Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Bioorg Med Chem ; 108: 117774, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833750

RESUMEN

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which remains a significant global health challenge. The emergence of multidrug-resistant (MDR) Mtb strains imposes the development of new therapeutic strategies. This study focuses on the identification and evaluation of potential inhibitors against Mtb H37Ra through a comprehensive screening of an in-house chemolibrary. Subsequently, a promising pyrimidine derivative (LQM495) was identified as promising and then further investigated by experimental and in silico approaches. In this context, computational techniques were used to elucidate the potential molecular target underlying the inhibitory action of LQM495. Then, a consensus reverse docking (CRD) protocol was used to investigate the interactions between this compound and several Mtb targets. Out of 98 Mtb targets investigated, the enhanced intracellular survival (Eis) protein emerged as a target for LQM495. To gain insights into the stability of the LQM495-Eis complex, molecular dynamics (MD) simulations were conducted over a 400 ns trajectory. Further insights into its binding modes within the Eis binding site were obtained through a Quantum mechanics (QM) approach, using density functional theory (DFT), with B3LYP/D3 basis set. These calculations shed light on the electronic properties and reactivity of LQM495. Subsequently, inhibition assays and kinetic studies of the Eis activity were used to investigate the activity of LQM495. Then, an IC50 value of 11.0 ± 1.4 µM was found for LQM495 upon Eis protein. Additionally, its Vmax, Km, and Ki parameters indicated that it is a competitive inhibitor. Lastly, this study presents LQM495 as a promising inhibitor of Mtb Eis protein, which could be further explored for developing novel anti-TB drugs in the future.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Antituberculosos/farmacología , Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/metabolismo , Relación Dosis-Respuesta a Droga , Simulación de Dinámica Molecular , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química
2.
Biochemistry ; 62(3): 710-721, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36657084

RESUMEN

Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.


Asunto(s)
Acetiltransferasas , Mycobacterium tuberculosis , Tuberculosis , Humanos , Acetiltransferasas/antagonistas & inhibidores , Antituberculosos/farmacología , Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Kanamicina/farmacología , Kanamicina/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Proguanil/metabolismo , Tuberculosis/tratamiento farmacológico
3.
Sci Rep ; 12(1): 285, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997203

RESUMEN

Resistance to amikacin in Gram-negatives is usually mediated by the 6'-N-acetyltransferase type Ib [AAC(6')-Ib], which catalyzes the transfer of an acetyl group from acetyl CoA to the 6' position of the antibiotic molecule. A path to continue the effective use of amikacin against resistant infections is to combine it with inhibitors of the inactivating reaction. We have recently observed that addition of Zn2+ to in-vitro enzymatic reactions, obliterates acetylation of the acceptor antibiotic. Furthermore, when added to amikacin-containing culture medium in complex to ionophores such as pyrithione (ZnPT), it prevents the growth of resistant strains. An undesired property of ZnPT is its poor water-solubility, a problem that currently affects a large percentage of newly designed drugs. Water-solubility helps drugs to dissolve in body fluids and be transported to the target location. We tested a pyrithione derivative described previously (Magda et al. Cancer Res 68:5318-5325, 2008) that contains the amphoteric group di(ethyleneglycol)-methyl ether at position 5 (compound 5002), a modification that enhances the solubility. Compound 5002 in complex with zinc (Zn5002) was tested to assess growth inhibition of amikacin-resistant Acinetobacter baumannii and Klebsiella pneumoniae strains in the presence of the antibiotic. Zn5002 complexes in combination with amikacin at different concentrations completely inhibited growth of the tested strains. However, the concentrations needed to achieve growth inhibition were higher than those required to achieve the same results using ZnPT. Time-kill assays showed that the effect of the combination amikacin/Zn5002 was bactericidal. These results indicate that derivatives of pyrithione with enhanced water-solubility, a property that would make them drugs with better bioavailability and absorption, are a viable option for designing inhibitors of the resistance to amikacin mediated by AAC(6')-Ib, an enzyme commonly found in the clinics.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Acinetobacter baumannii/efectos de los fármacos , Amicacina/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Compuestos Organometálicos/farmacología , Piridinas/farmacología , Acetiltransferasas/metabolismo , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/crecimiento & desarrollo , Amicacina/metabolismo , Antibacterianos/metabolismo , Inhibidores Enzimáticos/química , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/crecimiento & desarrollo , Viabilidad Microbiana , Compuestos Organometálicos/química , Piridinas/química , Solubilidad , Factores de Tiempo
4.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199510

RESUMEN

During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.


Asunto(s)
Acetiltransferasas/genética , Neoplasias de la Mama/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de Microtúbulos/genética , Tunicamicina/farmacología , Acetilación/efectos de los fármacos , Acetiltransferasas/antagonistas & inhibidores , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Microtúbulos/antagonistas & inhibidores , Microtúbulos/efectos de los fármacos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Microambiente Tumoral/efectos de los fármacos
5.
Comput Biol Chem ; 93: 107513, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34052673

RESUMEN

Post-translation modification of microtubules is associated with many diseases like cancer. Alpha Tubulin Acetyltransferase 1 (ATAT1) is a major enzyme that acetylates 'Lys-40' in alpha-tubulin on the luminal side of microtubules and is a drug target that lacks inhibitors. Here, we developed pharmacophore anchor models of ATAT1 which were constructed statistically using thousands of docked compounds, for drug design and investigating binding mechanisms. Our models infer the compound moiety preferences with the physico-chemical properties for the ATAT1 binding site. The results from the pharmacophore anchor models show the three main sub-pockets, including S1 acetyl site, S2 adenine site, and S3 diphosphate site with anchors, where conserved moieties interact with respective sub-pocket residues in each site and help in guiding inhibitor discovery. We validated these key anchors by analyzing 162 homologous protein sequences (>99 species) and over 10 structures with various bound ligands and mutations. Our results were consistent with previous works also providing new interesting insights. Our models applied in virtual screening predicted several ATAT1 potential inhibitors. We believe that our model is useful for future inhibitor discovery and for guiding lead optimization.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas de Microtúbulos/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Ligandos , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Mutación , Procesamiento Proteico-Postraduccional
6.
Angew Chem Int Ed Engl ; 60(24): 13542-13547, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33768725

RESUMEN

The mammalian membrane-bound O-acyltransferase (MBOAT) superfamily is involved in biological processes including growth, development and appetite sensing. MBOATs are attractive drug targets in cancer and obesity; however, information on the binding site and molecular mechanisms underlying small-molecule inhibition is elusive. This study reports rational development of a photochemical probe to interrogate a novel small-molecule inhibitor binding site in the human MBOAT Hedgehog acyltransferase (HHAT). Structure-activity relationship investigation identified single enantiomer IMP-1575, the most potent HHAT inhibitor reported to-date, and guided design of photocrosslinking probes that maintained HHAT-inhibitory potency. Photocrosslinking and proteomic sequencing of HHAT delivered identification of the first small-molecule binding site in a mammalian MBOAT. Topology and homology data suggested a potential mechanism for HHAT inhibition which was confirmed by kinetic analysis. Our results provide an optimal HHAT tool inhibitor IMP-1575 (Ki =38 nM) and a strategy for mapping small molecule interaction sites in MBOATs.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Marcadores de Afinidad/química , Bibliotecas de Moléculas Pequeñas/química , Acetiltransferasas/metabolismo , Sitios de Unión , Humanos , Cinética , Luz , Palmitoil Coenzima A/antagonistas & inhibidores , Palmitoil Coenzima A/metabolismo , Piridinas/química , Piridinas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
7.
Biosci Biotechnol Biochem ; 85(2): 351-358, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33604638

RESUMEN

Methionine is a canonical amino acid. The protein MetX is a homoserine O-acyltransferase utilized in the methionine biosynthetic pathway. The metW gene is found adjacent to the metX gene in some bacteria, but its functions are unclear. In this study, I focused on the function of MetW and MetX from Pseudomonas aeruginosa (PaMetW and PaMetX). I demonstrated that PaMetW interacted with and activated the homoserine O-succinyltransferase (HST) activity of PaMetX. Furthermore, I elucidated that the HST activity of PaMetX in complex with PaMetW was inhibited by the addition of S-adenosyl-l-homocysteine (SAH), although PaMetX alone showed no feedback inhibition. Since PaMetW possesses a glycine-rich sequence annotated as a SAM/SAH binding site, I also investigated the relationship between this glycine-rich sequence and the inhibition caused by SAH. I revealed that alanine mutation of PaMetW Gly24 reduced the inhibitory effect of SAH. These results suggest that MetW is a regulatory protein of MetX.


