Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38575054

RESUMEN

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Asunto(s)
Acidaminococcus , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Especificidad por Sustrato , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Acidaminococcus/enzimología , Acidaminococcus/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Exonucleasas/metabolismo , Exonucleasas/genética , ADN Cruciforme/metabolismo , ADN Cruciforme/genética , ADN/metabolismo , ADN/genética
2.
Nat Commun ; 12(1): 3908, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162850

RESUMEN

Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. Here we isolate an engineered variant, "AsCas12a Ultra", that increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We show that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Edición Génica/métodos , Acidaminococcus/genética , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Células Cultivadas , Endonucleasas/genética , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Jurkat , Células Asesinas Naturales/metabolismo , Reproducibilidad de los Resultados , Linfocitos T/metabolismo
3.
Nucleic Acids Res ; 48(9): 5037-5053, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32315032

RESUMEN

CRISPR RNA-guided endonucleases (RGEs) cut or direct activities to specific genomic loci, yet each has off-target activities that are often unpredictable. We developed a pair of simple in vitro assays to systematically measure the DNA-binding specificity (Spec-seq), catalytic activity specificity (SEAM-seq) and cleavage efficiency of RGEs. By separately quantifying binding and cleavage specificity, Spec/SEAM-seq provides detailed mechanistic insight into off-target activity. Feature-based models generated from Spec/SEAM-seq data for SpCas9 were consistent with previous reports of its in vitro and in vivo specificity, validating the approach. Spec/SEAM-seq is also useful for profiling less-well characterized RGEs. Application to an engineered SpCas9, HiFi-SpCas9, indicated that its enhanced target discrimination can be attributed to cleavage rather than binding specificity. The ortholog ScCas9, on the other hand, derives specificity from binding to an extended PAM. The decreased off-target activity of AsCas12a (Cpf1) appears to be primarily driven by DNA-binding specificity. Finally, we performed the first characterization of CasX specificity, revealing an all-or-nothing mechanism where mismatches can be bound, but not cleaved. Together, these applications establish Spec/SEAM-seq as an accessible method to rapidly and reliably evaluate the specificity of RGEs, Cas::gRNA pairs, and gain insight into the mechanism and thermodynamics of target discrimination.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Acidaminococcus/enzimología , Disparidad de Par Base , Emparejamiento Base , Proteínas Asociadas a CRISPR/genética , ADN/química , ADN/metabolismo , División del ADN , Deltaproteobacteria/enzimología , Endodesoxirribonucleasas/genética , Mutación , Proteína Homeótica Nanog/genética , Unión Proteica , ARN/química , Técnica SELEX de Producción de Aptámeros , Análisis de Secuencia de ADN , Especificidad por Sustrato
4.
J Biol Chem ; 295(17): 5538-5553, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161115

RESUMEN

Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/genética , Endodesoxirribonucleasas/metabolismo , Francisella/enzimología , Acidaminococcus/genética , Acidaminococcus/metabolismo , Proteínas Bacterianas/genética , Disparidad de Par Base , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , ADN/metabolismo , División del ADN , Endodesoxirribonucleasas/genética , Francisella/genética , Francisella/metabolismo , Edición Génica/métodos , Expresión Génica
5.
Bioconjug Chem ; 31(3): 542-546, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32119776

RESUMEN

CRISPR-Cas12a, a type-V CRISPR-Cas endonuclease, is an effective genome editing platform. To improve the gene editing efficiency of Cas12a, we rationally designed small molecule enhancers through a combined computational approach. First, we used extensive molecular dynamics (MD) simulations to explore the conformational landscape of Cas12a from Acidaminococcus (AsCas12a), revealing distinct conformational states that could be targeted by small molecules to modulate its genome editing function. We then identified 57 compounds that showed different binding behavior and stabilizing effects on these distinct conformational states using molecular docking. After experimental testing 6 of these 57 compounds, compound 1, quinazoline-2,4(1H,3H)-dione, was found particularly promising in enhancing the AsCas12a-mediated genome editing efficiency in human cells. Compound 1 was shown to act like a molecular "glue" at the interface between AsCas12a and crRNA near the 5'-handle region, thus specifically stabilizing the enzyme-crRNA complex. These results provide a new paradigm for future design of small molecules to modulate the genome editing of the CRISPR-Cas systems.


Asunto(s)
Sistemas CRISPR-Cas/genética , Diseño de Fármacos , Endodesoxirribonucleasas/metabolismo , Edición Génica/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Acidaminococcus/enzimología , Endodesoxirribonucleasas/química , Simulación de Dinámica Molecular , Conformación Proteica
6.
Nat Methods ; 16(9): 887-893, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406383

RESUMEN

The ability to modify multiple genetic elements simultaneously would help to elucidate and control the gene interactions and networks underlying complex cellular functions. However, current genome engineering technologies are limited in both the number and the type of perturbations that can be performed simultaneously. Here, we demonstrate that both Cas12a and a clustered regularly interspaced short palindromic repeat (CRISPR) array can be encoded in a single transcript by adding a stabilizer tertiary RNA structure. By leveraging this system, we illustrate constitutive, conditional, inducible, orthogonal and multiplexed genome engineering of endogenous targets using up to 25 individual CRISPR RNAs delivered on a single plasmid. Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Edición Génica , Redes Reguladoras de Genes , Ingeniería Genética , Genoma Humano , ARN Guía de Kinetoplastida/genética , Acidaminococcus/enzimología , Endonucleasas/genética , Células HEK293 , Humanos , Plásmidos/genética , Activación Transcripcional
7.
Elife ; 82019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31397669

RESUMEN

CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage.


Asunto(s)
Acidaminococcus/enzimología , Bacteriófagos/crecimiento & desarrollo , Sistemas CRISPR-Cas/efectos de los fármacos , Clostridiales/enzimología , Inhibidores Enzimáticos/metabolismo , Interacciones Huésped-Parásitos , Proteínas Virales/metabolismo , Acidaminococcus/virología , Clostridiales/virología , Evolución Molecular
8.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004485

RESUMEN

The clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) nuclease Acidaminococcus sp. Cas12a (AsCas12a, also known as AsCpf1) has become a popular alternative to Cas9 for genome editing and other applications. AsCas12a has been associated with a TTTV protospacer-adjacent motif (PAM) as part of target recognition. Using a cell-free transcription-translation (TXTL)-based PAM screen, we discovered that AsCas12a can also recognize GTTV and, to a lesser degree, GCTV motifs. Validation experiments involving DNA cleavage in TXTL, plasmid clearance in Escherichia coli, and indel formation in mammalian cells showed that AsCas12a was able to recognize these motifs, with the GTTV motif resulting in higher cleavage efficiency compared to the GCTV motif. We also observed that the -5 position influenced the activity of DNA cleavage in TXTL and in E. coli, with a C at this position resulting in the lowest activity. Together, these results show that wild-type AsCas12a can recognize non-canonical GTTV and GCTV motifs and exemplify why the range of PAMs recognized by Cas nucleases are poorly captured with a consensus sequence.


Asunto(s)
Acidaminococcus/genética , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Motivos de Nucleótidos , Acidaminococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Dominio Catalítico , División del ADN , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Escherichia coli/genética , Edición Génica , Células HEK293 , Humanos , Plásmidos/genética
9.
Nat Biotechnol ; 37(3): 276-282, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742127

RESUMEN

Broad use of CRISPR-Cas12a (formerly Cpf1) nucleases1 has been hindered by the requirement for an extended TTTV protospacer adjacent motif (PAM)2. To address this limitation, we engineered an enhanced Acidaminococcus sp. Cas12a variant (enAsCas12a) that has a substantially expanded targeting range, enabling targeting of many previously inaccessible PAMs. On average, enAsCas12a exhibits a twofold higher genome editing activity on sites with canonical TTTV PAMs compared to wild-type AsCas12a, and we successfully grafted a subset of mutations from enAsCas12a onto other previously described AsCas12a variants3 to enhance their activities. enAsCas12a improves the efficiency of multiplex gene editing, endogenous gene activation and C-to-T base editing, and we engineered a high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively, enAsCas12a provides an optimized version of Cas12a that should enable wider application of Cas12a enzymes for gene and epigenetic editing.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Edición Génica , Ribonucleoproteínas/genética , Acidaminococcus/enzimología , Epigénesis Genética/genética , Células HEK293 , Humanos , Mutación , Linfocitos T/metabolismo
10.
Nat Commun ; 9(1): 2777, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018371

RESUMEN

Cas12a (also called Cpf1) is a representative type V-A CRISPR effector RNA-guided DNA endonuclease, which provides an alternative to type II CRISPR-Cas9 for genome editing. Previous studies have revealed that Cas12a has unique features distinct from Cas9, but the detailed mechanisms of target searching and DNA cleavage by Cas12a are still unclear. Here, we directly observe this entire process by using single-molecule fluorescence assays to study Cas12a from Acidaminococcus sp. (AsCas12a). We determine that AsCas12a ribonucleoproteins search for their on-target site by a one-dimensional diffusion along elongated DNA molecules and induce cleavage in the two DNA strands in a well-defined order, beginning with the non-target strand. Furthermore, the protospacer-adjacent motif (PAM) for AsCas12a makes only a limited contribution of DNA unwinding during R-loop formation and shows a negligible role in the process of DNA cleavage, in contrast to the Cas9 PAM.


Asunto(s)
Acidaminococcus/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , ADN/genética , ARN Guía de Kinetoplastida/genética , Acidaminococcus/enzimología , Emparejamiento Base , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Clonación Molecular , ADN/metabolismo , División del ADN , Escherichia coli/enzimología , Escherichia coli/genética , Edición Génica , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(21): 5444-5449, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735714

RESUMEN

CRISPR-Cas9, which imparts adaptive immunity against foreign genomic invaders in certain prokaryotes, has been repurposed for genome-engineering applications. More recently, another RNA-guided CRISPR endonuclease called Cpf1 (also known as Cas12a) was identified and is also being repurposed. Little is known about the kinetics and mechanism of Cpf1 DNA interaction and how sequence mismatches between the DNA target and guide-RNA influence this interaction. We used single-molecule fluorescence analysis and biochemical assays to characterize DNA interrogation, cleavage, and product release by three Cpf1 orthologs. Our Cpf1 data are consistent with the DNA interrogation mechanism proposed for Cas9. They both bind any DNA in search of protospacer-adjacent motif (PAM) sequences, verify the target sequence directionally from the PAM-proximal end, and rapidly reject any targets that lack a PAM or that are poorly matched with the guide-RNA. Unlike Cas9, which requires 9 bp for stable binding and ∼16 bp for cleavage, Cpf1 requires an ∼17-bp sequence match for both stable binding and cleavage. Unlike Cas9, which does not release the DNA cleavage products, Cpf1 rapidly releases the PAM-distal cleavage product, but not the PAM-proximal product. Solution pH, reducing conditions, and 5' guanine in guide-RNA differentially affected different Cpf1 orthologs. Our findings have important implications on Cpf1-based genome engineering and manipulation applications.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Bacteriano/genética , ADN de Cadena Simple/genética , Endonucleasas/genética , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , División del ADN , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Endonucleasas/química , Endonucleasas/metabolismo , Genoma Bacteriano , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo
12.
Nat Commun ; 8(1): 1577, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29146947

RESUMEN

The electron transferring flavoprotein/butyryl-CoA dehydrogenase (EtfAB/Bcd) catalyzes the reduction of one crotonyl-CoA and two ferredoxins by two NADH within a flavin-based electron-bifurcating process. Here we report on the X-ray structure of the Clostridium difficile (EtfAB/Bcd)4 complex in the dehydrogenase-conducting D-state, α-FAD (bound to domain II of EtfA) and δ-FAD (bound to Bcd) being 8 Å apart. Superimposing Acidaminococcus fermentans EtfAB onto C. difficile EtfAB/Bcd reveals a rotation of domain II of nearly 80°. Further rotation by 10° brings EtfAB into the bifurcating B-state, α-FAD and ß-FAD (bound to EtfB) being 14 Å apart. This dual binding mode of domain II, substantiated by mutational studies, resembles findings in non-bifurcating EtfAB/acyl-CoA dehydrogenase complexes. In our proposed mechanism, NADH reduces ß-FAD, which bifurcates. One electron goes to ferredoxin and one to α-FAD, which swings over to reduce δ-FAD to the semiquinone. Repetition affords a second reduced ferredoxin and δ-FADH-, which reduces crotonyl-CoA.


Asunto(s)
Acilcoenzima A/química , Butiril-CoA Deshidrogenasa/química , Clostridioides difficile/enzimología , Ferredoxinas/química , Flavina-Adenina Dinucleótido/química , NAD/química , Acidaminococcus/enzimología , Acilcoenzima A/metabolismo , Butiril-CoA Deshidrogenasa/metabolismo , Clostridioides difficile/metabolismo , Cristalografía por Rayos X , Transporte de Electrón , Oxidación-Reducción
13.
Mol Cell ; 67(4): 633-645.e3, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28781234

RESUMEN

The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Endonucleasas/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Acidaminococcus/enzimología , Acidaminococcus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Clostridiales/enzimología , Clostridiales/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad
14.
Nature ; 546(7659): 559-563, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28562584

RESUMEN

Cpf1 is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here we provide insight into its DNA-targeting mechanism by determining the structure of Francisella novicida Cpf1 with the triple-stranded R-loop generated after DNA cleavage. The structure reveals the machinery involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner into the double-stranded DNA. Unzipping of the double-stranded DNA occurs in a cleft arranged by acidic and hydrophobic residues facilitating the crRNA-DNA hybrid formation. The PAM single-stranded DNA is funnelled towards the nuclease site through a mixed hydrophobic and basic cavity. In this catalytic conformation, the PAM-interacting domain and the helix-loop-helix motif in the REC1 domain adopt a 'rail' shape and 'flap-on' conformations, respectively, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms the 'septum', separating the displaced PAM strand and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1.


Asunto(s)
División del ADN , ADN/metabolismo , Endonucleasas/química , Endonucleasas/metabolismo , Francisella/enzimología , ARN Guía de Kinetoplastida/metabolismo , Acidaminococcus/enzimología , Adenosina Trifosfato/metabolismo , Emparejamiento Base , Cristalografía por Rayos X , ADN/genética , Edición Génica , Bacterias Grampositivas/enzimología , Lisina/metabolismo , Modelos Moleculares , Dominios Proteicos , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato
15.
Nat Biotechnol ; 35(8): 789-792, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28581492

RESUMEN

The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS indicated that these variants retain high DNA-targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified PAM-interacting mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately threefold in human coding sequences to one cleavage site per ∼11 bp.


Asunto(s)
Proteínas Bacterianas/genética , Endonucleasas/genética , Ingeniería Genética/métodos , Variación Genética/genética , Mutagénesis Sitio-Dirigida/métodos , Acidaminococcus/enzimología , Acidaminococcus/genética , Células HEK293 , Humanos
16.
Mol Cell ; 67(1): 139-147.e2, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28595896

RESUMEN

The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/química , Edición Génica , ARN/química , Acidaminococcus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex , Unión Proteica , Conformación Proteica , ARN/genética , ARN/metabolismo , Relación Estructura-Actividad
17.
G3 (Bethesda) ; 7(2): 719-722, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28040780

RESUMEN

Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.


Asunto(s)
Proteínas Bacterianas/genética , Endonucleasas/genética , Edición Génica/métodos , Marcación de Gen/métodos , ARN Guía de Kinetoplastida/genética , Acidaminococcus/enzimología , Acidaminococcus/genética , Animales , Sistemas CRISPR-Cas/genética , Ratones , ARN Mensajero/genética
18.
Biol Direct ; 11: 46, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27630115

RESUMEN

BACKGROUND: Cpf1 nucleases have recently been repurposed for site-specific genome modification. Two members of the Cpf1 family, the AsCpf1 from Acidaminococcus sp. and the LbCpf1 from Lachnospiraceae bacterium were shown to induce higher indel frequencies than SpCas9 when examining four randomly-selected target sequences for each type of nuclease. Whether they are a real match for Cas9 nucleases, however, remains to be verified. RESULTS: Here, we used AsCpf1 and LbCpf1 to induce homology directed repair, either single strand annealing (SSA) or homologous recombination (HR), in N2a mouse neuroblastoma cells. Exploiting a plasmid that contains two GFP halves with overlapping sequences and exploring 20 targets, on all but one both nucleases consistently performed with above 10 % efficiency. Several Cas9 nucleases have been previously characterised in order to find an orthogonal counterpart for the most widely used promiscuous SpCas9. Here, we found that AsCpf1 and LbCpf1 might be better candidates than three of the best such counterparts: Cas9 from Staphylococcus aureus, from Streptococcus thermophilus and from Neisseria meningitidis, when assessed for inducing efficient SSA mediated repair in N2a cells. When tested on genomic targets exploiting HR, both nucleases were able to induce the integration of a donor cassette with 1000 bp-long homologous arms. We also generated plasmids that express these Cpf1 nucleases together with their cognate crRNAs and that are equipped with type IIS restriction enzyme sites to facilitate spacer cloning. CONCLUSIONS: Our results suggest that employing As- or LbCpf1 nuclease to induce homology directed repair in N2a cells, although is less effective at present than employing SpCas9, it is an equally or more effective tool than the most frequently used orthogonal Cas9 counterparts of SpCas9. These findings support the position of Cpf1 nucleases on the side of SpCas9 on the palette of effective genome engineering tools. REVIEWERS: This article was reviewed by Eugene Koonin, Haruhiko Siomi and Jean-Yves Masson.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/metabolismo , Reparación del ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Acidaminococcus/genética , Acidaminococcus/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular Tumoral , Clostridiales/enzimología , Clostridiales/genética , Clostridiales/metabolismo , Ratones
19.
J Biol Chem ; 291(23): 11993-2002, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27048649

RESUMEN

Electron-transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) from Acidaminococcus fermentans catalyze the endergonic reduction of ferredoxin by NADH, which is also driven by the concomitant reduction of crotonyl-CoA by NADH, a process called electron bifurcation. Here we show that recombinant flavodoxin from A. fermentans produced in Escherichia coli can replace ferredoxin with almost equal efficiency. After complete reduction of the yellow quinone to the blue semiquinone, a second 1.4 times faster electron transfer affords the colorless hydroquinone. Mediated by a hydrogenase, protons reoxidize the fully reduced flavodoxin or ferredoxin to the semi-reduced species. In this hydrogen-generating system, both electron carriers act catalytically with apparent Km = 0.26 µm ferredoxin or 0.42 µm flavodoxin. Membrane preparations of A. fermentans contain a highly active ferredoxin/flavodoxin-NAD(+) reductase (Rnf) that catalyzes the irreversible reduction of flavodoxin by NADH to the blue semiquinone. Using flavodoxin hydroquinone or reduced ferredoxin obtained by electron bifurcation, Rnf can be measured in the forward direction, whereby one NADH is recycled, resulting in the simple equation: crotonyl-CoA + NADH + H(+) = butyryl-CoA + NAD(+) with Km = 1.4 µm ferredoxin or 2.0 µm flavodoxin. This reaction requires Na(+) (Km = 0.12 mm) or Li(+) (Km = 0.25 mm) for activity, indicating that Rnf acts as a Na(+) pump. The redox potential of the quinone/semiquinone couple of flavodoxin (Fld) is much higher than that of the semiquinone/hydroquinone couple. With free riboflavin, the opposite is the case. Based on this behavior, we refine our previous mechanism of electron bifurcation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , NAD/metabolismo , Oxidorreductasas/metabolismo , Sodio/metabolismo , Acidaminococcus/enzimología , Acidaminococcus/genética , Acidaminococcus/metabolismo , Acilcoenzima A/metabolismo , Benzoquinonas/metabolismo , Butiril-CoA Deshidrogenasa/metabolismo , Catálisis , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/genética , Electrones , Hidrógeno/metabolismo , Hidroquinonas/metabolismo , Cinética , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Riboflavina/metabolismo , Espectrofotometría
20.
J Biol Chem ; 289(8): 5145-57, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24379410

RESUMEN

Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (ß-FAD) in subunit ß. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed ß-FAD as acceptor of the hydride of NADH. The formed ß-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach ß-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, ß-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.


Asunto(s)
Acidaminococcus/enzimología , Biocatálisis , Butiril-CoA Deshidrogenasa/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , Electrones , Butiril-CoA Deshidrogenasa/química , Cristalografía por Rayos X , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/química , Electroforesis en Gel de Poliacrilamida , Ferredoxinas/química , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/química , Flavinas/metabolismo , Cinética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA