Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Sci Rep ; 14(1): 10544, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719860

RESUMEN

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Asunto(s)
Acetolactato Sintasa , Acetil-CoA Carboxilasa , Echinochloa , Resistencia a los Herbicidas , Herbicidas , Microbiología del Suelo , Italia/epidemiología , Herbicidas/farmacología , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/genética , Echinochloa/efectos de los fármacos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Malezas/efectos de los fármacos , Microbiota/efectos de los fármacos , Biodiversidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Suelo/química , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Hongos/genética
2.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717990

RESUMEN

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Echinochloa , Resistencia a los Herbicidas , Herbicidas , Mutación , Proteínas de Plantas , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herbicidas/metabolismo , Echinochloa/genética , Echinochloa/efectos de los fármacos , Echinochloa/metabolismo , Echinochloa/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Butanos , Nitrilos , Sulfonamidas , Uridina/análogos & derivados
3.
Biochem Biophys Res Commun ; 718: 150087, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735139

RESUMEN

Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.


Asunto(s)
Acetolactato Sintasa , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética , Aminoácidos de Cadena Ramificada/metabolismo , Oxígeno/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética
4.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598868

RESUMEN

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Poaceae , Compuestos de Sulfonilurea , Resistencia a los Herbicidas/genética , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Herbicidas/farmacología , Poaceae/genética , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Imidazoles/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Simulación del Acoplamiento Molecular , Benzoatos , Pirimidinas
5.
Mol Ecol ; 33(11): e17368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676602

RESUMEN

Weedy rice, a pervasive and troublesome weed found across the globe, has often evolved through fertilization of rice cultivars with little importance of crop-weed gene flow. In Argentina, weedy rice has been reported as an important constraint since the early 1970s, and, in the last few years, strains with herbicide-resistance are suspected to evolve. Despite their importance, the origin and genetic composition of Argentinian weedy rice as well its adaptation to agricultural environments has not been explored so far. To study this, we conducted genotyping-by-sequencing on samples of Argentinian weedy and cultivated rice and compared them with published data from weedy, cultivated and wild rice accessions distributed worldwide. In addition, we conducted a phenotypic characterization for weedy-related traits, a herbicide resistance screening and genotyped accessions for known mutations in the acetolactate synthase (ALS) gene, which confers herbicide resistance. Our results revealed large phenotypic variability in Argentinian weedy rice. Most strains were resistant to ALS-inhibiting herbicides with a high frequency of the ALS mutation (A122T) present in Argentinian rice cultivars. Argentinian cultivars belonged to the three major genetic groups of rice: japonica, indica and aus while weeds were mostly aus or aus-indica admixed, resembling weedy rice strains from the Southern Cone region. Phylogenetic analysis supports a single origin for aus-like South American weeds, likely as seed contaminants from the United States, and then admixture with local indica cultivars. Our findings demonstrate that crop to weed introgression can facilitate rapid adaptation to agriculture environments.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , Argentina , Acetolactato Sintasa/genética , Malezas/genética , Fenotipo , Genotipo , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Flujo Génico , Agricultura , Mutación
6.
Pestic Biochem Physiol ; 201: 105882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685248

RESUMEN

White mustard, (Sinapis alba), a problematic broadleaf weed in many Mediterranean countries in arable fields has been detected as resistant to tribenuron-methyl in Tunisia. Greenhouse and laboratory studies were conducted to characterize Target-Site Resistance (TSR) and the Non-Target Site Resistance (NTSR) mechanisms in two suspected white mustard biotypes. Herbicide dose-response experiments confirmed that the two S. alba biotypes were resistant to four dissimilar acetolactate synthase (ALS)-pinhibiting herbicide chemistries indicating the presence of cross-resistance mechanisms. The highest resistance factor (>144) was attributed to tribenuron-methyl herbicide and both R populations survived up to 64-fold the recommended field dose (18.7 g ai ha-1). In this study, the metabolism experiments with malathion (a cytochrome P450 inhibitor) showed that malathion reduced resistance to tribenuron-methyl and imazamox in both populations, indicating that P450 may be involved in the resistance. Sequence analysis of the ALS gene detected target site mutations in the two R biotypes, with amino acid substitutions Trp574Leu, the first report for the species, and Pro197Ser. Molecular docking analysis showed that ALSPro197Ser enzyme cannot properly bind to tribenuron-methyl's aromatic ring due to a reduction in the number of hydrogen bonds, while imazamox can still bind. However, Trp574Leu can weaken the binding affinity between the mutated ALS enzyme and both herbicides with the loss of crucial interactions. This investigation provides substantial evidence for the risk of evolving multiple resistance in S. alba to auxin herbicides while deciphering the TSR and NTSR mechanisms conferring cross resistance to ALS inhibitors.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Malatión , Mutación , Sinapis , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Sinapis/efectos de los fármacos , Sinapis/genética , Malatión/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arilsulfonatos/farmacología , Simulación del Acoplamiento Molecular , Imidazoles/farmacología
7.
Pestic Biochem Physiol ; 201: 105911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685231

RESUMEN

Ammannia auriculata Willd. is a noxious broadleaf weed, commonly infesting rice ecosystems across southern China. A putative resistant A. auriculata population (AHSC-5) was sampled from a rice field of Anhui Province, where bensulfuron-methyl (BM) was unable to control its occurrence. This study aimed to determine the sensitivities of the AHSC-5 population to common-use herbicides, and to investigate the underlying resistance mechanisms. The bioassays showed that the AHSC-5 population was 138.1-fold resistant to BM, compared with the susceptible population (JSGL-1). Pretreatment of malathion reduced the resistance index to 19.5. ALS sequencing revealed an Asp376Glu substitution in the AHSC-5 population, and in vitro ALS activity assays found that 50% activity inhibition (I50) of BM in AHSC-5 was 75.4 times higher than that of JSGL-1. Moreover, the AHSC-5 population displayed cross-resistance to pyrazosulfuron-ethyl (10.6-fold), bispyribac­sodium (3.6-fold), and imazethapyr (2.2-fold), and was in the process of evolving multiple resistance to synthetic auxin herbicides fluroxypyr (2.3-fold) and florpyrauxifen-benzyl (3.1-fold). This study proved the BM resistance in A. auriculata caused by the Asp376Glu mutation and P450-regulated metabolism. This multi-resistant population can still be controlled by penoxsulam, MCPA, bentazone, and carfentrazone-ethyl, which aids in developing targeted and effective weed management strategies.


Asunto(s)
Acetolactato Sintasa , Sistema Enzimático del Citocromo P-450 , Resistencia a los Herbicidas , Herbicidas , Acetolactato Sintasa/genética , Acetolactato Sintasa/antagonistas & inhibidores , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Malatión/farmacología , Compuestos de Sulfonilurea/farmacología , Malezas/efectos de los fármacos , Malezas/genética , Sustitución de Aminoácidos
8.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499055

RESUMEN

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Asunto(s)
Acetolactato Sintasa , Escherichia coli , Acetolactato Sintasa/química , Glucógeno Sintasa , Hidroxibutiratos , Piruvatos , Holoenzimas
9.
Pestic Biochem Physiol ; 199: 105794, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458688

RESUMEN

Japanese brome (Bromus japonicus) has become one of the main weeds in wheat fields in Hebei province of China and causes a large decrease of wheat production. A total of 44 putative resistant and 2 susceptible Japanese brome populations were collected in the 2021/2022 crop season from Hebei province of China to determine resistance levels to flucarbazone­sodium and to investigate the diversity of acetolactate synthase (ALS) mutations, as well as to confirm the cross-and multiple-resistance levels to ALS and EPSPS (5-enolpyruvate shikimate-3-phosphate synthetase) inhibitors. Whole plant bioassay results showed that 15 out of 44 populations tested or 34% were resistant to flucarbazone­sodium. The resistance indices of Japanese brome to flucarbazone­sodium ranged from 43 to 1977. The resistant populations were mainly distributed in Baoding and Shijiazhuang districts, and there was only one resistant population in Langfang district. Resistant Japanese brome had diverse ALS mutations, including Pro-197-Ser, -Thr, -Arg and Asp-376-Glu. The incidence of Pro-197-Ser mutation was the highest at 68%. Application of the CYP450 inhibitor malathion suggested that CYP450 was involved in metabolic resistance in a population without an ALS mutation. The population with Pro-197-Thr mutation evolved weak cross-resistance to mesosulfuron-methyl and pyroxsulam, and it is in the process of evolving multiple-resistance to glyphosate.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Sulfonamidas , Triazoles , Bromus/metabolismo , Herbicidas/farmacología , Mutación , China , Resistencia a los Herbicidas/genética , Acetolactato Sintasa/metabolismo
10.
Planta ; 259(3): 61, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319406

RESUMEN

MAIN CONCLUSION: Agrobacterium-mediated transformation of Nicotiana tabacum, using an intragenic T-DNA region derived entirely from the N. tabacum genome, results in the equivalence of micro-translocations within genomes. Intragenic Agrobacterium-mediated gene transfer was achieved in Nicotiana tabacum using a T-DNA composed entirely of N. tabacum DNA, including T-DNA borders and the acetohydroxyacid synthase gene conferring resistance to sulfonylurea herbicides. Genomic analysis of a resulting plant, with single locus inheritance of herbicide resistance, identified a single insertion of the intragenic T-DNA on chromosome 5. The insertion event was composed of three N. tabacum DNA fragments from other chromosomes, as assembled on the T-DNA vector. This validates that intragenic transformation of plants can mimic micro-translocations within genomes, with the absence of foreign DNA.


Asunto(s)
Acetolactato Sintasa , Reordenamiento Génico , Translocación Genética , ADN , Agrobacterium/genética , Nicotiana/genética
11.
Pestic Biochem Physiol ; 198: 105708, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225062

RESUMEN

Descurainia sophia (flixweed) is a troublesome weed in winter wheat fields in North China. Resistant D. sophia populations with different acetolactate synthetase (ALS) mutations have been reported in recent years. In addition, metabolic resistance to ALS-inhibiting herbicides has also been identified. In this study, we collected and purified two resistant D. sophia populations (R1 and R2), which were collected from winter wheat fields where tribenuron-methyl provided no control of D. sophia at 30 g a.i. ha-1. Whole plant bioassay and ALS activity assay results showed the R1 and R2 populations had evolved high-level resistance to tribenuron-methyl and florasulam and cross-resistance to imazethapyr and pyrithiobac­sodium. The two ALS genes were cloned from the leaves of R1 and R2 populations, ALS1 (2004 bp) and ALS2 (1998 bp). A mutation of Trp 574 to Leu in ALS1 was present in both R1 and R2. ALS1 and ALS2 were cloned from R1 and R2 populations respectively and transferred into Arabidopsis thaliana. Homozygous T3 transgenic seedlings with ALS1 of R1 or R2 were resistant to ALS-inhibiting herbicides and the resistant levels were the same. Transgenic seedlings with ALS2 from R1 or R2 were susceptible to ALS-inhibiting herbicides. Treatment with cytochrome P450 inhibitor malathion decreased the resistant levels to tribenuron-methyl in R1 and R2. RNA-Seq was used to identify target cytochrome P450 genes possibly involved in resistance to ALS-inhibiting herbicides. There were five up-regulated differentially expressed cytochrome P450 genes: CYP72A15, CYP83B1, CYP81D8, CYP72A13 and CYP71A12. Among of them, CYP72A15 had the highest expression level in R1 and R2 populations. The R1 and R2 populations of D. sophia have evolved resistance to ALS-inhibiting herbicides due to Trp 574 Leu mutation in ALS1 and possibly other mechanisms. The resistant function of CYP72A15 needs further research.


Asunto(s)
Acetolactato Sintasa , Arilsulfonatos , Brassicaceae , Herbicidas , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/metabolismo , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación
12.
Pestic Biochem Physiol ; 198: 105745, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225088

RESUMEN

Schoenoplectiella juncoides, a noxious sedge weed in Japanese rice paddy, has two ALS genes, and ALS-inhibitor-resistant plants have a mutation in one of the ALS genes. The authors aimed (a) to quantitate the effect of the number of mutant alleles of ALS genes on whole-plant resistance of S. juncoides and (b) to clarify a mode of inheritance of the resistance by investigating resistance levels of the progenies of a hybrid between two S. juncoides plants with Trp574Leu substitution in different ALS. A dose-response analysis on the parental lines and the F1 population suggested that the two ALS genes contribute equally to whole-plant resistant levels. A dose-response study on the F2 population indicated that it could be classified into five groups based on the sensitivities to metsulfuron-methyl. The five groups (in ascending order of resistance levels) were considered to have zero, one, two, three, and four mutant alleles. The stacking effect of mutant alleles on resistance enhancement was more significant when the number of mutant alleles was low than when it was high; in other words, each additional mutant allele stacking increases plant resistance, but the effect saturates as the number of mutant alleles increases. A chi-square test supported that the segregation ratio of the five groups corresponds to 1:4:6:4:1 of Mendelian independence for the two ALS loci.


Asunto(s)
Acetolactato Sintasa , Cyperaceae , Herbicidas , Lejía , Lejía/farmacología , Cyperaceae/genética , Herbicidas/farmacología , Mutación , Alelos , Resistencia a los Herbicidas/genética , Acetolactato Sintasa/genética
13.
Pest Manag Sci ; 80(2): 637-647, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752099

RESUMEN

BACKGROUND: Corn poppy (Papaver rhoeas) is the most damaging broadleaf weed in France. Massively parallel amplicon sequencing was used to investigate the prevalence, mode of evolution and spread of resistance-endowing ALS alleles in 422 populations randomly sampled throughout poppy's range in France. Bioassays were used to detect resistance to the synthetic auxin 2,4-D in 43 of these populations. RESULTS: A total of 21 100 plants were analysed and 24 mutant ALS alleles carrying an amino-acid substitution involved or potentially involved in resistance were identified. The vast majority (97.6%) of the substitutions occurred at codon Pro197, where all six possible single-nucleotide non-synonymous substitutions plus four double-nucleotide substitutions were identified. Changes observed in the enzymatic properties of the mutant ALS isoforms could not explain the differences in prevalence among the corresponding alleles. Sequence read analysis showed that mutant ALS alleles had multiple, independent evolutionary origins, and could have evolved several times independently within an area of a few kilometres. Finally, 2,4-D resistance was associated with mutant ALS alleles in individual plants in one third of the populations assayed. CONCLUSION: The intricate geographical mosaic of mutant ALS alleles observed is the likely result of the combination of huge population sizes, multiple independent mutation events and human-mediated spread of resistance. Our work highlights the ability of poppy populations and individual plants to accumulate different ALS alleles and as yet unknown mechanisms conferring resistance to synthetic auxins. This does not bode well for the continued use of chemical herbicides to control poppy. © 2023 Society of Chemical Industry.


Asunto(s)
Acetolactato Sintasa , Esclerosis Amiotrófica Lateral , Herbicidas , Lactatos , Papaver , Humanos , Papaver/genética , Acetolactato Sintasa/genética , Prevalencia , Herbicidas/farmacología , Ácido 2,4-Diclorofenoxiacético , Nucleótidos , Resistencia a los Herbicidas/genética , Mutación
14.
Pestic Biochem Physiol ; 197: 105683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072540

RESUMEN

Wild Brassica juncea is a troublesome weed that infests wheat fields in China. Two suspected wild B. juncea populations (19-5 and 19-6) resistant to acetolactate synthase (ALS) inhibitors were collected from wheat fields in China. To clarify their resistance profiles and resistance mechanism, the resistance levels of populations 19-5 and 19-6 to ALS-inhibiting herbicides and their underlying target-site resistance mechanism were investigated. The results showed that the 19-5 population exhibited resistance to tribenuron-methyl, pyrithiobac­sodium and florasulam, while the 19-6 population was resistant to tribenuron-methyl, pyrithiobac­sodium, imazethapyr and florasulam. Using the homologous cloning method, two ALS genes were identified in wild B. juncea, with one gene (ALS1) encoding 652 amino acids and the other (ALS2) encoding 655 amino acids. Pro-197-Arg mutation on ALS2 and Trp-574-Leu mutation on ALS1, together with the combination of these two mutations in a single plant, were observed in both 19-5 and 19-6 populations. ALS2 enzymes carrying the Pro-197-Arg mutation were cross-resistant to tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, with resistance index (RI) values of 6.23, 32.81, 7.97 and 1162.50, respectively. Similarly, ALS1 enzymes with Trp-574-leu substitutions also displayed high resistance to these four herbicides (RI values ranging from 132.61 to 3375.00). In addition, the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations increased the resistance level of the ALS enzyme to ALS inhibitors, with its RI values 3.83-214.19, 6.88-37.34, 1.91-31.82 and 2.03-5.90-fold higher than a single mutation for tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, respectively. Collectively, Pro-197-Arg mutation on ALS2, Trp-574-Leu mutation on ALS1 and the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations in wild B. juncea could endow broad-spectrum resistance to ALS inhibitors, which might provide guides for establishing effective strategies to prevent or delay such resistance evolution in this weed.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Acetolactato Sintasa/metabolismo , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Herbicidas/farmacología , Mutación , Aminoácidos , Sodio , Resistencia a los Herbicidas/genética
15.
J Agric Food Chem ; 71(51): 20532-20548, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38100716

RESUMEN

New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.