Asunto(s)
Acetiltransferasas/metabolismo , Pseudomonas aeruginosa/enzimología , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Secuencia de Aminoácidos , Sitios de Unión , Metionina/metabolismo , S-Adenosilmetionina/farmacología
8.
Med Chem ; 17(5): 474-484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31763975

RESUMEN

BACKGROUND: Antimicrobial resistance is a persistent problem regarding infection treatment and calls for developing new antimicrobial agents. Inhibition of bacterial ß-ketoacyl acyl carrier protein synthase III (FabH), which catalyzes the condensation reaction between a CoAattached acetyl group and an ACP-attached malonyl group in bacteria is an interesting strategy to find new antibacterial agents. OBJECTIVE: The aim of this work was to design and synthesize arylsulfonylhydrazones potentially FabH inhibitors and evaluate their antimicrobial activity. METHODS: MIC50 values of sulfonylhydrazones against E. coli and S. aureus were determined. Antioxidant activity was evaluated by DPPH (1-1'-diphenyl-2-picrylhydrazyl) assay and cytotoxicity against LL24 lung fibroblast cells was verified by MTT method. Principal component analysis (PCA) was performed in order to suggest a structure-activity relationship. Molecular docking allowed to propose sulfonylhydrazones interactions with FabH. RESULTS: The most active compound showed activity against S. aureus and E. coli, with MIC50 = 0.21 and 0.44 µM, respectively. PCA studies correlated better activity to lipophilicity and molecular docking indicated that sulfonylhydrazone moiety is important to hydrogen-bond with FabH while methylcatechol ring performs π-π stacking interaction. The DPPH assay revealed that some sulfonylhydrazones derived from the methylcatechol series had antioxidant activity. None of the evaluated compounds was cytotoxic to human lung fibroblast cells, suggesting that the compounds might be considered safe at the tested concentration. CONCLUSION: Arylsufonylhydrazones is a promising scaffold to be explored for the design of new antimicrobial agents.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Hidrazonas/farmacología , Sulfonamidas/farmacología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Hidrazonas/síntesis química , Hidrazonas/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Análisis de Componente Principal , Unión Proteica , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo
9.
J Hepatol ; 74(5): 1038-1052, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248168

RESUMEN

BACKGROUND & AIMS: Lactate has recently been reported to accumulate in the livers of patients progressing from simple steatosis to non-alcoholic steatohepatitis (NASH). However, the underlying mechanism(s) of lactate accumulation and the role of lactate in the progression of non-alcoholic fatty liver disease (NAFLD) are essentially unknown. METHODS: We compared the acetylome in liver samples taken from healthy individuals, patients with simple steatosis and patients with NASH to identify potential targets of acetylation with a role in lactate metabolism. Interactions between the acetylated target and acetyltransferases were measured in multiple cell lines. An acetyltransferase inhibitor was injected into high-fat diet (HFD)-fed mice to determine the role of lactate on NAFLD progression in vivo. RESULTS: Hyperacetylation of lactate dehydrogenase B (LDHB) was found to be associated with lactate accumulation in NAFL and NASH livers in humans and mice. P300/CBP-associated factor (PCAF)-mediated acetylation of LDHB K82 was found to significantly decrease LDHB activity and impair hepatic lactate clearance, resulting in lactate accumulation. Acetylated LDHB induced lactate accumulation which exacerbated lipid deposition and inflammatory responses by activating histone hyperacetylation in HFD-induced NASH. The administration of embelin, a PCAF inhibitor, and the generation of an acetylation-deficient mutant of LDHB ameliorated NASH. CONCLUSION: PCAF-dependent LDHB acetylation plays a key role in hepatic lipid accumulation and inflammatory responses by impairing lactate clearance; this process might be a potential therapeutic target for the treatment of NASH. LAY SUMMARY: Lactate is known to accumulate in the livers of patients during the progression of non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanism(s) of this accumulation and its importance in disease progression are unknown. Herein, we show that the acetylation of an enzyme involved in lactate metabolism leads to impaired lactate clearance and exacerbates NAFLD progression.


Asunto(s)
Acetiltransferasas , Eliminación Hepatobiliar/fisiología , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Distribución Tisular/fisiología , Acetilación , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/metabolismo , Animales , Línea Celular , Progresión de la Enfermedad , Humanos , Isoenzimas/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones , Factores de Transcripción p300-CBP/metabolismo
10.
Cardiovasc Res ; 117(6): 1434-1449, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33098415

RESUMEN

Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.


Asunto(s)
Mimetismo Biológico , Restricción Calórica , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Acetilcoenzima A/biosíntesis , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/metabolismo , Animales , Autofagia/efectos de los fármacos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Modelos Animales de Enfermedad , Humanos
11.
Sci Rep ; 10(1): 19381, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168871

RESUMEN

Interference with antibiotic activity and its inactivation by bacterial modifying enzymes is a prevailing mode of bacterial resistance to antibiotics. Aminoglycoside antibiotics become inactivated by aminoglycoside-6'-N-acetyltransferase-Ib [AAC(6')-Ib] of gram-negative bacteria which transfers an acetyl group from acetyl-CoA to the antibiotic. The aim of the study was to disrupt the enzymatic activity of AAC(6')-Ib by adjuvants and restore aminoglycoside activity as a result. The binding affinities of several vitamins and chemical compounds with AAC(6')-Ib of Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei were determined by molecular docking method to screen potential adjuvants. Adjuvants having higher binding affinity with target enzymes were further analyzed in-vitro to assess their impact on bacterial growth and bacterial modifying enzyme AAC(6')-Ib activity. Four compounds-zinc pyrithione (ZnPT), vitamin D, vitamin E and vitamin K-exhibited higher binding affinity to AAC(6')-Ib than the enzyme's natural substrate acetyl-CoA. Combination of each of these adjuvants with three aminoglycoside antibiotics-amikacin, gentamicin and kanamycin-were found to significantly increase the antibacterial activity against the selected bacterial species as well as hampering the activity of AAC(6')-Ib. The selection process of adjuvants and the use of those in combination with aminoglycoside antibiotics promises to be a novel area in overcoming bacterial resistance.


Asunto(s)
Acetiltransferasas , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Escherichia coli/enzimología , Klebsiella pneumoniae/enzimología , Simulación del Acoplamiento Molecular , Shigella sonnei/enzimología , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química
12.
J Med Chem ; 63(16): 8867-8875, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32787146

RESUMEN

Rare neglected diseases may be neglected but are hardly rare, affecting hundreds of millions of people around the world. Here, we present a hit identification approach using AtomNet, the world's first deep convolutional neural network for structure-based drug discovery, to identify inhibitors targeting aspartate N-acetyltransferase (ANAT), a promising target for the treatment of patients suffering from Canavan disease. Despite the lack of a protein structure or high sequence identity homologous templates, the approach successfully identified five low-micromolar inhibitors with drug-like properties.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Aprendizaje Profundo , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Streptomyces/enzimología
13.
ACS Chem Biol ; 15(6): 1581-1594, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32421305

RESUMEN

The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis (Mtb) is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of Mtb, we designed and optimized structurally unique thieno[2,3-d]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy. We obtained 12 crystal structures of enzyme-inhibitor complexes, which guided our rational structure-based design of 72 thieno[2,3-d]pyrimidine analogues divided into three families. We evaluated the potency of these inhibitors in vitro as well as their ability to restore the activity of kanamycin in a resistant strain of Mtb, in which Eis was upregulated. Furthermore, we evaluated the metabolic stability of 11 compounds in vitro. This study showcases how structural information can guide Eis inhibitor design.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Diseño de Fármacos , Resistencia a la Kanamicina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad
14.
Ann Neurol ; 87(3): 480-485, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925837

RESUMEN

Marked elevation in the brain concentration of N-acetyl-L-aspartate (NAA) is a characteristic feature of Canavan disease, a vacuolar leukodystrophy resulting from deficiency of the oligodendroglial NAA-cleaving enzyme aspartoacylase. We now demonstrate that inhibiting NAA synthesis by intracisternal administration of a locked nucleic acid antisense oligonucleotide to young-adult aspartoacylase-deficient mice reverses their pre-existing ataxia and diminishes cerebellar and thalamic vacuolation and Purkinje cell dendritic atrophy. Ann Neurol 2020;87:480-485.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Acetiltransferasas/antagonistas & inhibidores , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Ácido Aspártico/biosíntesis , Ataxia/complicaciones , Ataxia/tratamiento farmacológico , Atrofia/complicaciones , Atrofia/tratamiento farmacológico , Enfermedad de Canavan/complicaciones , Enfermedad de Canavan/patología , Cerebelo/patología , Femenino , Técnicas de Silenciamiento del Gen , Infusiones Intraventriculares , Masculino , Ratones , Mutación , Oligonucleótidos Antisentido/administración & dosificación , Células de Purkinje/patología , Prueba de Desempeño de Rotación con Aceleración Constante , Tálamo/patología , Vacuolas/efectos de los fármacos , Vacuolas/patología
15.
Chem Biol Drug Des ; 95(1): 48-57, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260162

RESUMEN

Canavan disease (CD) is a fatal leukodystrophy caused by mutations in the aspA gene coding for the enzyme aspartoacylase. Insufficient catalytic activity by this enzyme leads to the accumulation of its substrate, N-acetyl-l-aspartate (NAA), and diminished production of acetate in brain oligodendrocytes of patients with CD. There is growing evidence that this accumulation of NAA is the cause of many of the developmental defects observed in these patients. NAA is produced in the brain by a transacetylation reaction catalyzed by aspartate N-acetyltransferase (ANAT), and this membrane-associated enzyme has recently been purified as a soluble maltose binding protein fusion. Designing selective inhibitors against ANAT has the potential to slow the accumulation of NAA and moderate these developmental defects, and this is the goal of this project. Several bisubstrate analog inhibitors of ANAT have been synthesized that have achieved nanomolar level binding affinities against this enzyme. Truncated versions and fragments of these bisubstrate analog inhibitors have identified the essential structural elements needed for high binding affinity. More drug-like versions of these inhibitors can now be built, based on these essential core structures.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/tratamiento farmacológico , Inhibidores Enzimáticos/química , Ácido Aspártico/química , Ácido Aspártico/farmacología , Sitios de Unión , Encéfalo/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Humanos , Maltosa/química , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo
17.
Int J Biol Macromol ; 157: 626-640, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31786301

RESUMEN

Acetylation of proteins is vital and mediate many processes within the cells like protein interactions, intercellular localization, protein stability, transcriptional regulation, enzyme activity and many more. Acetylation, an evolutionarily conserved process, attracted more attention due to its key regulatory role in many cellular processes and its effect on proteome and metabolome. In eukaryotes, protein acetylation also contribute to the epigenetic regulation of gene expression. Acetylation involves the transfer of acetyl group from donor acetyl coenzyme A to a suitable acceptor molecule and the reaction is catalyzed by acetyltransferase enzymes. The review focuses on current understanding of different acetyltransferase families: their discovery, structure and catalytic mechanism in fungal species. Fungal acetyltransferases use divergent catalytic mechanisms and carry out catalysis in a substrate-specific manner. The studies have explored different fungal acetyltransferases in relation to secondary metabolite production and the fungal pathogenesis. Although, the functions and catalytic mechanism of acetyltransferases are well known, however further enhanced knowledge may improve their utilization in various applications of biotechnology.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Antifúngicos/química , Inhibidores Enzimáticos/química , Proteínas Fúngicas/química , Hongos/enzimología , Modelos Moleculares , Conformación Molecular , Acetiltransferasas/antagonistas & inhibidores , Antifúngicos/farmacología , Catálisis , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Humanos , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
18.
J Cell Biochem ; 121(3): 2258-2267, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31693222

RESUMEN

Lung cancer is famous as an aggressive malignant tumor and is the main cause of cancer-associated mortality globally. Tumor angiogenesis is a vital part in cancer, which influences cell proliferation and metastasis. Increasing studies have claimed that long noncoding RNAs (lncRNAs) were involved in the progression of several cancers. Based on previous studies, this study focused on the role and mechanism of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in lung cancer. At first, MCM3AP-AS1 expression was found to be elevated in lung cancer cells. Depletion of MCM3AP-AS1 repressed cell proliferation, migration, and angiogenesis in lung cancer cells. YY1 was confirmed to mediate MCM3AP-AS1 transcription in lung cancer cells. Moreover, the molecular mechanism investigation revealed that MCM3AP-AS1 could sponge miR-340-5p and elevate KPNA4 expression. On the basis of rescue assays, we identified that the overexpression of KPNA4 partly counteracted the suppressed effect of MCM3AP-AS1 knockdown on angiogenesis and progression in lung cancer cells. Conclusively, the YY1-mediated overexpression of MCM3AP-AS1 accelerated angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis, which highlighted the possibility of MCM3AP-AS1 as a promising therapeutic target for lung cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , MicroARNs/genética , Neovascularización Patológica/patología , ARN Largo no Codificante/genética , Factor de Transcripción YY1/metabolismo , alfa Carioferinas/metabolismo , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Progresión de la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , ARN sin Sentido/genética , Células Tumorales Cultivadas , Factor de Transcripción YY1/genética , alfa Carioferinas/genética
19.
Bioorg Chem ; 93: 103309, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31585266

RESUMEN

The antibacterial agents and therapies today are facing serious problems such as drug resistance. Introducing dual inhibiting effect is a valid approach to solve this trouble and bring advantages including wide adaptability, favorable safety and superiority of combination. We started from potential DNA Gyrase inhibitory backbone isatin to develop oxoindolin derivatives as atypical dual Gyrase (major) and FabH (assistant) inhibitors via a two-round screening. Aiming at blocking both duplication (Gyrase) and survival (FabH), most of synthesized compounds indicated potency against Gyrase and some of them inferred favorable inhibitory effect on FabH. The top hit I18 suggested comparable Gyrase inhibitory activity (IC50 = 0.025 µM) and antibacterial effect with the positive control Novobiocin (IC50 = 0.040 µM). FabH inhibitory activity (IC50 = 5.20 µM) was also successfully introduced. Docking simulation hinted possible important interacted residues and binding patterns for both target proteins. Adequate Structure-Activity Relation discussions provide the future orientations of modification. With high potency, low initial toxicity and dual inhibiting strategy, advanced compounds with therapeutic methods will be developed for clinical application.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Girasa de ADN/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Indoles/química , Inhibidores de Topoisomerasa II/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Acetiltransferasas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Girasa de ADN/metabolismo , Evaluación Preclínica de Medicamentos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/metabolismo , Indoles/metabolismo , Indoles/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/farmacología
20.
Eur Rev Med Pharmacol Sci ; 23(17): 7619-7627, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31539154

RESUMEN

OBJECTIVE: To investigate the effect and mechanism of long non-coding ribonucleic acid (lncRNA) PFL on myocardial ischemia/reperfusion (I/R) injury in rats, and to provide a reference for the prevention and treatment of myocardial infarction (MI) in clinic. MATERIALS AND METHODS: According to the random number table, 60 male Sprague-Dawley (SD) rats were randomly divided into 3 groups: Control group (n=20), I/R group (n=20), and I/R + PFL small interfering ribonucleic acid (siRNA) group (n=20). The I/R model was established by ligating the left anterior descending coronary artery (LAD) and then recanalizing it. PFL siRNAs were injected intravenously into the tail vein of rats in I/R + PFL siRNA group to construct a PFL knockout model. Triphenyl tetrazolium chloride (TTC) test was used to detect the infarction area of each group. Echocardiography was adopted to measure the ejection fraction [EF (%)] and fraction shortening [FS (%)] of rats in each group. Hematoxylin and eosin (H&E) staining was applied to detect the morphological changes in myocardial cells in each group. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was conducted to detect the apoptosis levels of myocardial cells and fibroblasts in heart tissues in each group. Meanwhile, the protein expression levels of apoptosis-related genes, Bcl-2-associated X protein (BAX), and Bcl-2, were measured via Western blotting. Also, the expression level of heat shock protein 20 (HSP-20) in the heart of three groups of rats was examined using immunohistochemical staining. Finally, the effects of PFL siRNAs on the expression level of HSP-20 were detected via Western blotting. RESULTS: PFL siRNAs could significantly improve I/R-induced cardiac insufficiency in rats, thus increasing EF (%) and FS (%) (p<0.05). Besides, PFL siRNAs could remarkably inhibit cardiac infarction caused by I/R injury and reduce the infarction area from (59.54±3.45)% to (24.85±1.30)% (p<0.05). H&E staining results manifested that, compared with those in I/R group, the cardiac myofilament was better in alignment, degradation and necrosis were milder, and cell edema was notably reduced in I/R + PFL siRNA group. Immunohistochemistry and Western blotting results showed that PFL siRNAs could remarkably reverse the decrease in the HSP-20 expression caused by I/R (p<0.05). CONCLUSIONS: We found that PFL knockdown can significantly improve the myocardial injury caused by I/R and improve the cardiac function in rats. The mechanism may be related to the activation of HSP-20 by PFL siRNAs. Therefore, PFL is expected to become a new target for the treatment of MI.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas del Choque Térmico HSP20/metabolismo , Daño por Reperfusión Miocárdica/patología , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Animales , Apoptosis , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA