Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Sci Rep ; 14(1): 12976, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839792

RESUMEN

Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the catalytically inactive Glu291Gln mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial ß-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43 kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5ß-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga , Modelos Moleculares , Especificidad por Sustrato , Humanos , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Acil-CoA Deshidrogenasa de Cadena Larga/química , Cristalografía por Rayos X , Dominio Catalítico , Acil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/química , Conformación Proteica , Secuencia de Aminoácidos
2.
Mol Genet Metab ; 140(3): 107689, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37660571

RESUMEN

Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas , Errores Innatos del Metabolismo Lipídico , Humanos , Animales , Ratones , Acil-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Acil-CoA Deshidrogenasas/genética
3.
Brief Funct Genomics ; 22(2): 168-179, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35868449

RESUMEN

Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), encodes a family of membrane proteins belonging to Resistance-Nodulation-Cell Division (RND) permeases also called multidrug resistance pumps. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in exporting of lipid components across the cell envelope. These proteins perform an essential role in MTB survival; however, there are no data regarding mutations in MmpL, polyketide synthase (PKS) and acyl-CoA dehydrogenase FadE proteins from Khyber Pakhtunkhwa, Pakistan. This study aimed to screen mutations in transmembrane transporter proteins including MmpL, PKS and Fad through whole-genome sequencing (WGS) in local isolates of Khyber Pakhtunkhwa province, Pakistan. Fourteen samples were collected from TB patients and drug susceptibility testing was performed. However, only three samples were completely sequenced. Moreover, 209 whole-genome sequences of the same geography were also retrieved from NCBI GenBank to analyze the diversity of mutations in MmpL, PKS and Fad proteins. Among the 212 WGS (Accession ID: PRJNA629298, PRJNA629388, and ERR2510337-ERR2510345, ERR2510546-ERR2510645), numerous mutations in Fad (n = 756), PKS (n = 479), and MmpL (n = 306) have been detected. Some novel mutations were also detected in MmpL, PKS and acyl-CoA dehydrogenase Fad. Novel mutations including Asn576Ser in MmpL8, Val943Gly in MmpL9 and Asn145Asp have been detected in MmpL3. The presence of a large number of mutations in the MTB membrane may have functional consequences on proteins. However, further experimental studies are needed to elucidate the variants' effect on MmpL, PKS and FadE functions.


Asunto(s)
Acil-CoA Deshidrogenasas , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/farmacología , Pruebas de Sensibilidad Microbiana , Mutación/genética , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasas/farmacología
4.
J R Coll Physicians Edinb ; 52(3): 256-258, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36369806

RESUMEN

Multiple-acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder which can be split into three types. Type III MADD is associated with acute or subacute proximal muscle weakness and other variable non-specific features making it a challenging diagnosis for the clinician. This case report describes MADD in a 64 year-old lady, thought to be one of the latest first presentations of the disease. Unusually for this condition, the initial presentation was with dyspnoea. Furthermore, since this case provides further evidence that gene variants can predict age of onset, we advocate for further subclassification of type III MADD into late onset MADD (LO-MADD) when homozygous gene variants are present and very LO-MADD when heterozygous gene variants are found.


Asunto(s)
Acil-CoA Deshidrogenasas , Proteínas Hierro-Azufre , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Femenino , Humanos , Persona de Mediana Edad , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Proteínas Hierro-Azufre/genética , Mutación , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Acil-CoA Deshidrogenasas/genética
5.
Mitochondrion ; 59: 169-174, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34023438

RESUMEN

Mitochondrial complex I (CI) deficiencies (OMIM 252010) are the commonest inherited mitochondrial disorders in children. Acyl-CoA dehydrogenase 9 (ACAD9) is a flavoenzyme involved chiefly in CI assembly and possibly in fatty acid oxidation. Biallelic pathogenic variants result in CI dysfunction, with a phenotype ranging from early onset and sometimes fatal mitochondrial encephalopathy with lactic acidosis to late-onset exercise intolerance. Cardiomyopathy is often associated. We report a patient with childhood-onset optic and peripheral neuropathy without cardiac involvement, related to CI deficiency. Genetic analysis revealed compound heterozygous pathogenic variants in ACAD9, expanding the clinical spectrum associated to ACAD9 mutations. Importantly, riboflavin treatment (15 mg/kg/day) improved long-distance visual acuity and demonstrated significant rescue of CI activity in vitro.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Mutación del Sistema de Lectura , Enfermedades del Nervio Óptico/tratamiento farmacológico , Riboflavina/administración & dosificación , Edad de Inicio , Niño , Heterocigoto , Humanos , Masculino , Enfermedades del Nervio Óptico/genética , Riboflavina/uso terapéutico , Resultado del Tratamiento
6.
Genes (Basel) ; 12(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920575

RESUMEN

The development of skeletal muscle is a highly ordered and complex biological process. Increasing evidence has shown that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play a vital role in the development of myogenic processes. In this study, we observed that lncMyoD regulates myogenesis and changes myofiber-type composition. miR-370-3p, which is directly targeted by lncMyoD, promoted myoblast proliferation and inhibited myoblast differentiation in the C2C12 cell line, which serves as a valuable model for studying muscle development. In addition, the inhibition of miR-370-3p promoted fast-twitch fiber transition. Further analysis indicated that acyl-Coenzyme A dehydrogenase, short/branched chain (ACADSB) is a target gene of miR-370-3p, which is also involved in myoblast differentiation and fiber-type transition. Furthermore, our data suggested that miR-370-3p was sponged by lncMyoD. In contrast with miR-370-3p, lncMyoD promoted fast-twitch fiber transition. Taken together, our results suggest that miR-370-3p regulates myoblast differentiation and muscle fiber transition and is sponged by lncMyoD.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , MicroARNs/genética , Fibras Musculares de Contracción Rápida/citología , ARN Largo no Codificante/genética , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Regulación de la Expresión Génica , Ratones , Desarrollo de Músculos , Fibras Musculares de Contracción Rápida/química
7.
mSphere ; 6(1)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472982

RESUMEN

The autotrophic 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle functions in thermoacidophilic, (micro)aerobic, hydrogen-oxidizing Crenarchaeota of the order Sulfolobales as well as in mesophilic, aerobic, ammonia-oxidizing Thaumarchaeota. Notably, the HP/HB cycle evolved independently in these two archaeal lineages, and crenarchaeal and thaumarchaeal versions differ regarding their enzyme properties and phylogeny. These differences result in altered energetic efficiencies between the variants. Compared to the crenarchaeal HP/HB cycle, the thaumarchaeal variant saves two ATP equivalents per turn, rendering it the most energy-efficient aerobic pathway for carbon fixation. Characteristically, the HP/HB cycle includes two enoyl coenzyme A (CoA) hydratase reactions: the 3-hydroxypropionyl-CoA dehydratase reaction and the crotonyl-CoA hydratase reaction. In this study, we show that both reactions are catalyzed in the aforementioned archaeal groups by a promiscuous 3-hydroxypropionyl-CoA dehydratase/crotonyl-CoA hydratase (Msed_2001 in crenarchaeon Metallosphaera sedula and Nmar_1308 in thaumarchaeon Nitrosopumilus maritimus). Although these two enzymes are homologous, they are closely related to bacterial enoyl-CoA hydratases and were retrieved independently from the same enzyme pool by the ancestors of Crenarchaeota and Thaumarchaeota, despite the existence of multiple alternatives. This striking similarity in the emergence of enzymes involved in inorganic carbon fixation from two independently evolved pathways highlights that convergent evolution of autotrophy could be much more widespread than anticipated.IMPORTANCE Inorganic carbon fixation is the most important biosynthetic process on Earth and the oldest type of metabolism. The autotrophic HP/HB cycle functions in Crenarchaeota of the order Sulfolobales and in ammonia-oxidizing Archaea of the phylum Thaumarchaeota that are highly abundant in marine, terrestrial, and geothermal environments. Bioinformatic prediction of the autotrophic potential of microorganisms or microbial communities requires identification of enzymes involved in autotrophy. However, many microorganisms possess several isoenzymes that may potentially catalyze the reactions of the cycle. Here, we studied the enzymes catalyzing 3-hydroxypropionyl-CoA dehydration and crotonyl-CoA hydration in Nitrosopumilus maritimus (Thaumarchaeota) as well as in Metallosphaera sedula (Crenarchaeota). We showed that both reactions were catalyzed by homologous promiscuous enzymes, which evolved independently from each other from their bacterial homologs. Furthermore, the HP/HB cycle is of applied value, and knowledge of its enzymes is necessary to transfer them to a heterologous host for synthesis of various value-added products.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Archaea/genética , Crenarchaeota/genética , Evolución Molecular , Amoníaco/metabolismo , Archaea/enzimología , Archaea/metabolismo , Ciclo del Carbono , Crenarchaeota/enzimología , Crenarchaeota/metabolismo , Enoil-CoA Hidratasa/genética , Hidroliasas/genética , Oxidación-Reducción , Filogenia
8.
Angew Chem Int Ed Engl ; 60(9): 4689-4697, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33320993

RESUMEN

Fatty acid ß-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are mitochondrial redox processes that generate ATP. The biogenesis of the respiratory Complex I, a 1 MDa multiprotein complex that is responsible for initiating OXPHOS, is mediated by assembly factors including the mitochondrial complex I assembly (MCIA) complex. However, the organisation and the role of the MCIA complex are still unclear. Here we show that ECSIT functions as the bridging node of the MCIA core complex. Furthermore, cryo-electron microscopy together with biochemical and biophysical experiments reveal that the C-terminal domain of ECSIT directly binds to the vestigial dehydrogenase domain of the FAO enzyme ACAD9 and induces its deflavination, switching ACAD9 from its role in FAO to an MCIA factor. These findings provide the structural basis for the MCIA complex architecture and suggest a unique molecular mechanism for coordinating the regulation of the FAO and OXPHOS pathways to ensure an efficient energy production.


Asunto(s)
Complejo I de Transporte de Electrón/química , Flavina-Adenina Dinucleótido/metabolismo , Mitocondrias/metabolismo , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Flavina-Adenina Dinucleótido/química , Humanos , Fosforilación Oxidativa , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
9.
Biochem Biophys Res Commun ; 528(3): 453-458, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32507597

RESUMEN

The biosynthesis of polyunsaturated fatty acids (PUFAs) in bacteria has been extensively studied. In contrast, studies of PUFA metabolism remain limited. Shewanella livingstonensis Ac10 is a psychrotrophic bacterium producing eicosapentaenoic acid (EPA), a long-chain ω-3 PUFA. This bacterium has the ability to convert exogenous docosahexaenoic acid (DHA) into EPA and incorporate both DHA and EPA into membrane phospholipids. Our previous studies revealed the importance of 2,4-dienoyl-CoA reductase in the conversion, suggesting that DHA is metabolized through a general ß-oxidation pathway. Herein, to gain further insight into the conversion mechanism, we analyzed the role of acyl-CoA dehydrogenase (FadE), the first committed enzyme of the ß-oxidation pathway, in DHA conversion. S. livingstonensis Ac10 has two putative FadE proteins (FadE1 and FadE2) that are highly homologous to Escherichia coli FadE. We found that FadE1 expression was induced by addition of DHA to the medium and fadE1 deletion reduced DHA conversion into EPA. Consistently, purified FadE1 exhibited dehydrogenase activity towards DHA-CoA. Moreover, its activity towards DHA- and EPA-CoAs was higher than that towards palmitoleoyl- and palmitoyl-CoAs. In contrast, fadE2 deletion did not impair DHA conversion, and purified FadE2 had higher activity towards palmitoleoyl- and palmitoyl-CoAs than towards DHA- and EPA-CoAs. These results suggest that FadE1 is the first enzyme of the ß-oxidation pathway that catalyzes DHA conversion.


Asunto(s)
Acil-CoA Deshidrogenasas/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Shewanella/metabolismo , Acil-CoA Deshidrogenasas/química , Acil-CoA Deshidrogenasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Eliminación de Gen , Genes Bacterianos , Redes y Vías Metabólicas , Mutagénesis , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella/genética , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
10.
IUBMB Life ; 72(9): 1986-1996, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593204

RESUMEN

Short-chain acyl-CoA dehydrogenase (SCAD), encoded by the Acads gene, functions in the mitochondrial ß-oxidation of saturated short-chain fatty acids. SCAD deficiency results in mitochondrial dysfunction, which is one underlying biological mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis. In this case-control study, we aimed to examine the effects of Acads gene polymorphisms on the susceptibility to COPD. A total of 16 tagging single-nucleotide polymorphisms (SNPs) in Acads gene region was identified and genotyped in 646 unrelated ethnic Chinese Han individuals including 279 patients with COPD and 367 healthy controls, their allelic and genotypic associations with COPD were determined by different genetic models. Furthermore, we estimated the linkage disequilibrium and haplotypes from these tested variants and determined the effects of haplotypes on the risk of COPD. The allelic and genotypic frequencies of SNPs rs2239686 and rs487915 in Acads gene were significantly different between COPD patients and controls, no statistically significant results were observed for other SNPs. Minor alleles A of rs2239686 and T of rs487915 were associated with a decreased pulmonary function and an increased COPD risk in a dominant manner. Functional analysis indicated that the risk allele A of rs2239686 could increase Acads expressions and the intracellular reactive oxygen species content. Haplotype analysis revealed that the haplotypes CTCCT in block 2 (rs3794216-rs3794215-rs34491494-rs558314-rs7312316) as well as GC in block 3 (rs2239686-rs487915) were protective against COPD, while haplotypes CTCGC in block 2 and AT in block 3 exhibited significant associations with the increased susceptibility to COPD. Our results suggest that Acads gene could potentially be a risk factor of COPD and thus its genetic variants might be as genetic biomarkers to predict the COPD susceptibility.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Predisposición Genética a la Enfermedad , Haplotipos , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Factores de Riesgo
11.
J Gerontol A Biol Sci Med Sci ; 75(8): 1481-1487, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-31942994

RESUMEN

The age-associated reduction in muscle mass is well characterized; however, less is known regarding the mechanisms responsible for the decline in oxidative capacity also observed with advancing age. The purpose of the current study was therefore to compare mitochondrial gene expression and protein content between young and old recreationally active, and older highly active individuals. Muscle biopsies were obtained from the vastus lateralis of young males (YG: 22 ± 3 years) and older (OG: 67 ± 2 years) males not previously engaged in formal exercise and older male master cyclists (OT: 65 ± 5 years) who had undertaken cycling exercise for 32 ± 17 years. Comparison of gene expression between YG, OG, and OT groups revealed greater expression of mitochondrial-related genes, namely, electron transport chain (ETC) complexes II, III, and IV (p < .05) in OT compared with YG and OG. Gene expression of mitofusion (MFN)-1/2, mitochondrial fusion genes, was greater in OT compared with OG (p < .05). Similarly, protein content of ETC complexes I, II, and IV was significantly greater in OT compared with both YG and OG (p < .001). Protein content of peroxisome proliferator-activated receptor gamma, coactivator 1 α (PGC-1α), was greater in OT compared with YG and OG (p < .001). Our results suggest that the aging process per se is not associated with a decline in gene expression and protein content of ETC complexes. Mitochondrial-related gene expression and protein content are substantially greater in OT, suggesting that exercise-mediated increases in mitochondrial content can be maintained into later life.


Asunto(s)
Ejercicio Físico , Expresión Génica , Mitocondrias Musculares/metabolismo , Músculo Cuádriceps/metabolismo , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Anciano , Biomarcadores/metabolismo , Biopsia , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Músculo Cuádriceps/patología , ARN Mensajero/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Adulto Joven
12.
Appl Microbiol Biotechnol ; 103(23-24): 9593-9606, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713669

RESUMEN

FK520 (ascomycin), a 23-membered macrolide with immunosuppressive activity, is produced by Streptomyces hygroscopicus. The problem of low yield and high impurities (mainly FK523) limits the industrialized production of FK520. In this study, the FK520 yield was significantly improved by strain mutagenesis and genetic engineering. First, a FK520 high-producing strain SFK-6-33 (2432.2 mg/L) was obtained from SFK-36 (1588.4 mg/L) through ultraviolet radiation mutation coupled with streptomycin resistance screening. The endogenous crotonyl-CoA carboxylase/reductase (FkbS) was found to play an important role in FK520 biosynthesis, identified with CRISPR/dCas9 inhibition system. FkbS was overexpressed in SFK-6-33 to obtain the engineered strain SFK-OfkbS, which produced 2817.0 mg/L of FK520 resulting from an increase in intracellular ethylmalonyl-CoA levels. In addition, the FK520 levels could be further increased with supplementation of crotonic acid in SFK-OfkbS. Overexpression of acetyl-CoA carboxylase (ACCase), used for the synthesis of malonyl-CoA, was also investigated in SFK-6-33, which improved the FK520 yield to 3320.1 mg/L but showed no significant inhibition in FK523 production. To further enhance FK520 production, FkbS and ACCase combinatorial overexpression strain SFK-OASN was constructed; the FK520 production increased by 44.4% to 3511.4 mg/L, and the FK523/FK520 ratio was reduced from 9.6 to 5.6% compared with that in SFK-6-33. Finally, a fed-batch culture was carried out in a 5-L fermenter, and the FK520 yield reached 3913.9 mg/L at 168 h by feeding glycerol, representing the highest FK520 yield reported thus far. These results demonstrated that traditional mutagenesis combined with metabolic engineering was an effective strategy to improve FK520 production.


Asunto(s)
Ingeniería Metabólica/métodos , Streptomyces/genética , Streptomyces/metabolismo , Tacrolimus/análogos & derivados , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Acilcoenzima A/metabolismo , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Crotonatos/metabolismo , Expresión Génica , Inmunosupresores/metabolismo , Mutagénesis , Tacrolimus/metabolismo , Rayos Ultravioleta
13.
Cell Commun Signal ; 17(1): 129, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623618

RESUMEN

BACKGROUND: While regulated WNT activity is required for normal development and stem cell maintenance, mutations that lead to constitutive activation of the WNT pathway cause cellular transformation and drive colorectal cancer. Activation of the WNT pathway ultimately leads to the nuclear translocation of ß-catenin which, in complex with TCF/LEF factors, promotes the transcription of genes necessary for growth. The proto-oncogene MYC is one of the most critical genes activated downstream the WNT pathway in colon cancer. Here, we investigate the converse regulation of the WNT pathway by MYC. METHODS: We performed RNA-seq analyses to identify genes regulated in cells expressing MYC. We validated the regulation of genes in the WNT pathway including LEF1 by MYC using RT-qPCR, Western blotting, and ChIP-seq. We investigated the importance of LEF1 for the viability of MYC-expressing cells in in fibroblasts, epithelial cells, and colon cells. Bioinformatic analyses were utilized to define the expression of MYC-regulated genes in human colon cancer and metabolomics analyses were used to identify pathways regulated by LEF1 in MYC expressing cells. RESULTS: MYC regulates the levels of numerous WNT-related genes, including the ß-catenin co-transcription factor LEF1. MYC activates the transcription of LEF1 and is required for LEF1 expression in colon cancer cells and in primary colonic cells transformed by APC loss of function, a common mutation in colon cancer patients. LEF1 caused the retention of ß-catenin in the nucleus, leading to the activation of the WNT pathway in MYC-expressing cells. Consequently, MYC-expressing cells were sensitive to LEF1 inhibition. Moreover, we describe two examples of genes induced in MYC-expressing cells that require LEF1 activity: the peroxisome proliferator activated receptor delta (PPARδ) and the Acyl CoA dehydrogenase 9 (ACAD9). CONCLUSIONS: We demonstrated that MYC is a transcriptional regulator of LEF1 in colonic cells. Our work proposes a novel pathway by which MYC regulates proliferation through activating LEF1 expression which in turn activates the WNT pathway.


Asunto(s)
Factor de Unión 1 al Potenciador Linfoide/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Vía de Señalización Wnt , Acil-CoA Deshidrogenasas/genética , Línea Celular , Proliferación Celular , Neoplasias del Colon/patología , Técnicas de Silenciamiento del Gen , Humanos , Factor de Unión 1 al Potenciador Linfoide/deficiencia , PPAR delta/genética , Proto-Oncogenes Mas , beta Catenina/metabolismo
14.
Anal Biochem ; 581: 113332, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31194945

RESUMEN

Acyl-CoA dehydrogenases (ACADs) play key roles in the mitochondrial catabolism of fatty acids and branched-chain amino acids. All nine characterized ACAD enzymes use electron transfer flavoprotein (ETF) as their redox partner. The gold standard for measuring ACAD activity is the anaerobic ETF fluorescence reduction assay, which follows the decrease of pig ETF fluorescence as it accepts electrons from an ACAD in vitro. Although first described 35 years ago, the assay has not been widely used due to the need to maintain an anaerobic assay environment and to purify ETF from pig liver mitochondria. Here, we present a method for expressing recombinant pig ETF in E coli and purifying it to homogeneity. The recombinant protein is virtually pure after one chromatography step, bears higher intrinsic fluorescence than the native enzyme, and provides enhanced activity in the ETF fluorescence reduction assay. Finally, we present a simplified protocol for removing molecular oxygen that allows adaption of the assay to a 96-well plate format. The availability of recombinant pig ETF and the microplate version of the ACAD activity assay will allow wide application of the assay for both basic research and clinical diagnostics.


Asunto(s)
Acil-CoA Deshidrogenasas/química , Flavoproteínas Transportadoras de Electrones/química , Acil-CoA Deshidrogenasas/genética , Animales , Flavoproteínas Transportadoras de Electrones/genética , Escherichia coli/química , Escherichia coli/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Porcinos
15.
Arch Microbiol ; 201(5): 661-671, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30796473

RESUMEN

This study investigated the effect of different nitrogen sources, namely, ammonium chloride and glutamate, on photoheterotrophic metabolism of Rhodobacter capsulatus grown on acetate as the carbon source. Genes that were significantly differentially expressed according to Affymetrix microarray data were categorized into Clusters of Orthologous Groups functional categories and those in acetate assimilation, hydrogen production, and photosynthetic electron transport pathways were analyzed in detail. Genes related to hydrogen production metabolism were significantly downregulated in cultures grown on ammonium chloride when compared to those grown on glutamate. In contrast, photosynthetic electron transport and acetate assimilation pathway genes were upregulated. In detail, aceA encoding isocitrate lyase, a unique enzyme of the glyoxylate cycle and ccrA encoding the rate limiting crotonyl-CoA carboxylase/reductase enzyme of ethylmalonyl-coA pathway were significantly upregulated. Our findings indicate for the first time that R. capsulatus can operate both glyoxylate and ethylmalonyl-coA cycles for acetate assimilation.


Asunto(s)
Ácido Acético/metabolismo , Acilcoenzima A/metabolismo , Cloruro de Amonio/metabolismo , Ácido Glutámico/metabolismo , Glioxilatos/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Carbono/metabolismo , Carboxiliasas/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Perfilación de la Expresión Génica , Hidrógeno/metabolismo , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Nitrógeno/metabolismo , Rhodobacter capsulatus/crecimiento & desarrollo
16.
Clin Chim Acta ; 487: 133-138, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30253142

RESUMEN

Isobutyryl-CoA dehydrogenase deficiency (IBDHD) is a rare autosomal recessive metabolic disorder related to valine catabolism and results from variants in ACAD8. Here, we present the clinical, biochemical, and genotypes of seven patients with IBDHD in China for the first time. Five patients remained asymptomatic during follow-up, whereas one juvenile had speech delay and one newborn exhibited clinical symptoms. All patients showed remarkably increased concentrations of C4-aclycarnitine with elevated C4/C2 and C4/C3 ratios. In urine organic acid tests, only one patient presented with an increased concentration of isobutyrylglycine excretion. Genetic testing was performed to detect the causative variants. Five previously unreported variants, c.235C > G, c.286G > A, c.444G > T c.1092 + 1G > A, and c.1176G > T, and one known variant, c.1000C > T, in ACAD8 were identified. These previously unreported variants in ACAD8 were predicted to be disease-causing and the c.1092 + 1G > A variant was confirmed to cause skipping of exon 9 by reverse transcription PCR. The most common variant was c.286G > A, which showed an allelic frequency of 50% (7/14), and thus may be a prevalent variant among Chinese patients. Our results broaden the mutational spectrum of ACAD8 and improve the understanding of the clinical phenotype of IBDHD.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasas/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , China , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo
17.
Sci Rep ; 8(1): 1165, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348607

RESUMEN

Mitochondrial complex I (CI) deficiency is the most frequent cause of oxidative phosphorylation (OXPHOS) disorders in humans. In order to benchmark the effects of CI deficiency on mitochondrial bioenergetics and dynamics, respiratory chain (RC) and endoplasmic reticulum (ER)-mitochondria communication, and superoxide production, fibroblasts from patients with mutations in the ND6, NDUFV1 or ACAD9 genes were analyzed. Fatty acid metabolism, basal and maximal respiration, mitochondrial membrane potential, and ATP levels were decreased. Changes in proteins involved in mitochondrial dynamics were detected in various combinations in each cell line, while variable changes in RC components were observed. ACAD9 deficient cells exhibited an increase in RC complex subunits and DDIT3, an ER stress marker. The level of proteins involved in ER-mitochondria communication was decreased in ND6 and ACAD9 deficient cells. |ΔΨ| and cell viability were further decreased in all cell lines. These findings suggest that disruption of mitochondrial bioenergetics and dynamics, ER-mitochondria crosstalk, and increased superoxide contribute to the pathophysiology in patients with ACAD9 deficiency. Furthermore, treatment of ACAD9 deficient cells with JP4-039, a novel mitochondria-targeted reactive oxygen species, electron and radical scavenger, decreased superoxide level and increased basal and maximal respiratory rate, identifying a potential therapeutic intervention opportunity in CI deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Complejo I de Transporte de Electrón/deficiencia , Fibroblastos/enzimología , Enfermedades Mitocondriales/genética , NADH Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Acil-CoA Deshidrogenasas/deficiencia , Adenosina Trifosfato/agonistas , Adenosina Trifosfato/biosíntesis , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Depuradores de Radicales Libres/farmacología , Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , NADH Deshidrogenasa/deficiencia , Óxidos de Nitrógeno/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores
18.
ACS Synth Biol ; 7(1): 86-97, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29216425

RESUMEN

The ethylmalonyl-CoA pathway (EMCP) is an anaplerotic reaction sequence in the central carbon metabolism of numerous Proteo- and Actinobacteria. The pathway features several CoA-bound mono- and dicarboxylic acids that are of interest as platform chemicals for the chemical industry. The EMCP, however, is essential for growth on C1 and C2 carbon substrates and therefore cannot be simply interrupted to drain these intermediates. In this study, we aimed at reengineering central carbon metabolism of the Alphaproteobacterium Methylobacterium extorquens AM1 for the specific production of EMCP derivatives in the supernatant. Establishing a heterologous glyoxylate shunt in M. extorquens AM1 restored wild type-like growth in several EMCP knockout strains on defined minimal medium with acetate as carbon source. We further engineered one of these strains that carried a deletion of the gene encoding crotonyl-CoA carboxylase/reductase to demonstrate in a proof-of-concept the specific production of crotonic acid in the supernatant on a defined minimal medium. Our experiments demonstrate that it is in principle possible to further exploit the EMCP by establishing an alternative central carbon metabolic pathway in M. extorquens AM1, opening many possibilities for the biotechnological production of EMCP-derived compounds in future.


Asunto(s)
Acilcoenzima A/genética , Proteínas Bacterianas/genética , Carbono/metabolismo , Glioxilatos/metabolismo , Ingeniería Metabólica , Methylobacterium extorquens/metabolismo , Ácido Acético/metabolismo , Acilcoenzima A/deficiencia , Acil-CoA Deshidrogenasas/deficiencia , Acil-CoA Deshidrogenasas/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/metabolismo , Crotonatos/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Malato Sintasa/genética , Malato Sintasa/metabolismo , Metanol/química , Metanol/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/crecimiento & desarrollo , Oxidación-Reducción , Espectrofotometría
19.
Mol Genet Metab ; 121(3): 224-226, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28529009

RESUMEN

Patients carrying Acyl-CoA dehydrogenase 9 (ACAD9) mutations reported to date mainly present with severe hypertrophic cardiomyopathy and isolated complex I (CI) dysfunction. Here we report a novel ACAD9 mutation in a young girl presenting with severe hypertrophic cardiomyopathy, isolated CI deficiency and interestingly multiple respiratory chain complexes assembly defects. We show that ACAD9 analysis has to be performed in first intention in patients presenting with cardiac hypertrophy even in the presence of multiple assembly defects.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Mutación , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasas/sangre , Niño , Transporte de Electrón , Complejo I de Transporte de Electrón/sangre , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Lactante
20.
Neuromuscul Disord ; 27(5): 473-476, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28279569

RESUMEN

We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9.


Asunto(s)
Acidosis Láctica/genética , Acidosis Láctica/fisiopatología , Acil-CoA Deshidrogenasas/genética , Tolerancia al Ejercicio/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Acidosis Láctica/tratamiento farmacológico , Acidosis Láctica/patología , Adulto , Diagnóstico Diferencial , Complejo I de Transporte de Electrón/deficiencia , Tolerancia al Ejercicio/fisiología , Femenino , Heterocigoto , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Músculo Esquelético/patología , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...