Asunto(s)
Acetolactato Sintasa , Fungicidas Industriales , Herbicidas , Herbicidas/farmacología , Fungicidas Industriales/farmacología , Resistencia a los Herbicidas , Protoporfirinógeno-Oxidasa , 3-Fosfoshikimato 1-Carboxiviniltransferasa , Acetolactato Sintasa/metabolismo
16.
J Agric Food Chem ; 71(46): 17742-17751, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934576

RESUMEN

Echinochloa phyllopogon, a malignant weed in Northeast China's paddy fields, is currently presenting escalating resistance concerns. Our study centered on the HJHL-715 E. phyllopogon population, which showed heightened resistance to penoxsulam, through a whole-plant bioassay. Pretreatment with a P450 inhibitor malathion significantly increased penoxsulam sensitivity in resistant plants. In order to determine the resistance mechanism of the resistant population, we purified the resistant population from individual plants and isolated target-site resistance (TSR) and nontarget-site resistance (NTSR) materials. Pro-197-Thr and Trp-574-Leu mutations in acetolactate synthase (ALS) 1 and ALS2 of the resistant population drove reduced sensitivity of penoxsulam to the target-site ALS, the primary resistance mechanisms. To fully understand the NTSR mechanism, NTSR materials were investigated by using RNA-sequencing (RNA-seq) combined with a reference genome. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis further supported the enhanced penoxsulam metabolism in NTSR materials. Gene expression data and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation confirmed 29 overexpressed genes under penoxsulam treatment, with 16 genes concurrently upregulated with quinclorac and metamifop treatment. Overall, our study confirmed coexisting TSR and NTSR mechanisms in E. phyllopogon's resistance to ALS inhibitors.


Asunto(s)
Acetolactato Sintasa , Echinochloa , Herbicidas , Echinochloa/genética , Echinochloa/metabolismo , Resistencia a los Herbicidas/genética , Espectrometría de Masas en Tándem , Herbicidas/farmacología , Herbicidas/metabolismo , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo
17.
BMC Plant Biol ; 23(1): 510, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875807

RESUMEN

BACKGROUND: Non-target site resistance (NTSR) to herbicides is a polygenic trait that threatens the chemical control of agricultural weeds. NTSR involves differential regulation of plant secondary metabolism pathways, but its precise genetic determinisms remain fairly unclear. Full-transcriptome sequencing had previously been implemented to identify NTSR genes. However, this approach had generally been applied to a single weed population, limiting our insight into the diversity of NTSR mechanisms. Here, we sought to explore the diversity of NTSR mechanisms in common ragweed (Ambrosia artemisiifolia L.) by investigating six field populations from different French regions where NTSR to acetolactate-synthase-inhibiting herbicides had evolved. RESULTS: A de novo transcriptome assembly (51,242 contigs, 80.2% completeness) was generated as a reference to seek genes differentially expressed between sensitive and resistant plants from the six populations. Overall, 4,609 constitutively differentially expressed genes were identified, of which none were common to all populations, and only 197 were shared by several populations. Similarly, population-specific transcriptomic response was observed when investigating early herbicide response. Gene ontology enrichment analysis highlighted the involvement of stress response and regulatory pathways, before and after treatment. The expression of 121 candidate constitutive NTSR genes including CYP71, CYP72, CYP94, oxidoreductase, ABC transporters, gluco and glycosyltransferases was measured in 220 phenotyped plants. Differential expression was validated in at least one ragweed population for 28 candidate genes. We investigated whether expression patterns at some combinations of candidate genes could predict phenotype. Within populations, prediction accuracy decreased when applied to an additional, independent plant sampling. Overall, a wide variety of genes linked to NTSR was identified within and among ragweed populations, of which only a subset was captured in our experiments. CONCLUSION: Our results highlight the complexity and the diversity of NTSR mechanisms that can evolve in a weed species in response to herbicide selective pressure. They strongly point to a non-redundant, population-specific evolution of NTSR to ALS inhibitors in ragweed. It also alerts on the potential of common ragweed for rapid adaptation to drastic environmental or human-driven selective pressures.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Humanos , Ambrosia/genética , Herbicidas/farmacología , Transcriptoma , Resistencia a los Herbicidas/genética
18.
Pestic Biochem Physiol ; 195: 105576, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666602

RESUMEN

Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone. Population GX-35 evolved multiple resistance to ALS-inhibiting herbicides (penoxsulam, bispyribac­sodium, pyrazosulfuron-ethyl, halosulfuron-methly and imazapic) and auxin herbicide MCPA, with resistance levels of 140-, 1253-, 578-, 18-, 13-, and 21-fold, respectively, compared to the susceptible population. In this population, ALS gene expression was similar to that of the susceptible population. However, an Asp376Glu mutation in ALS gene was observed, leading to reduced inhibition of in-vitro ALS activities by five ALS-inhibiting herbicides. Furthermore, CYP71D8, CYP77A3, CYP78A5 and three ABC transporter genes (cluster-14412.23067, cluster-14412.25321, and cluster-14412.24716) over-expressed in absence of penoxsulam. On the other hand, an UGT73C1 and an ABC transporter (cluster-14412.25038) were induced by penoxsulam. Additionally, both over-expression and induction were observed for CYP74, CYP71A1, UGT88A1 and an ABC transporter (cluster-14412.21723). The GX-35 population has indeed evolved multiple herbicide resistance in China. Therefore, a diverse range of weed control tactics should be implemented in rice field.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Acetolactato Sintasa , Cyperus , Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , China , Transportadoras de Casetes de Unión a ATP , Acetolactato Sintasa/genética , Herbicidas/farmacología , Ácidos Indolacéticos
19.
J Agric Food Chem ; 71(47): 18227-18238, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37567224

RESUMEN

Herbicides are effective tools to manage weeds and enable food production and sustainable agriculture. Corteva Agriscience R&D has recently discovered new diphenyl-ether compounds displaying excellent postemergent efficacy on important weed species along with corn safety. Here, we describe the chemistry, biology, biochemistry, and computational modeling research that led to the discovery and elucidation of the primary mode of action for these compounds. The target protein was found to be acetolactate synthase (ALS), a key enzyme in the biosynthesis of branched chain amino acids (valine, leucine, and isoleucine). While weed resistance evolution to ALS herbicides is widespread, the molecular interaction of the diphenyl-ether compounds at the active site of the ALS enzyme differs significantly from that of some commercial ALS inhibitors. The unique biochemical profile of these molecules along with their excellent herbicidal activity and corn selectivity make them a noteworthy development in the pursuit of novel, safe, and sustainable weed control solutions.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Herbicidas/farmacología , Herbicidas/química , Acetolactato Sintasa/química , Resistencia a los Herbicidas , Éteres
20.
Pest Manag Sci ; 79(12): 5333-5340, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615238

RESUMEN

BACKGROUND: Control of prickly lettuce has become increasingly difficult for lentil growers in southern Australia because of widespread resistance to common herbicides, a lack of alternative herbicide options and the prolific production of highly mobile seed. This study aimed to quantify acetolactate synthase (ALS)-inhibiting herbicide resistance in the Mid North (MN) and Yorke Peninsula (YP) of South Australia, characterize the resistance mutations present and investigate population structure and gene flow in this species. RESULTS: Resistance was identified in all populations tested, with average survival of 92% to chlorsulfuron and 95% to imazamox + imazapyr. Five different amino acid substitutions were identified at proline 197 of the ALS gene. There was no significant difference in the median lethal dose (LD50 ) between plants with these five different substitutions when treated with metsulfuron-methyl; however, the imidazolinone resistance level was higher in plants with a phenylalanine substitution and lower in plants with a serine. Population structure based on 701 single nucleotide polymorphisms and 271 individuals provided evidence for both independent evolution of the same mutation in different populations, as well as frequent short- to medium-distance dispersal accompanied by occasional long-distance dispersal events. The overall inbreeding coefficient (FIS ) was calculated at 0.5174, indicating an intermediate level of outcrossing despite the cross-pollination experiment showing only low outcrossing. In the structure analyses, most individuals from YP were assigned to a single cluster, whereas most individuals from MN were assigned 50% to each of two clusters, indicating some genetic differences between these two regions, but also evidence for dispersal between them. CONCLUSIONS: Use of imidazolinone herbicides has selected for mutations conferring higher levels of resistance, such as the Pro-197-Phe mutation, and resulted in further spread of resistance in this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Humanos , Mutación Puntual , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Herbicidas/farmacología , Mutación , Resistencia a los Herbicidas/genética , Fenilalanina/genética , Australia , Prolina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA