Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
1.
Sci Rep ; 14(1): 20494, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227724

RESUMEN

Bacterial cellulose synthesis from defined media and waste products has attracted increasing interest in the circular economy context for sustainable productions. In this study, a glucose dehydrogenase-deficient Δgdh K2G30 strain of Komagataeibacter xylinus was obtained from the parental wild type through homologous recombination. Both strains were grown in defined substrates and cheese whey as an agri-food waste to assess the effect of gene silencing on bacterial cellulose synthesis and carbon source metabolism. Wild type K2G30 boasted higher bacterial cellulose yields when grown in ethanol-based medium and cheese whey, although showing an overall higher D-gluconic acid synthesis. Conversely, the mutant Δgdh strain preferred D-fructose, D-mannitol, and glycerol to boost bacterial cellulose production, while displaying higher substrate consumption rates and a lower D-gluconic acid synthesis. This study provides an in-depth investigation of two K. xylinus strains, unravelling their suitability for scale-up BC production.


Asunto(s)
Carbono , Celulosa , Celulosa/biosíntesis , Celulosa/metabolismo , Carbono/metabolismo , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Gluconatos/metabolismo , Glicerol/metabolismo , Manitol/metabolismo
2.
Carbohydr Polym ; 343: 122459, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174096

RESUMEN

Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis. To enhance glucose uptake and BC synthesis, we reconstructed the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) and strengthened glycolysis by introducing heterologous genes, resulting in a recombinant strain (GX08PTS03; Δgcd::ptsHIcrrE. coli::ptsGE. coli::pfkAE. coli). Strain GX08PTS03 efficiently utilized glucose for BC production without accumulating gluconic acid. Subsequently, the fermentation process was systematically optimized. Under optimal conditions, strain GX08PTS03 produced 7.74 g/L of BC after 6 days of static fermentation, with a BC yield of 0.39 g/g glucose, which were 87.41 % and 77.27 % higher than those of the wild-type strain, respectively. The BC produced by strain GX08PTS03 exhibited a longer fiber diameter along with a lower porosity, significantly higher solid content, crystallinity, tensile strength, and Young's modulus. This study is novel in reporting that the engineered PTSGlc-based glucose metabolism could effectively enhance the production and properties of BC, providing a future outlook for the biopolymer industry.


Asunto(s)
Acetobacteraceae , Celulosa , Glucosa , Celulosa/biosíntesis , Celulosa/metabolismo , Celulosa/química , Glucosa/metabolismo , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fermentación , Ingeniería Metabólica/métodos , Gluconacetobacter xylinus/metabolismo , Gluconacetobacter xylinus/genética , Resistencia a la Tracción
3.
ACS Appl Mater Interfaces ; 16(36): 47150-47162, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39206938

RESUMEN

Bacterial nanocellulose (BNC) is a durable, flexible, and dynamic biomaterial capable of serving a wide variety of fields, sectors, and applications within biotechnology, healthcare, electronics, agriculture, fashion, and others. BNC is produced spontaneously in carbohydrate-rich bacterial culture media, forming a cellulosic pellicle via a nanonetwork of fibrils extruded from certain genera. Herein, we demonstrate engineering BNC-based scaffolds with tunable physical and mechanical properties through postprocessing. Human skeletal muscle myoblasts (HSMMs) were cultured on these scaffolds, and in vitro electrical stimulation was applied to promote cellular function for tissue engineering applications. We compared physiologic maturation markers of human skeletal muscle myoblast development using a 2.5-dimensional culture paradigm in fabricated BNC scaffolds, compared to two-dimensional (2D) controls. We demonstrate that the culture of human skeletal muscle myoblasts on BNC scaffolds developed under electrical stimulation produced highly aligned, physiologic morphology of human skeletal muscle myofibers compared to unstimulated BNC and standard 2D culture. Furthermore, we compared an array of metrics to assess the BNC scaffold in a rigorous head-to-head study with commercially available, clinically approved matrices, Kerecis Omega3 Wound Matrix (Marigen) and Phoenix as well as a gelatin methacryloyl (GelMA) hydrogel. The BNC scaffold outcompeted industry standard matrices as well as a 20% GelMA hydrogel in durability and sustained the support of human skeletal muscle myoblasts in vitro. This work offers a robust demonstration of BNC scaffold cytocompatibility with human skeletal muscle cells and sets the basis for future work in healthcare, bioengineering, and medical implant technological development.


Asunto(s)
Celulosa , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Celulosa/química , Andamios del Tejido/química , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Músculo Esquelético/citología , Músculo Esquelético/química , Células Cultivadas , Mioblastos/citología , Nanoestructuras/química , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Hidrogeles/química
4.
Int J Biol Macromol ; 277(Pt 1): 133684, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084979

RESUMEN

For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.457 g L-1 by utilizing Komagataeibacter saccharivorans NUWB1 in combination with components from the Hestrin-Schramm (HS) medium. Physicochemical properties revealed that the obtained BNC exhibited a crystallinity index of 60.5 %, tensile strength of 43.5 MPa along with enhanced thermostability reaching up to 360 °C. N2 adsorption-desorption isotherm of the BNC displayed characteristics of type IV, indicating the presence of a mesoporous structure. The produced BNC underwent thorough investigation, focusing on its efficacy in addressing environmental concerns, particularly in removing emerging pharmaceutical pollutants like Metformin and Paracetamol. Remarkably, the BNC exhibited strong adsorption capabilities, aligning with the Langmuir isotherm and pseudo-second-order model. Thermodynamic analysis confirmed a spontaneous and endothermic adsorption process. Furthermore, the BNC showed potential for regeneration, enabling up to five recycling cycles. Cytotoxicity and oxidative stress assays validated the biocompatibility of BNC. Lastly, the BNC films displayed an impressive 88.73 % biodegradation within 21 days.


Asunto(s)
Celulosa , Celulosa/química , Adsorción , Biodegradación Ambiental , Agricultura/métodos , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Zea mays/química , Contaminantes Químicos del Agua/química , Metformina/química , Nanopartículas/química , Acetaminofén/química , Nanoestructuras/química
5.
Proc Natl Acad Sci U S A ; 121(31): e2403585121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042685

RESUMEN

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.


Asunto(s)
Celulosa , Evolución Molecular Dirigida , Celulosa/metabolismo , Celulosa/biosíntesis , Evolución Molecular Dirigida/métodos , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Fenotipo , Mutación
6.
Int J Biol Macromol ; 276(Pt 2): 133904, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084992

RESUMEN

This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.


Asunto(s)
Acetobacteraceae , Celulosa , Hibiscus , Acetobacteraceae/metabolismo , Celulosa/biosíntesis , Celulosa/metabolismo , Fermentación
7.
Bioprocess Biosyst Eng ; 47(9): 1595-1603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980386

RESUMEN

In this paper, the work has been done to develop a cost-effective methodology, for the isolation of the potential producer of bacterial nanocellulose. No report is available in the literature, on the use of gram flour and table sugar for the screening of nanocellulose-producing isolates. Since commercially used, Hestrin-Schramm medium is expensive for the isolation of nanocellulose-producing micro-organisms, the possibility of using gram flour-table sugar medium was investigated in this work. Qualitative screening of micro-organisms was done using cost-effective medium, i.e., gram flour-table sugar medium. Qualitative analysis of various nanocellulose-producing bacteria depicted that cellulose layer production occurred on both HS medium and gram flour-table sugar medium. The yield of nanocellulose was also better on air-liquid surface in case of gram flour-table sugar medium as compared to HS medium. 16S rRNA was used for molecular characterization of bacterial strain and the best nanocellulose producer was identified as Novacetimonas hansenii BMK-3_NC240423 (isolated from rotten banana). FTIR and FE-SEM studies of nanocellulose pellicle produced on HS medium and gram flour-table sugar medium demonstrated equivalent structural, morphological, and chemical properties. The cost of newly designed medium (0.01967 $/L) is nearly 90 times lower than the Hestrin-Schramm medium (1.748 $/L), which makes the screening of nanocellulose producers very cost-effective. A strategy of using gram flour extract-table sugar medium for the screening of nanocellulose-producing micro-organisms is a novel approach, which will drastically reduce the screening associated cost of cellulose-producing micro-organisms and also motivate the researchers/industries for comprehensive screening programme for getting high cellulose-producing microbes.


Asunto(s)
Celulosa , Celulosa/química , Acetobacteraceae/metabolismo , Análisis Costo-Beneficio , ARN Ribosómico 16S/genética , Musa/química
8.
Biotechnol J ; 19(6): e2300529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896375

RESUMEN

Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L-1, galactose 1.24 g L-1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L-1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L-1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L-1, galactose 2.01 g L-1), which yielded 3.29 ± 0.12 g L-1 and 1.01 ± 0.14 g L-1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L-1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62-167 nm), crystallinity index (71.1-85.9%), and specific strength (35-82 MPa × cm3 g-1), as well as changes in the density (1.1-1.4 g cm-3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.


Asunto(s)
Acetobacteraceae , Celulosa , Queso , Medios de Cultivo , Suero Lácteo , Celulosa/metabolismo , Suero Lácteo/metabolismo , Queso/microbiología , Medios de Cultivo/química , Hidrólisis , Acetobacteraceae/metabolismo , Acetobacteraceae/crecimiento & desarrollo , Fermentación , Zea mays/metabolismo , Glucosa/metabolismo , Jugos de Frutas y Vegetales
9.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1856-1867, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914496

RESUMEN

Bacterial cellulose (BC) is a biopolymer synthesized by bacteria, which possess excellent characteristics such as high water holding capacity, high crystallinity, and high purity. It is widely used in food, medical, cosmetics, and functional films. Komagataeibacter xylinus is a model strain used in BC synthesis research. In bacteria, motility-related genes are associated with BC synthesis, whereas in Komagataeibacter xylinus CGMCC 2955, the functions of motility-related genes and their effects on BC synthesis are not known. To address this gap, we used the λ Red recombinant system to individually knock out motA, motB, and mot2A respectively, and constructed the knockout strains K. x-ΔmotA, K. x-ΔmotB, and K. x-Δmot2A. Additionally, both motA and motB were disrupted to construct the K. x-ΔmotAB mutant. The results demonstrated that knockout strain K. x-ΔmotAB exhibited the highest BC yield, reaching (5.05±0.26) g/L, which represented an increase of approximately 24% compared to wild-type strains. Furthermore, the BC synthesized by this strain exhibited the lowest porosity, 54.35%, and displayed superior mechanical properties with a Young's modulus of up to 5.21 GPa. As knocking out motA and motB genes in K. xylinus CGMCC 2955 did not reduce BC yield; instead, it promoted BC synthesis. Consequently, this research further deepened our understanding of the relationship between motility and BC synthesis in acetic acid bacteria. The knockouts of motA and motB genes resulted in reduced BC porosity and improved mechanical properties, provides a reference for BC synthesis and membrane structure regulation modification.


Asunto(s)
Acetobacteraceae , Celulosa , Celulosa/biosíntesis , Celulosa/metabolismo , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Técnicas de Inactivación de Genes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Gluconacetobacter xylinus/genética , Gluconacetobacter xylinus/metabolismo , Genes Bacterianos
10.
mSystems ; 9(7): e0063424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38934538

RESUMEN

Transovarial transmission is the most reliable way of passing on essential nutrient-providing endosymbionts from mothers to offspring. However, not all endosymbiotic microbes follow the complex path through the female host tissues to oocytes on their own. Here, we demonstrate an unusual transmission strategy adopted by one of the endosymbionts of the planthopper Trypetimorpha occidentalis (Hemiptera: Tropiduchidae) from Bulgaria. In this species, an Acetobacteraceae endosymbiont is transmitted transovarially within deep invaginations of cellular membranes of an ancient endosymbiont Sulcia-strikingly resembling recently described plant virus transmission. However, in males, Acetobacteraceae colonizes the same bacteriocytes as Sulcia but remains unenveloped. Then, the unusual endobacterial localization of Acetobacteraceae observed in females appears to be a unique adaptation to maternal transmission. Further, the symbiont's genomic features, including encoding essential amino acid biosynthetic pathways and its similarity to a recently described psyllid symbiont, suggest a unique combination of the ability to horizontally transmit among species and confer nutritional benefits. The close association with Acetobacteraceae symbiont correlates with the so-far-unreported level of genomic erosion of ancient nutritional symbionts of this planthopper. In Sulcia, this is reflected in substantial changes in genomic organization, reported for the first time in the symbiont renowned for its genomic stability. In Vidania, substantial gene loss resulted in one of the smallest genomes known, at 108.6 kb. Thus, the symbionts of T. occidentalis display a combination of unusual adaptations and genomic features that expand our understanding of how insect-microbe symbioses may transmit and evolve.IMPORTANCEReliable transmission across host generations is a major challenge for bacteria that associate with insects, and independently established symbionts have addressed this challenge in different ways. The facultatively endobacterial localization of Acetobacteraceae symbiont, enveloped by cells of ancient nutritional endosymbiont Sulcia in females but not males of the planthopper Trypetimorpha occidentalis, appears to be a unique adaptation to maternal transmission. Acetobacteraceae's genomic features indicate its unusual evolutionary history, and the genomic erosion experienced by ancient nutritional symbionts demonstrates the apparent consequences of such close association. Combined, this multi-partite symbiosis expands our understanding of the diversity of strategies that insect symbioses form and some of their evolutionary consequences.


Asunto(s)
Hemípteros , Simbiosis , Animales , Hemípteros/microbiología , Hemípteros/fisiología , Femenino , Masculino , Acetobacteraceae/genética , Acetobacteraceae/fisiología , Genoma Bacteriano/genética , Filogenia , Adaptación Fisiológica
11.
Braz J Microbiol ; 55(3): 2199-2210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38819773

RESUMEN

Bacterial Cellulose (BC) offers a wide range of applications across various industries, including food, biomedical, and textiles, owing to its distinctive properties. Its unique 3D reticulated network of cellulose nanofibers, imparts excellent mechanical qualities, a high water-holding capacity, and thermal stability. Additionally, it possesses remarkable biocompatibility, biodegradability, high crystallinity, and purity. These attributes have offered significant interest in BC within both academic and industrial sectors. However, BC production is associated with high costs due to the use of expensive growth media and low yields. The study reports the potential of our indigenous isolate, Komagataeibacter saccharivorans BC-G1, as BC producer. Statistical optimization of BC production was carried out using Placket-Burman design and Central composite design, by selecting different parameters. Eight significant factors such as temperature, pH, glucose, yeast, peptone, acetic acid, incubation time and % inoculum were studies using ANOVA-based response surface methodology. Results showed that BC yield (8.5 g/L) with 1.8-fold after optimization of parameters. Maximum cellulose production (8.5 ± 1.8 g/L) was obtained using 2% glucose, 0.3% yeast extract, 0.3% peptone, 0.75% (v/v) acetic acid at pH 7.0 for 10 days of incubation with 4% inoculum at 25 °C under static culture. Main effect graph showed incubation time and acetic acid concentration as the most significant parameters affecting BC production in our study. The physicochemical characterization of produced BC was done using FTIR, XRD and SEM techniques.


Asunto(s)
Acetobacteraceae , Celulosa , Medios de Cultivo , Celulosa/metabolismo , Celulosa/química , Acetobacteraceae/metabolismo , Acetobacteraceae/crecimiento & desarrollo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fermentación , Temperatura , Concentración de Iones de Hidrógeno
12.
Sci Rep ; 14(1): 10848, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740945

RESUMEN

Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp. was isolated from bean roots and systematically assessed for BC synthesis under optimal conditions, with a comparative analysis against BC produced by Komagataeibacter hansenii. The study revealed that Rhizobium sp. exhibited optimal BC synthesis when supplied with a 1.5% glucose carbon source and a 0.15% yeast extract nitrogen source. Under static conditions at 30 °C and pH 6.5, the most favorable conditions for growth and BC production (2.5 g/L) were identified. Modifications were introduced using nisin to enhance BC properties, and the resulting BC-nisin composites were comprehensively characterized through various techniques, including FE-SEM, FTIR, porosity, swelling, filtration, and antibacterial activity assessments. The results demonstrated that BC produced by Rhizobium sp. displayed properties comparable to K. hansenii-produced BC. Furthermore, the BC-nisin composites exhibited remarkable inhibitory activity against Escherichia coli and Pseudomonas aeruginosa. This study contributes valuable insights into BC's production, modification, and characterization utilizing Rhizobium sp., highlighting the exceptional properties that render it efficacious across diverse applications.


Asunto(s)
Celulosa , Raíces de Plantas , Rhizobium , Celulosa/biosíntesis , Celulosa/metabolismo , Raíces de Plantas/microbiología , Rhizobium/metabolismo , Acetobacteraceae/metabolismo , Antibacterianos/farmacología , Antibacterianos/biosíntesis
13.
J Food Sci ; 89(5): 2921-2932, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591324

RESUMEN

It is crucial to clarify the stability of Kombucha in the manufacture and storage stages due to the extensive study on the fermented products of Kombucha and the increase in the use of bacterial cellulose (BC). This study aimed to evaluate the stability of Kombucha in different manufacturing and storage temperatures within a certain time period. The stability of microorganisms and BC in Kombucha was investigated through regular replacement with the tea media at 28 and 25°C for manufacture, and the storage temperature of Kombucha was at 25, 4, and -20°C. Morphological observations of the BC in Kombucha ended at 28 and 25°C for manufacture and storage were performed using atomic force microscopy (AFM) before inoculation. The viable cell counts and AFM results showed that the stability of Kombucha during manufacture was better at 28°C than at 25°C, with higher microbial viability and BC productivity in the former at the time of manufacture, whereas 25°C was more favorable for the stability of Kombucha during storage. At the same temperature of 25°C, the manufacturing practice improved the microbial viability and BC stability compared with storage; the pH value of Kombucha was lower, and the dry weight of BC was higher during storage compared with manufacture. The maximum BC water holding capacity (97.16%) was maintained by storage at 4°C on day 63, and the maximum BC swelling rate (56.92%) was observed after storage at -20°C on day 7. The research was conducted to provide reference information for applying Kombucha and its BC in food and development in other industries.


Asunto(s)
Celulosa , Fermentación , Temperatura , Celulosa/química , Almacenamiento de Alimentos/métodos , Microbiología de Alimentos , Té de Kombucha/microbiología , Concentración de Iones de Hidrógeno , Viabilidad Microbiana , Acetobacteraceae/metabolismo , Manipulación de Alimentos/métodos
14.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669573

RESUMEN

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Asunto(s)
Aedes , Virus del Dengue , Mosquitos Vectores , Simbiosis , Virus Zika , Animales , Aedes/microbiología , Aedes/virología , Virus del Dengue/fisiología , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Virus Zika/fisiología , Dengue/transmisión , Dengue/virología , Dengue/prevención & control , Microbioma Gastrointestinal , Acetobacteraceae/fisiología , Femenino , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Flavivirus/fisiología , Flavivirus/genética , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
15.
Int J Biol Macromol ; 266(Pt 2): 131329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574906

RESUMEN

The bacterial nanocellulose (BnC) membranes were produced extracellularly by a novel aerobic acetic acid bacterium Komagataeibacter melomenusus. The BnC was modified in situ by adding carboxymethyl cellulose (CMC) into the culture media, obtaining a BnC-CMC product with denser fibril arrangement, improved rehydration ratio and elasticity in comparison to BnC. The proteolytic enzyme bromelain (Br) and antimicrobial peptide nisin (N) were immobilized to BnC matrix by ex situ covalent binding and/or adsorption. The optimal Br immobilization conditions towards the maximized specific proteolytic activity were investigated by response surface methodology as factor variables. At optimal conditions, i.e., 8.8 mg/mL CMC and 10 mg/mL Br, hyperactivation of the enzyme was achieved, leading to the specific proteolytic activity of 2.3 U/mg and immobilization efficiency of 39.1 %. The antimicrobial activity was observed against Gram-positive bacteria (S. epidermidis, S. aureus and E. faecalis) for membranes with immobilized N and was superior when in situ modified BnC membranes were used. N immobilized on the BnC or BnC-CMC membranes was cytocompatible and did not cause changes in normal human dermal fibroblast cell morphology. BnC membranes perform as an efficient carrier for Br or N immobilization, holding promise in wound debridement and providing antimicrobial action against Gram-positive bacteria, respectively.


Asunto(s)
Acetobacteraceae , Bromelaínas , Celulosa , Nisina , Nisina/farmacología , Nisina/química , Bromelaínas/química , Bromelaínas/farmacología , Celulosa/química , Celulosa/farmacología , Acetobacteraceae/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas/efectos de los fármacos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/farmacología , Nanoestructuras/química , Pruebas de Sensibilidad Microbiana
16.
Mol Biol Rep ; 51(1): 503, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600404

RESUMEN

BACKGROUND: Komagataeibacter nataicola (K. nataicola) is a gram-negative acetic acid bacterium that produces natural bacterial cellulose (BC) as a fermentation product under acidic conditions. The goal of this work was to study the complete genome of K. nataicola and gain insight into the functional genes in K. nataicola that are responsible for BC synthesis in acidic environments. METHODS AND RESULT: The pure culture of K. nataicola was obtained from yeast-glucose-calcium carbonate (YGC) agar, followed by genomic DNA extraction, and subjected to whole genome sequencing on a Nanopore flongle flow cell. The genome of K. nataicola consists of a 3,767,936 bp chromosome with six contigs and 4,557 protein coding sequences. The maximum likelihood phylogenetic tree and average nucleotide identity analysis confirmed that the bacterial isolate was K. nataicola. The gene annotation via RAST server discovered the presence of cellulose synthase, along with three genes associated with lactate utilization and eight genes involved in lactate fermentation that could potentially contribute to the increase in acid concentration during BC synthesis. CONCLUSION: A more comprehensive genome study of K. nataicola may shed light into biological pathway in BC productivity as well as benefit the analysis of metabolites generated and understanding of biological and chemical interactions in BC production later.


Asunto(s)
Acetobacteraceae , Alimento Perdido y Desperdiciado , Eliminación de Residuos , Celulosa/metabolismo , Filogenia , Alimentos , Secuenciación Completa del Genoma , Lactatos
17.
Biopolymers ; 115(4): e23577, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38526043

RESUMEN

Bacterial nanocellulose (BNC) has various unique qualities, including high mechanical strength, crystallinity, and high water-holding capacity, which makes it appropriate for a wide range of industrial applications. But its lower yield coupled with its high production cost creates a barrier to its usage. In this study, we have demonstrated the better yield of BNC from an indigenous strain Komagataeibacter rhaeticus MCC-0157 using a rotary disc bioreactor (RDB) having a wooden disc. The RDB was optimized based on the type of disc material, distance between the disc, and rotation speed to get the highest yield of 13.0 g/L dry material using Hestrin-Schramm (H-S) medium. Further, the bioreactor was compared for the BNC production using reported medium, which is used for static condition; the RDB showed up to fivefold increase in comparison with the static condition reported. Komagataeibacter rhaeticus MCC-0157 was previously reported to be one of the highest BNC producing stains, with 8.37 g/L of dry yield in static condition in 15 days incubation. The designed RDB demonstrated 13.0 g/L dry yield of BNC in just 5 days. Other characteristics of BNC remain same as compared with static BNC production, although the difference in the crystallinity index was observed in RDB (84.44%) in comparison with static (89.74%). For the first time, wooden disc was used for rotary bioreactor approach, which demonstrated higher yield of BNC in lesser time and can be further used for sustainable production of BNC at the industrial level.


Asunto(s)
Acetobacteraceae , Reactores Biológicos , Celulosa , Celulosa/química , Celulosa/biosíntesis , Acetobacteraceae/metabolismo , Acetobacteraceae/química , Madera/química , Biopolímeros/química , Biopolímeros/biosíntesis , Nanoestructuras/química , Fermentación
18.
Bioresour Technol ; 398: 130511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437963

RESUMEN

The effect of thiamine (TA), ascorbic acid (AA), citric acid, and gallic acid (GA) on bacterial cellulose (BC) production by Komagataeibacter sucrofermentans, in synthetic (Hestrin and Schramm, HS) and natural substrates (industrial raisins finishing side stream extract, FSSE; orange juice, OJ; green tea extract, GTE), was investigated. The Response Surface Methodology was found reliable for BC yield prediction and optimization. Higher yields were achieved in the FSSE substrates, especially those supplemented with AA, TA, and GA (up to 19.4 g BC/L). The yield in the non-fortified substrates was 1.1-5.4 and 11.6-15.7 g/L, in HS and FSSE, respectively. The best yield in the natural non-fortified substrate FSSE-OJ-GTE (50-20-30 %), was 5.9 g/L. The porosity, crystallinity, and antioxidant properties of the produced BC films were affected by both the substrate and the drying method (freeze- or oven-drying). The natural substrates and the process wastewaters can be further exploited towards added value and sustainability. Take Home Message Sentence: Raisin and citrus side-streams can be efficiently combined for bacterial cellulose production, enhanced by other vitamin- and phenolic-rich substrates such as green tea.


Asunto(s)
Acetobacteraceae , Celulosa , Vitaminas , Celulosa/química , Ríos , Vitamina A , Vitamina K , Compuestos Orgánicos , Medios de Cultivo , , Extractos Vegetales
19.
N Biotechnol ; 81: 57-68, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531507

RESUMEN

Novacetimonas hansenii SI1, previously known as Komagataeibacter hansenii, produces bacterial nanocellulose (BNC) with unique ability to stretch. The addition of vitamin C in the culture medium increases the porosity of the membranes and their stretchability making them highly moldable. To better understand the genetic background of this strain, we obtained its complete genome sequence using a hybrid sequencing and assembly strategy. We described the functional regions in the genome which are important for the synthesis of BNC and acetan-like II polymer. We next investigated the effect of 1% vitamin C supplementation on the global gene expression profile using RNA sequencing. Our transcriptomic readouts imply that vitamin C functions mainly as a reducing agent. We found that the changes in cellular redox status are balanced by strong repression of the sulfur assimilation pathway. Moreover, in the reduced conditions, glucose oxidation is decreased and alternative pathways for energy generation, such as acetate accumulation, are activated. The presence of vitamin C negatively influences acetan-like II polymer biosynthesis, which may explain the lowered yield and changed mechanical properties of BNC. The results of this study enrich the functional characteristics of the genomes of the efficient producers of the N. hansenii species. Improved understanding of the adaptation to the presence of vitamin C at the molecular level has important guiding significance for influencing the biosynthesis of BNC and its morphology.


Asunto(s)
Acetobacteraceae , Celulosa , Transcriptoma , Celulosa/metabolismo , Ácido Ascórbico , Suplementos Dietéticos
20.
Int J Food Microbiol ; 414: 110620, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38382414

RESUMEN

In China and Southeast Asia, pre-fermented coconut water is commonly used for the production of nata de coco, a jelly-like fermented food that consists of bacterial cellulose (BC). The inherent natural fermentation process of coconut water introduces uncontrollable variables, which can lead to unstable yields during BC production. This study involved the collection of spontaneously pre-fermented coconut water over a five-month production cycle. The aim was to evaluate the microbiota and metabolite profile, as well as determine its impact on BC synthesis by Komagataeibacter nataicola. Significant variations in the microbial community structure and metabolite profile of pre-fermented coconut water were observed across different production months, these variations had significant effects on BC synthesis by K. nataicola. A total of 52 different bacterial genera and 32 different fungal genera were identified as potential biotic factors that can influence BC production. Additionally, several abiotic factors, including lactate (VIP = 4.92), mannitol (VIP = 4.22), ethanol (VIP = 2.67), and ascorbate (VIP = 1.61), were found to be potential driving forces affecting BC synthesis by K. nataicola. Upon further analysis, the correlation network indicated that 14 biotic factors had a significant contribution to BC production in three strains of K. nataicola. These factors included 8 bacterial genera, such as Limosilactobacillus and Lactiplantibacillus, and 6 fungal genera, such as Meyerozyma and Ogataea. The abiotic factors lactate, mannitol, and ethanol showed a positive correlation with the BC yield. This study provides significant insights into controlling the fermentation processes of pre-fermented coconut water in industrial settings.


Asunto(s)
Acetobacteraceae , Celulosa , Cocos , Fermentación , Celulosa/química , Etanol , Lactatos , Manitol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...