetilcisteína/orina , Cobre/química , Cobre/análisis , Espectrometría de Fluorescencia/métodos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Ligandos , Nanopartículas del Metal/química , Mercurio/análisis , Mercurio/orina , Humanos , Colorantes Fluorescentes/química , Povidona/química , Benzoatos/química , Polímeros/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-39244958

RESUMEN

1,3-Butadiene (BD) is a carcinogenic air pollutant. N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (MHBMA3 or 4HBeMA), an urinary BD metabolite with unspecified configuration, is considered the most sensitive BD biomarker and has been used in routine biomonitoring since 2012. However, two issues remain unaddressed: why its concentrations are unusually high relative to other urinary BD biomarkers and why some authors reported no detection of the biomarker whereas other authors readily quantitated it. To address the issues, we synthesized and structurally characterized the authentic trans- and cis-isomers of MHBMA3 (designated NE and NZ, respectively), developed an isotope-dilution LC-MS/MS method for their quantification, and examined 67 urine samples from barbecue restaurant personnel (n = 47) and hotel administrative staff (n = 20). The restaurant personnel were exposed to barbecue fumes, which contain relatively high concentrations of BD. The results showed that NE and NZ had highly similar NMR spectra, and were difficult to be well separated chromatographically. The NMR data showed that the MHBMA3 isomer investigated in most previous studies was NE. We did not detect NE and NZ in any samples; however, an interfering peak with varying heights was observed in most samples. Notably, under the chromatographic conditions used in the literature, the peak exhibited indistinguishable retention time from that of NE. Thus, it is highly likely that the interfering peak has been mis-identified as NE in previous studies, providing a reasonable explanation for the high MHBMA3 concentration in urine. The contradiction in the presence of MHBMA3 in urine was also caused by the mis-identification, because the researchers who reported the absence of MHBMA3 were actually detecting NZ. Thus, we clarified the confusion on MHBMA3 in previous studies through correctly identifying the two MHBMA3 isomers. The presence of NE and NZ in human urine warrants further investigations.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Acetilcisteína/orina , Acetilcisteína/análogos & derivados , Acetilcisteína/química , Isomerismo , Límite de Detección , Butadienos/química , Butadienos/orina , Reproducibilidad de los Resultados , Cisteína/orina , Cisteína/análogos & derivados , Cisteína/química , Biomarcadores/orina , Masculino
3.
Anal Chem ; 96(36): 14550-14559, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39180519

RESUMEN

In this work, we explored the potential of thiol-capped CdZnTe quantum dots (QDs) as an exceptional signal tag for fluorescence aptasensing applications. Employing a one-pot hydrothermal approach, we modulated the terminal functional groups of CdZnTe QDs using l-cysteine (Lcys), 3-mercaptopropionic acid (MPA), and N-acetyl-l-cysteine (NAC) as ligands. Our comparative analysis revealed that NAC-capped CdZnTe QDs (NAC-CdZnTe QDs) exhibited superior anti-interference capabilities and storage stability across various temperatures, pH levels, and storage durations. Encouraged by these promising results, we further optimized the use of ultrastable NAC-CdZnTe QDs encapsulated in dendritic mesoporous silica nanoparticles (DMSN@QDs) as an exceptional tag for the development of an advanced anti-interference fluorescence aptasensor for aflatoxin B1 (AFB1) detection. The developed aptasensor using DMSN@QDs as signal tags achieved a remarkable signal amplification of approximately 10.2 fold compared to the NAC-CdZnTe QDs coated silica (SiO2@QDs) labeled fluorescence aptasensor. This aptasensor was able to detect AFB1 within a wide range of 1 pg mL-1 to 200 ng mL-1, achieving a limit of detection as low as 0.41 pg mL-1 (S/N = 3). Crucially, the specific binding affinity between the aptamer and the target enabled the aptasensor to be easily customized for various targets by simply replacing the aptamer sequence with the desired one. The exceptional potential of NAC-CdZnTe QDs, particularly when encapsulated in DMSNs, leads to the development of highly sensitive and selective anti-interference fluorescence aptasensors for various targets, thereby, paving the way for advancements in a diverse range of applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Dióxido de Silicio , Telurio , Puntos Cuánticos/química , Dióxido de Silicio/química , Telurio/química , Compuestos de Cadmio/química , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Porosidad , Acetilcisteína/química , Fluorescencia , Espectrometría de Fluorescencia , Límite de Detección , Cadmio , Zinc
4.
Adv Pharmacol ; 100: 119-155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034050

RESUMEN

Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy. However, Hydroxyl polyamidoamine (PAMAM) dendrimers showed significant promise in drug discovery efforts, owning their remarkable potential to selectively target and deliver drugs specifically to activated microglia and astrocytes at the site of brain injury in several preclinical models. After a decade's worth of academic research and pre-clinical efforts, the hydroxyl PAMAM dendrimer-N-acetyl cysteine conjugate (OP-101) nanomedicine has made a significant advancement in the field of nanomedicine and targeted delivery. The OP-101 conjugate, primarily developed and validated in academic labs, has now entered clinical trials as a potential treatment for hyperinflammation in hospitalized adults with severe COVID-19 through Ashvattha Therapeutics. This chapter, we delve into the journey of the hydroxyl PAMAM dendrimer-N-acetylcysteine (NAC) OP-101 formulation from the laboratory to the clinic. It will specifically focus on the design, synthesis, preclinical, and clinical development of OP-101, highlighting the potential it holds for the future of medicine and the positive Phase 2a results for treating severe COVID-19.


Asunto(s)
Acetilcisteína , Dendrímeros , Nanomedicina , Dendrímeros/química , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Acetilcisteína/química , Humanos , Animales , Nanomedicina/métodos , Tratamiento Farmacológico de COVID-19 , Sistemas de Liberación de Medicamentos/métodos , Desarrollo de Medicamentos/métodos
5.
J Sep Sci ; 47(12): e2400247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031562

RESUMEN

Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.


Asunto(s)
Glutatión , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Glutatión/análisis , Cromatografía Líquida de Alta Presión/métodos , Humanos , Homocisteína/análisis , Cisteína/análisis , Ácido Pirrolidona Carboxílico/análisis , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Dipéptidos/análisis , Acetilcisteína/análisis , Acetilcisteína/química , Cistina/análisis
6.
Biomater Sci ; 12(17): 4376-4385, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39028033

RESUMEN

Increased disulfide crosslinking of secreted mucins causes elevated viscoelasticity of mucus and is a key determinant of mucus dysfunction in patients with cystic fibrosis (CF) and other muco-obstructive lung diseases. In this study, we describe the synthesis of a novel thiol-containing, sulfated dendritic polyglycerol (dPGS-SH), designed to chemically reduce these abnormal crosslinks, which we demonstrate with mucolytic activity assays in sputum from patients with CF. This mucolytic polymer, which is based on a reportedly anti-inflammatory polysulfate scaffold, additionally carries multiple thiol groups for mucolytic activity and can be produced on a gram-scale. After a physicochemical compound characterization, we compare the mucolytic activity of dPGS-SH to the clinically approved N-acetylcysteine (NAC) using western blot studies and investigate the effect of dPGS-SH on the viscoelastic properties of sputum samples from CF patients by oscillatory rheology. We show that dPGS-SH is more effective than NAC in reducing multimer intensity of the secreted mucins MUC5B and MUC5AC and demonstrate significant mucolytic activity by rheology. In addition, we provide data for dPGS-SH demonstrating a high compound stability, low cytotoxicity, and superior reaction kinetics over NAC at different pH levels. Our data support further development of the novel reducing polymer system dPGS-SH as a potential mucolytic to improve mucus function and clearance in patients with CF as well as other muco-obstructive lung diseases.


Asunto(s)
Glicerol , Polímeros , Esputo , Compuestos de Sulfhidrilo , Humanos , Glicerol/química , Polímeros/química , Polímeros/farmacología , Esputo/metabolismo , Esputo/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Mucina 5AC/metabolismo , Enfermedades Pulmonares Obstructivas/tratamiento farmacológico , Enfermedades Pulmonares Obstructivas/metabolismo , Mucina 5B/metabolismo , Sulfatos/química , Sulfatos/farmacología , Expectorantes/farmacología , Expectorantes/química , Moco/metabolismo , Moco/química , Reología , Acetilcisteína/farmacología , Acetilcisteína/química , Viscosidad
7.
ChemMedChem ; 19(18): e202400110, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38847101

RESUMEN

N-acetylcysteine (NAC) is a commonly used mucolytic agent and antidote for acetaminophen overdose. For pulmonary diseases, NAC exhibits antioxidative properties, regulates cytokine production, reduces apoptosis of lung epithelial cells, and facilitates the resolution of inflammation. However, the efficacy of NAC in clinical trials targeting different pathological conditions is constrained by its short half-life and low bioavailability. In the present study, a series of NAC derivatives were designed and synthesized to further enhance its pharmacological activity. Structure-activity relationship (SAR) studies were conducted to optimize the activating groups. In vitro evaluations revealed that compounds 4 r, 4 t, 4 w, and 4 x exhibited superior antioxidative and anti-inflammatory activities compared to the positive controls of NAC and fudosteine. The ADME prediction analysis indicated that these compounds exhibited a favorable pharmacological profile. In-vivo experiments with compound 4 r demonstrated that the high-dose group (80 mg/kg) exhibited improved therapeutic effects in reversing the HPY level in mice with pulmonary fibrosis compared to the NAC group (500 mg/kg), further proving its superior oral bioavailability and therapeutic effect compared to NAC.


Asunto(s)
Acetilcisteína , Antioxidantes , Diseño de Fármacos , Acetilcisteína/farmacología , Acetilcisteína/química , Acetilcisteína/síntesis química , Animales , Relación Estructura-Actividad , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Ratones , Estructura Molecular , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Masculino , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química
8.
J Mater Chem B ; 12(21): 5085-5097, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38713059

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aß). Aß activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1ß (IL-1ß), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1ß and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1ß and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.


Asunto(s)
Acetilcisteína , Enfermedad de Alzheimer , Astrocitos , Células Madre Pluripotentes Inducidas , Nanopartículas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Nanopartículas/química , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Acetilcisteína/química , Acetilcisteína/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Polímeros/química , Polímeros/farmacología , Lípidos/química , Biomarcadores/metabolismo , Tamaño de la Partícula , Enfermedades Neuroinflamatorias/tratamiento farmacológico
9.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38693878

RESUMEN

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Asunto(s)
Acetilcisteína , Antibacterianos , Biopelículas , Escherichia coli , Óxido Nítrico , Staphylococcus aureus , Acetilcisteína/química , Acetilcisteína/farmacología , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Polietileneimina/química , Polietileneimina/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Pruebas de Sensibilidad Microbiana , Cloruro de Polivinilo/química , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología
10.
Chemphyschem ; 25(15): e202400191, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703034

RESUMEN

Herein, we report a spectroscopic study of N-acetyl-L-cysteine, an important antioxidant drug, using Fourier-transform microwave techniques and in isolated conditions. Two conformers are observed, where most stable structure adopts a cis disposition, and the second conformer has a lower abundance and adopts a trans disposition. The rotational constants and the barriers to methyl internal rotation are determined for each conformer, allowing a precise conformation identification. The results show that the cis form adopts an identical structure in the crystal, solution, and gas phases. Additionally, the structures are contrasted against those of cysteine.


Asunto(s)
Acetilcisteína , Acetilcisteína/química , Cisteína/química , Rotación , Análisis Espectral/métodos , Conformación Molecular , Microondas
11.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38591866

RESUMEN

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Asunto(s)
Acetilcisteína , Materiales Biocompatibles , Ensayo de Materiales , Nanopartículas , Agujas , Tamaño de la Partícula , Impresión Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacología , Rivastigmina/química , Rivastigmina/farmacología , Rivastigmina/administración & dosificación , Humanos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Sistemas de Liberación de Medicamentos , Piel/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Supervivencia Celular/efectos de los fármacos
12.
Anal Sci ; 40(5): 891-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38472735

RESUMEN

Combating Pseudomonas aeruginosa infection is challenging. It secretes pyocyanin (PCN) pigment that contributes to its virulence. Neutralizing PCN via reaction with thiol-containing compounds may represent a potential therapeutic option. This study investigates the neutralization reaction between PCN and N-acetyl cysteine (NAC) for bacterial inhibition and explores its mechanism of action. The neutralization adduct (PCN-NAC) was synthesized by reacting the purified PCN and NAC. The adduct was analyzed and its structure was elucidated. LC-MS/MS method was developed for the determination of PCN-NAC in P. aeruginosa cultures post-treatment with NAC (0-5 mg/mL). The corresponding anti-bacterial potential was estimated and compared to nanoparticles (NPs) alone and under stress conditions. In silico studies were performed to support explaining the mechanism of action. Results revealed that PCN-NAC was exclusively detected in NAC-treated cultures in a concentration-dependent manner. PCN-NAC concentration (230-915 µg/mL) was directly proportional to the reduction in the bacterial viable count (28.3% ± 7.1-87.5% ± 5.9) and outperformed all tested NPs, where chitosan NPs induced 56.9% ± 7.9 inhibition, followed by zinc NPs (49.4% ± 0.9) and gold NPs (17.8% ± 7.5) even post-exposure to different stress conditions. A concomitant reduction in PCN concentration was detected. In silico studies revealed possible interactions between key bacterial proteins and PCN-NAC rather than the NAC itself. These results pose NAC as a potential choice for the management of P. aeruginosa infection, where it neutralizes PCN via the formation of PCN-NAC adduct.


Asunto(s)
Acetilcisteína , Pseudomonas aeruginosa , Piocianina , Factores de Virulencia , Acetilcisteína/química , Acetilcisteína/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Cromatografía Líquida con Espectrometría de Masas , Pseudomonas aeruginosa/efectos de los fármacos , Piocianina/metabolismo , Piocianina/antagonistas & inhibidores , Piocianina/análisis , Piocianina/química , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38306955

RESUMEN

1,3-dichlorobenzene (1,3-DCB) is an aromatic solvent that might be formed during thermal decomposition of bis(2,4-dichlorobenzoyl)peroxide used as initiator in silicone rubber production with many workers exposed worldwide. During metabolism of 1,3-DCB, two isomeric mercapturic acids can be formed from ring oxidation of 1,3-DCB in the liver, namely 2,4-dichlorophenylmercapturic acid (24CPhMA) and 3,5-dichlorophenylmercapturic acid (35CPhMA). These urinary mercapturic acids might serve as biomarkers of the toxicologically relevant absorbed dose of 1,3-DCB and have not been determined so far. Thus, we were aimed to develop an analytical method for quantification of these biomarkers. Authentic standards of both mercapturic acids as well as deuterium-labelled analogues were self-synthesized. A method for the quantification of both CPhMAs in human urine using online-SPE LC/MS/MS was developed and validated with an LOQ of 0.1 ng mL-1 for both CPhMAs. The analytes were extracted from urine by online-SPE on a restricted access material phase, transferred to the analytical column and quantified by tandem mass spectrometry. Interday (n = 6) and Intraday (n = 10) precision for both CPhMAs ranged from 1.7 to 4.3 % with accuracies between 99.4 and 109.9 % at concentrations of 0.6 and 3 ng mL-1. We applied the method on post-shift urine samples of 16 workers of the silicone rubber industry with occupational exposure to 1,3-DCB. Both CPhMAs were above LOQ in 15 of 16 urine samples with median levels (range) for 24CPhMA and 35CPhMA of 1.64 ng mL-1 (<0.1 - 8.2 ng mL-1) and 3.98 ng mL-1 (0.36 - 24.1 ng mL-1), respectively. This is the first report on specific urinary mercapturic acids of 1,3-DCB in humans. Our results show that ring oxidation of 1,3-DCB is considered to be a toxicologically relevant metabolic pathway in humans. This might improve risk assessment of 1,3-DCB-emissions in silicone rubber industry.


Asunto(s)
Clorobencenos , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Acetilcisteína/química , Elastómeros de Silicona , Biomarcadores/orina , Isótopos
14.
PLoS One ; 18(12): e0294297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38079440

RESUMEN

A new form of cell death has recently been proposed involving copper-induced cell death, termed cuproptosis. This new form of cell death has been widely studied in relation to a novel class of copper ionophores, including elesclomol and disulfiram. However, the exact mechanism leading to cell death remains contentious. The oldest and most widely accepted biological mechanism is that the accumulated intracellular copper leads to excessive build-up of reactive oxygen species and that this is what ultimately leads to cell death. Most of this evidence is largely based on studies using N-acetylcysteine (NAC), an antioxidant, to relieve the oxidative stress and prevent cell death. However, here we have demonstrated using inductively coupled mass-spectrometry, that NAC pretreatment significantly reduces intracellular copper uptake triggered by the ionophores, elesclomol and disulfiram, suggesting that reduction in copper uptake, rather than the antioxidant activity of NAC, is responsible for the diminished cell death. We present further data showing that key mediators of reactive oxygen species are not upregulated in response to elesclomol treatment, and further that sensitivity of cancer cell lines to reactive oxygen species does not correlate with sensitivity to these copper ionophores. Our findings are in line with several recent studies proposing the mechanism of cuproptosis is instead via copper mediated aggregation of proteins, resulting in proteotoxic stress leading to cell death. Overall, it is vital to disseminate this key piece of information regarding NAC's activity on copper uptake since new research attributing the effect of NAC on copper ionophore activity to quenching of reactive oxygen species is being published regularly and our studies suggest their conclusions may be misleading.


Asunto(s)
Acetilcisteína , Cobre , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/química , Cobre/química , Disulfiram/farmacología , Muerte Celular , Apoptosis , Antioxidantes/farmacología , Ionóforos/farmacología
15.
Molecules ; 28(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894565

RESUMEN

Homotaurine (HOM) is considered a promising drug for the treatment of Alzheimer's and other neurodegenerative diseases. In the present work, a new high-performance liquid chromatography with fluorescence detection (HPLC-FLD) (λex. = 340 nm and λem. = 455 nm) method was developed and validated for the study of substance permeability in the central nervous system (CNS). Analysis was performed on a RP-C18 column with a binary gradient elution system consisting of methanol-potassium phosphate buffer solution (pH = 7.0, 0.02 M) as mobile phase. Samples of homotaurine and histidine (internal standard) were initially derivatized with ortho-phthalaldehyde (OPA) (0.01 M), N-acetylcysteine (0.01 M) and borate buffer (pH = 10.5; 0.05 M). To ensure the stability and efficiency of the reaction, the presence of different nucleophilic reagents, namely (a) 2-mercaptoethanol (2-ME), (b) N-acetylcysteine (NAC), (c) tiopronin (Thiola), (d) 3-mercaptopropionic acid (3-MPA) and (e) captopril, was investigated. The method was validated (R2 = 0.9999, intra-day repeatability %RSD < 3.22%, inter-day precision %RSD = 1.83%, limits of detection 5.75 ng/mL and limits of quantification 17.43 ng/mL, recovery of five different concentrations 99.75-101.58%) and successfully applied to investigate the in vitro permeability of homotaurine using Franz diffusion cells. The apparent permeability (Papp) of HOM was compared with that of memantine, which is considered a potential therapeutic drug for various CNSs. Our study demonstrates that homotaurine exhibits superior permeability through the simulated blood-brain barrier compared to memantine, offering promising insights for enhanced drug delivery strategies targeting neurological conditions.


Asunto(s)
Acetilcisteína , Memantina , Acetilcisteína/química , Cromatografía Líquida de Alta Presión/métodos , o-Ftalaldehído/química , Indicadores y Reactivos , Tiopronina , Reproducibilidad de los Resultados
16.
Int J Pharm ; 644: 123322, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37591474

RESUMEN

Nintedanib (NIN) is one of the FDA-approved tyrosine kinase inhibitor drugs used to treat idiopathic pulmonary fibrosis (IPF). This study aimed to formulate a long-circulating injection of Nintedanib to treat bedridden patients with IPF. Nintedanib was incorporated into chitosan nanoparticles (NIN-NP) via the ionic gelation method, and N-acetyl cysteine (NAC), a known antioxidant and mucolytic agent, was added to the NIN-NP (NAC-NIN-NP). The lyophilized formulation had a particle size of 174 nm, a polydispersity index of 0.511, and a zeta potential of 18.6 mV. The spherical nanoparticles were observed in transmission electron microscopy, whereas field emission scanning electron microscopy showed irregular clusters of NP. The thiolation of the chitosan in NAC-NIN-NP was confirmed by ATR-FTIR and NMR, which improved drug release profiles showing >90 % drug release that was 2.42-folds greater than NIN-NP lasting for five days. The DPPH assay showed that adding NAC increased the % inhibition of oxidation in blank-NP (from 54.59 % to 87.17 %) and NIN-NP (58.65 %-89.19 %). The MTT assay on A549 cells showed 67.57 % cell viability by NAC-NIN-NP with an IC50 value of 28 µg/mL. The NAC formulation reduced hydroxyproline content (56.77 µg/mL) compared to NIN-NP (69.48 µg/mL) in WI-38 cell lines. Meanwhile, the healthy cells count with NAC-NIN-NP was higher (5.104 × 103) than with NIN-NP (4.878 × 103). In Hoechst staining, no significant damage to DNA was observed by the drug or formulation. Therefore, NAC-NIN-NP could be a promising treatment option for IPF patients and can be studied further clinically.


Asunto(s)
Fibrosis Pulmonar Idiopática , Nanopartículas , Quitosano/química , Acetilcisteína/química , Compuestos de Sulfhidrilo/química , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Tamaño de la Partícula , Humanos , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química
17.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239911

RESUMEN

Non-enzymatic thiol addition into the α,ß-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4'-methyl- and 4'-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neoplasias , Chalcona/farmacología , Chalconas/farmacología , Glutatión/metabolismo , Acetilcisteína/química , Cromatografía Líquida de Alta Presión , Antineoplásicos/farmacología , Compuestos de Sulfhidrilo/química
18.
Mol Pharm ; 20(5): 2686-2701, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37066621

RESUMEN

Microglia-mediated neuroinflammation is commonly associated with neurodegeneration and has been implicated in several neurological disorders, such as Alzheimer's disease and Parkinson's disease. Therefore, it is crucial to develop a detailed understanding of the interaction of potential nanocarriers with microglial cells to efficiently deliver anti-inflammatory molecules. In this study, we applied brush polymers as a modular platform to systematically investigate their association with murine (BV-2) and human (HMC3) microglial cell lines in the presence and absence of the pro-inflammatory inducer lipopolysaccharide (LPS) using flow cytometry. Brush polymers of different sizes and shapes, ranging from ellipsoid to worm-like cylinders, were prepared through a combination of the two building blocks carboxylated N-acylated poly(aminoester)s (NPAEs)-based polymers and poly(2-ethyl-2-oxazoline)-NH2 (PEtOx-NH2) and characterized by 1H NMR spectroscopy, size exclusion chromatography, and small-angle neutron scattering. Generally, ellipsoidal particles showed the highest cellular association. Moreover, while no significant differences in murine cell association were observed, the brush polymers revealed a significant accumulation in LPS-activated human microglia compared to resting cells, emphasizing their higher affinity to activated HMC3 cells. Brush polymers with the highest cell association were further modified with the anti-inflammatory agent N-acetyl cysteine (NAC) in a reversible manner. The brush polymer-NAC conjugates were found to significantly attenuate the production of interleukin 6 (p < 0.001) in LPS-activated HMC3 cells compared to LPS-activated BV-2 cells. Thus, the presented brush polymer-NAC conjugates showed a high anti-inflammatory activity in human microglia, suggesting their potential for disease-targeted therapy of microglial-mediated neuroinflammation in the future.


Asunto(s)
Microglía , Polímeros , Ratones , Humanos , Animales , Microglía/metabolismo , Polímeros/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Acetilcisteína/química
19.
Carbohydr Polym ; 291: 119552, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698331

RESUMEN

An N-acetylcysteine functionalized chitosan oligosaccharide-palmitic acid conjugate (NAC-COS-PA) with bioadhesive and permeation promoting properties was synthesized to enhance transocular drug delivery. Flurbiprofen (FB) loaded self-assembled NAC-COS-PA nanomicelles (NAC-COS-PA-FB) were prepared and the drug loading was 7.35 ± 0.32%. Human immortalized corneal epithelial (HCE-T) cell cytotoxicity and hen's egg test-chorioallantoic membrane assays confirmed that the conjugate had good biocompatibility. The transportation efficiency of coumarin-6 (C6) loaded nanomicelles in the HCE-T cell monolayer was approximately 1.97 times higher than that of free C6. Decreased intracellular Ca2+ concentration and cell membrane potential, increased cell membrane fluidity, and reversible changes in the F-actin cytoskeleton are presumed to be responsible for the enhanced drug permeation. NAC-COS-PA exhibited strong binding capacity with mucin and rabbit eyeball. In vivo pharmacokinetics indicated that the area under the curve (AUC0-6 h) and the maximum concentration (Cmax) of NAC-COS-PA-FB were approximately 1.92 and 2.44 times that of the FB solution, respectively. NAC-COS-PA-FB demonstrated the best in vivo anti-inflammatory efficacy compared to unfunctionalized nanomicelles (COS-PA-FB) and FB solution. Consequently, NAC-COS-PA appears to be a promising bioadhesive carrier for ophthalmic delivery.


Asunto(s)
Quitosano , Flurbiprofeno , Acetilcisteína/química , Acetilcisteína/farmacología , Animales , Pollos , Quitosano/química , Córnea/metabolismo , Femenino , Flurbiprofeno/farmacocinética , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Ácido Palmítico , Tamaño de la Partícula , Conejos
20.
Chemphyschem ; 23(11): e202200161, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35353934

RESUMEN

Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, that is, the DFT based "clusters-in-a-liquid" solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP-D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations, which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed.


Asunto(s)
Metanol , Simulación de Dinámica Molecular , Acetilcisteína/química , Rotación Óptica , Solventes/química , Espectrometría Raman , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...