Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4214, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760332

RESUMEN

The liver gene expression of the peroxisomal ß-oxidation enzyme acyl-coenzyme A oxidase 1 (ACOX1), which catabolizes very long chain fatty acids (VLCFA), increases in the context of obesity, but how this pathway impacts systemic energy metabolism remains unknown. Here, we show that hepatic ACOX1-mediated ß-oxidation regulates inter-organ communication involved in metabolic homeostasis. Liver-specific knockout of Acox1 (Acox1-LKO) protects mice from diet-induced obesity, adipose tissue inflammation, and systemic insulin resistance. Serum from Acox1-LKO mice promotes browning in cultured white adipocytes. Global serum lipidomics show increased circulating levels of several species of ω-3 VLCFAs (C24-C28) with previously uncharacterized physiological role that promote browning, mitochondrial biogenesis and Glut4 translocation through activation of the lipid sensor GPR120 in adipocytes. This work identifies hepatic peroxisomal ß-oxidation as an important regulator of metabolic homeostasis and suggests that manipulation of ACOX1 or its substrates may treat obesity-associated metabolic disorders.


Asunto(s)
Acil-CoA Oxidasa , Metabolismo de los Lípidos , Hígado , Obesidad , Animales , Ratones , Acil-CoA Oxidasa/metabolismo , Acil-CoA Oxidasa/genética , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Ácidos Grasos/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/genética , Oxidación-Reducción , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
Free Radic Biol Med ; 208: 221-228, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567517

RESUMEN

In peroxisomes, acyl-CoA oxidase (ACOX) oxidizes fatty acids and produces H2O2, and the latter is decomposed by catalase. If ethanol is present, ethanol will be oxidized by catalase coupling with decomposition of H2O2. Peroxisome proliferator-activated receptor α (PPARα) agonist WY-14,643 escalated ethanol clearance, which was not observed in catalase knockout (Cat-/-) mice or partially blocked by an ACOX1 inhibitor. WY-14,643 induced peroxisome proliferation via peroxin 16 (PEX16). PEX16 liver-specific knockout (Pex16Alb-Cre) mice lack intact peroxisomes in liver, but catalase and ACOX1 were upregulated. Due to lacking intact peroxisomes, the upregulated catalase and ACOX1 in the Pex16Alb-Cre mice were mislocated in cytosol and microsomes, and the escalated ethanol clearance was not observed in the Pex16Alb-Cre mice, implicating that the intact functional peroxisomes are essential for ACOX1/catalase to metabolize ethanol. Alcohol-associated liver disease (ALD) is a spectrum of liver disorders ranging from alcoholic steatosis to steatohepatitis. WY-14,643 ameliorated alcoholic steatosis but tended to enhance alcoholic steatohepatitis. In mice lacking nuclear factor erythroid 2-related factor 2 (Nrf2-/-), WY-14,643 still induced PEX16, ACOX1 and catalase to escalate ethanol clearance and blunt alcoholic steatosis, which was not observed in the PPARα-absent Nrf2-/- mice (Pparα-/-/Nrf2-/-) mice, suggesting that WY-14,643 escalates ethanol clearance through PPARα but not through Nrf2.


Asunto(s)
Etanol , Hígado Graso , Peroxisomas , Animales , Ratones , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Etanol/metabolismo , Hígado Graso/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Peroxisomas/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
3.
BMC Med Genomics ; 16(1): 156, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400800

RESUMEN

BACKGROUND: Mitchell syndrome (MITCH) is a rare autosomal dominant hereditary disorder, characterized by episodic demyelination, sensorimotor polyneuropathy and hearing loss. MITCH is caused by heterozygous mutation in the ACOX1 gene, which encodes straight-chain acyl-CoA oxidase, on chromosome 17q25.1.  Only 5 unrelated patients have been reported so far, and no reports from China. Here, we describe the first MITCH case in a Chinese individual. CASE PRESENTATION: A 7-year-old girl initially presented with diffuse desquamatory rash at age 3. Her clinical symptoms in order of presentation were diffuse desquamatory rash, gait instability, ptosis with photophobia, hearing loss, abdominal pain, diarrhea, nausea, and dysuria. Genetic analysis demonstrated that the patient carried a heterozygous variant c.710A>G(p.Asp237Ser) in the ACOX1 gene, which can cause MITCH symptoms. This is the first MITCH case with gastrointestinal and urinary tract symptoms. After administrating N acetylcysteine amide (NACA), some symptoms were relieved and the patient's condition improved. CONCLUSION: This is the first MITCH case in the Chinese population, and we expanded the genotype spectrum of it. The p.Asp237Ser may be a mutational hotspot in ACOX1 regardless of race. In terms of diagnosis, patients with recurrent rash, gait instability, and hearing loss with some autonomic symptoms should raise the suspicion of MITCH and proper and prompt treatment should be given.


Asunto(s)
Acil-CoA Oxidasa , Niño , Femenino , Humanos , Acil-CoA Oxidasa/genética , China , Genotipo , Heterocigoto , Mutación
4.
Exp Cell Res ; 430(1): 113700, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37380010

RESUMEN

Growing evidence suggests a strong association between decreased lipid catabolism and the development of cancer. Solute carrier family 9 member A5 (SLC9A5) plays a regulatory role in colorectal function. However, the specific involvement of SLC9A5 in colorectal cancer (CRC) remains unclear, as well as its potential connection to lipid catabolism. We found that SLC9A5 exhibited significantly higher expression in CRC tumor tissues compared to adjacent paratumor tissues, as confirmed through analysis of the TCGA database and validation on a CRC tissue chip using IHC. Furthermore, in vitro experiments showed that knockdown of SLC9A5 resulted in suppressed cell proliferation, migration, and invasion. Then we performed bioinformatics analysis and found that SLC9A5 was significantly enriched in peroxisomal fatty acid oxidation (FAO) pathway and negatively correlated with its first rate-limiting enzyme acyl-CoA oxidases (ACOX). Interestingly, the expression of ACOX1, as well as FAO process indicated by changes in very long chain fatty acid levels, were enhanced upon SLC9A5 knockdown in CRC cells. Moreover, the attenuated tumor growth, migration, invasion, and increased FAO observed after SLC9A5 knockdown could be reversed by simultaneous knockdown of both SLC9A5 and ACOX1. In summary, these findings reveal the oncogenic role of SLC9A5 in CRC, particularly in relation to ACOX1-mediated peroxidation, and might serve as a promising therapeutic target for inhibiting the progression of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos , Humanos , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Lípidos , Neoplasias Colorrectales/patología , Movimiento Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética
5.
BMC Pulm Med ; 22(1): 321, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999530

RESUMEN

Peroxisomes are organelles that play essential roles in many metabolic processes, but also play roles in innate immunity, signal transduction, aging and cancer. One of the main functions of peroxisomes is the processing of very-long chain fatty acids into metabolites that can be directed to the mitochondria. One key family of enzymes in this process are the peroxisomal acyl-CoA oxidases (ACOX1, ACOX2 and ACOX3), the expression of which has been shown to be dysregulated in some cancers. Very little is however known about the expression of this family of oxidases in non-small cell lung cancer (NSCLC). ACOX2 has however been suggested to be elevated at the mRNA level in over 10% of NSCLC, and in the present study using both standard and bioinformatics approaches we show that expression of ACOX2 is significantly altered in NSCLC. ACOX2 mRNA expression is linked to a number of mutated genes, and associations between ACOX2 expression and tumour mutational burden and immune cell infiltration were explored. Links between ACOX2 expression and candidate therapies for oncogenic driver mutations such as KRAS were also identified. Furthermore, levels of acyl-CoA oxidases and other associated peroxisomal genes were explored to identify further links between the peroxisomal pathway and NSCLC. The results of this biomarker driven study suggest that ACOX2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acil-CoA Oxidasa/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Coenzima A , Humanos , Neoplasias Pulmonares/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , ARN Mensajero/genética
6.
Mar Drugs ; 20(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892940

RESUMEN

Filter-feeding bivalves can accumulate paralytic shellfish toxins (PST) produced by toxic microalgae, which may induce oxidative stress and lipid peroxidation. Peroxisomal acyl-coenzyme A oxidases (ACOXs) are key enzymes functioning in maintaining redox and lipid homeostasis, but their roles in PST response in bivalves are less understood. Herein, a total of six and six ACOXs were identified in the Chlamys farreri and Patinopecten yessoensis genome, respectively, and the expansion of ACOX1s was observed. Gene expression analysis revealed an organ/tissue-specific expression pattern in both scallops, with all ACOXs being predominantly expressed in the two most toxic organs, digestive glands and kidneys. The regulation patterns of scallop ACOXs after exposure to different PST-producing algaes Alexandrium catenella (ACDH) and A. minutum (AM-1) were revealed. After ACDH exposure, more differentially expressed genes (DEGs) were identified in C. farreri digestive glands (three) and kidneys (five) than that in P. yessoensis (two), but the up-regulated DEGs showed similar expression patterns in both species. In C. farreri, three DEGs were found in both digestive glands and kidneys after AM-1 exposure, with two same CfACOX1s being acutely and chronically induced, respectively. Notably, these two CfACOX1s also showed different expression patterns in kidneys between ACDH (acute response) and AM-1 (chronic response) exposure. Moreover, inductive expression of CfACOXs after AM-1 exposure was observed in gills and mantles, and all DEGs in both tissues were up-regulated and their common DEGs exhibited both acute and chronic induction. These results indicate the involvement of scallop ACOXs in PST response, and their plasticity expression patterns between scallop species, among tissues, and between the exposure of different PST analogs.


Asunto(s)
Bivalvos , Dinoflagelados , Pectinidae , Toxinas Biológicas , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Bivalvos/metabolismo , Coenzima A/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Oxidación-Reducción , Pectinidae/genética
7.
J Microbiol Biotechnol ; 32(7): 949-954, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35719087

RESUMEN

The lipolytic yeast Candida aaseri SH14 contains three Acyl-CoA oxidases (ACOXs) which are encoded by the CaAOX2, CaAOX4, and CaAOX5 genes and catalyze the first reaction in the ß-oxidation of fatty acids. Here, the respective functions of the three CaAOX isozymes were studied by growth analysis of mutant strains constructed by a combination of three CaAOX mutations in minimal medium containing fatty acid as the sole carbon source. Substrate specificity of the CaAOX isozymes was analyzed using recombinant C. aaseri SH14 strains overexpressing the respective genes. CaAOX2 isozyme showed substrate specificity toward short- and medium-chain fatty acids (C6-C12), while CaAOX5 isozyme preferred long-chain fatty acid longer than C12. CaAOX4 isozyme revealed a preference for a broad substrate spectrum from C6-C16. Although the substrate specificity of CaAOX2 and CaAOX5 covers medium- and long-chain fatty acids, these two isozymes were insufficient for complete ß-oxidation of long-chain fatty acids, and therefore CaAOX4 was indispensable.


Asunto(s)
Acil-CoA Oxidasa , Isoenzimas , Saccharomycetales , Acil-CoA Oxidasa/genética , Ácidos Grasos , Proteínas Fúngicas/genética , Isoenzimas/genética , Saccharomycetales/enzimología , Especificidad por Sustrato
8.
Neurology ; 99(8): 341-346, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35715200

RESUMEN

Acyl-CoA oxidase 1 (ACOX1) is a peroxisomal enzyme involved in beta-oxidation of very-long-chain fatty acids. Although loss of function of ACOX1 had been previously described, gain-of-function variation of ACOX1 gene has been only recently identified, with a paucity of known cases. Gain-of-function variation results in overproduction of reactive oxygen species, resulting in progressive neurodegeneration with discrete relapses. We report the case of a 19-year-old woman with a 5-year history of longitudinally extensive posterior predominant myelopathy, bilateral corneal scars, and white matter lesions who presented with first-time seizure, progressive sensorineural hearing loss, ichthyosiform rash, and cauda equina syndrome. Extensive workup was unrevealing. The patient showed no response to high-dose steroids but stabilization and improvement with return to baseline over 6 months with IVIg and low-dose mycophenolate mofetil. Whole-exome sequencing performed 4 years before was nondiagnostic, but subsequent reanalysis revealed a heterozygous variation in the ACOX1 gene (NM_004035.6: c.710A>G, p.Asn237Ser), now considered to be pathogenic. This case reports a rare condition and highlights the importance of reanalysis of previously nondiagnostic genome/exome sequencing data. Furthermore, the patient's clinical stability for over 1 year on immunotherapy raises the possibility of disease modification in an otherwise universally fatal condition.


Asunto(s)
Acil-CoA Oxidasa , Inmunoterapia , Enfermedades Neurodegenerativas , Acil-CoA Oxidasa/genética , Femenino , Mutación con Ganancia de Función , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Ácido Micofenólico/uso terapéutico , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Especies Reactivas de Oxígeno , Resultado del Tratamiento , Adulto Joven
9.
Hepatology ; 76(5): 1259-1274, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35395098

RESUMEN

BACKGROUND AND AIMS: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly 3α,7α,12α-trihydroxy-5ß-cholestanoic acid (THCA). We aimed to investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. METHODS AND RESULTS: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals and 13 of their relatives, seven individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by high-performance liquid chromatography-mass spectrometry. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in two patients and three family members. Two additional nonrelated patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In patients with ADAH, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized aminotransferase levels. Incubation of HuH-7 hepatoma cells with THCA, which was efficiently taken up, but not through BA transporters, increased reactive oxygen species production (flow cytometry), endoplasmic reticulum stress biomarkers (GRP78, CHOP, and XBP1-S/XBP1-U ratio), and BAXα expression (reverse transcription followed by quantitative polymerase chain reaction and immunoblot), whereas cell viability was decreased (tetrazolium salt-based cell viability test). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. CONCLUSIONS: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a noninvasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.


Asunto(s)
Ácidos y Sales Biliares , Ácido Ursodesoxicólico , Humanos , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/uso terapéutico , Acil-CoA Oxidasa/genética , Especies Reactivas de Oxígeno , Transaminasas , Sales de Tetrazolio , Oxidorreductasas
10.
Int J Biol Macromol ; 205: 203-210, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35149097

RESUMEN

Peroxisomal acyl-CoA oxidase 1a (ACOX1a) catalyzes the first and rate-limiting step of fatty acid oxidation, the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The dysfunction of human ACOX1a (hACOX1a) leads to deterioration of the nervous system manifesting in myeloneuropathy, hypotonia and convulsions. Crystal structures of hACOX1a in apo- and cofactor (FAD)-bound forms were solved at 2.00 and 2.09 Å resolution, respectively. hACOX1a exists as a homo-dimer with solvation free energy gain (ΔGo) of -44.7 kcal mol-1. Two FAD molecules bind at the interface of protein monomers completing the active sites. The substrate binding cleft of hACOX1a is wider compared to human mitochondrial very-long chain specific acyl-CoA dehydrogenase. Mutations (p.G178C, p.M278V and p.N237S) reported to cause dysfunctionality of hACOX1a are analyzed on its 3D-structure to understand structure-function related perturbations and explain the associated phenotypes.


Asunto(s)
Acil-CoA Oxidasa , Flavina-Adenina Dinucleótido , Acil-CoA Oxidasa/química , Acil-CoA Oxidasa/genética , Dominio Catalítico , Flavina-Adenina Dinucleótido/metabolismo , Humanos
11.
Toxicology ; 465: 153056, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34861291

RESUMEN

Perfluorooctane sulfonate (PFOS) is a stable environmental contaminant that can activate peroxisome proliferator-activated receptor alpha (PPARα). In the present work, the specific role of mouse and human PPARα in mediating the hepatic effects of PFOS was examined in short-term studies using wild type, Ppara-null and PPARA-humanized mice. Mice fed 0.006 % PFOS for seven days (∼10 mg/kg/day), or 0.003 % PFOS for twenty-eight days (∼5 mg/kg/day), exhibited higher liver and serum PFOS concentrations compared to controls. Relative liver weights were also higher following exposure to dietary PFOS in all three genotypes as compared vehicle fed control groups. Histopathological examination of liver sections from mice treated for twenty-eight days with 0.003 % PFOS revealed a phenotype consistent with peroxisome proliferation, in wild-type and PPARA-humanized mice that was not observed in Ppara-null mice. With both exposures, expression of the PPARα target genes, Acox1, Cyp4a10, was significantly increased in wild type mice but not in Ppara-null or PPARA-humanized mice. By contrast, expression of the constitutive androstane receptor (CAR) target gene, Cyp2b10, and the pregnane X receptor (PXR) target gene, Cyp3a11, were higher in response to PFOS administration in all three genotypes compared to controls for both exposure periods. These results indicate that mouse PPARα can be activated in the liver by PFOS causing increased expression of Acox1, Cyp4a10 and histopathological changes in the liver. While histopathological analyses indicated the presence of mouse PPARα-dependent hepatic peroxisome proliferation in wild-type (a response associated with activation of PPARα) and a similar phenotype in PPARA-humanized mice, the lack of increased Acox1 and Cyp4a10 mRNA by PFOS in PPARA-humanized mice indicates that the human PPARα was not as responsive to PFOS as mouse PPARα with this dose regimen. Moreover, results indicate that hepatomegaly caused by PFOS does not require mouse or human PPARα and could be due to effects induced by activation of CAR and/or PXR.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Hígado/efectos de los fármacos , PPAR alfa/agonistas , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Receptor de Androstano Constitutivo/agonistas , Receptor de Androstano Constitutivo/genética , Receptor de Androstano Constitutivo/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor X de Pregnano/agonistas , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Transducción de Señal , Especificidad de la Especie , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo
12.
ScientificWorldJournal ; 2021: 1583154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531707

RESUMEN

Ayu-narezushi, a traditional Japanese fermented food, comprises abundant levels of lactic acid bacteria (LAB) and free amino acids. This study aimed to examine the potential beneficial effects of ayu-narezushi and investigated whether ayu-narezushi led to improvements in the Tsumura Suzuki obese diabetes (TSOD) mice model of spontaneous metabolic syndrome because useful LAB are known as probiotics that regulate intestinal function. In the present study, the increased body weight of the TSOD mice was attenuated in those fed the ayu-narezushi-comprised chow (ayu-narezushi group) compared with those fed the normal rodent chow (control group). Serum triglyceride and cholesterol levels were significantly lower in the Ayu-narezushi group than in the control group at 24 weeks of age. Furthermore, hepatic mRNA levels of carnitine-palmitoyl transferase 1 and acyl-CoA oxidase, which related to fatty acid oxidation, were significantly increased in the ayu-narezushi group than in the control group at 24 weeks of age. In conclusion, these results suggested that continuous feeding with ayu-narezushi improved obesity and dyslipidemia in the TSOD mice and that the activation of fatty acid oxidation in the liver might contribute to these improvements.


Asunto(s)
Modelos Animales de Enfermedad , Alimentos Fermentados , Metabolismo de los Lípidos , Síndrome Metabólico/dietoterapia , Osmeriformes , Acil-CoA Oxidasa/biosíntesis , Acil-CoA Oxidasa/genética , Animales , Peso Corporal , Carnitina O-Palmitoiltransferasa/biosíntesis , Carnitina O-Palmitoiltransferasa/genética , Colesterol/sangre , Dislipidemias/dietoterapia , Dislipidemias/genética , Inducción Enzimática , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Grasa Intraabdominal/química , Grasa Intraabdominal/patología , Japón , Hígado/metabolismo , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Ratones , Ratones Obesos , Obesidad/dietoterapia , Obesidad/genética , Oryza , Oxidación-Reducción , PPAR alfa/biosíntesis , PPAR alfa/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Cloruro de Sodio , Triglicéridos/sangre
13.
Biofactors ; 47(4): 686-693, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33988888

RESUMEN

In this study, the effect of rutin on fatty acid metabolism and antioxidant activity were evaluated. We found that the antioxidant capacity of rutin-treated Caenorhabditis elegans was enhanced but the triglyceride content was significantly reduced. The reduction of fat accumulation by rutin was also confirmed by Oil Red O staining. RNA-seq analysis indicated that rutin significantly regulated the expression of seven genes related to lipid metabolism in C. elegans. Among the seven genes, acox-1.3, stdh-3, and fat-7 were associated with fatty acid metabolism. Rutin significantly reduced fat accumulation in both fat-6 and fat-7 mutant strains but did not affect the fat storage of fat-6/fat-7 double mutant, which indicated that the impact of rutin on fat storage depended on fat-6 and fat-7. These findings indicated that rutin reduced fat storage depending on the regulation of lipid metabolism-related genes expression and thereby regulating the biosynthesis of the corresponding unsaturated fatty acid.


Asunto(s)
Antioxidantes/farmacología , Caenorhabditis elegans/efectos de los fármacos , Ácidos Grasos Insaturados/metabolismo , Hipolipemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Rutina/farmacología , Triglicéridos/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Compuestos Azo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/genética , Transducción de Señal , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
14.
Food Funct ; 12(10): 4621-4629, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33908983

RESUMEN

Annona muricata (graviola) is a medicinal plant that can be used to alleviate chronic human diseases by providing antioxidants and inducing immunomodulation. In this study, we found that treatment of AML12 hepatocytes with steam (SGE) and ethanol (EGE) extracts of graviola leaf downregulated the expression of fatty acid (FA) oxidation genes, including ACOX1, CPT1, and PPARα, with no change in the expression of FA synthesis genes. However, whereas EGE inhibited the differentiation and lipid accumulation of 3T3-L1 adipocytes and downregulated FA synthesis genes, no similar changes were observed in response to treatment with SGE. In an in vivo experiment using mice fed a high-fat diet (HFD), body weight was reduced in response to treatment with EGE, which also dose-dependently alleviated liver hepatocyte ballooning induced by the consumption of a HFD. However, genes involved in FA oxidation and the secretion of very low density lipoprotein (VLDL) were downregulated. We also found that the size of adipocytes was reduced in response to EGE treatment, and that there was a downregulated expression of genes involved in adipogenesis and FA synthesis. Furthermore, we detected increases in the levels of cholesterol in the plasma, whereas ALT activity was reduced. Collectively, these results indicates that EGE inhibits lipid influx into the liver and adipogenesis in adipose tissues. These bioactive properties of EGE indicate its potential as a natural ingredient that can be used to prevent obesity.


Asunto(s)
Adipogénesis/efectos de los fármacos , Annona/química , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/farmacología , Células 3T3-L1 , Acil-CoA Oxidasa/genética , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos , Lipogénesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa
15.
Methods Mol Biol ; 2307: 159-173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847989

RESUMEN

Biosynthesis of fatty alcohol holds great promise as substitute to replace petroleum-derived fatty alcohols to mitigate environmental concerns and reduce earth's carbon footprint. In this protocol, we detail the procedures of how to use the YaliBrick gene assembly platform to achieve modular assembly of fatty alcohol pathway in Y. lipolytica. To limit fatty alcohol oxidation, we will also describe the hydroxyurea-based protocols for the efficient disruption of POX1 gene, encoding the fatty acyl coenzyme A in Y. lipolytica, with the homologous arm about 500 bp. We envision that this chapter would improve our ability to engineer microbial cell factories for oleochemical and fatty alcohol production in oleaginous yeast species.


Asunto(s)
Acil-CoA Oxidasa/genética , Alcoholes Grasos/metabolismo , Yarrowia/crecimiento & desarrollo , Proteínas Fúngicas/genética , Eliminación de Gen , Hidroxiurea/farmacología , Ingeniería Metabólica , Yarrowia/genética , Yarrowia/metabolismo
16.
Biofactors ; 47(4): 627-644, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33864298

RESUMEN

Bleomycin (BLM) injury is associated with the severity of acute lung injury (ALI) leading to fibrosis, a high-morbidity, and high-mortality respiratory disease of unknown etiology. BLM-induced ALI is marked by the activation of a potent fibrogenic cytokine transcription growth factor beta-1 (TGFß-1), which is considered a critical cytokine in the progression of alveolar injury. Previously, our work demonstrated that a diet-derived compound curcumin (diferuloylmethane), represents its antioxidative and antifibrotic application in TGF-ß1-mediated BLM-induced alveolar basal epithelial cells. However, curcumin-specific protein targets, as well as its mechanism using mass spectrometry-based proteomic approach, remain elusive. To elucidate the underlying mechanism, a quantitative proteomics approach and bioinformatics analysis were employed to identify the protein targets of curcumin in BLM or TGF-ß1-treated cells. With subsequent in vitro experiments, curcumin-related pathways and cellular processes were predicted and validated. The current study discusses two separate proteomics experiments using BLM and TGF-ß1-treated cells with the proteomics approach, various unique target proteins were identified, and proteomic analysis revealed that curcumin reversed the expressions of unique proteins like DNA topoisomerase 2-alpha (TOP2A), kinesin-like protein (KIF11), centromere protein F (CENPF), and so on BLM or TGF-ß1 injury. For the first time, the current study reveals that curcumin restores TGF-ß1 induced peroxisomes like PEX-13, PEX-14, PEX-19, and ACOX1. This was verified by subsequent in vitro assays. This study generated molecular evidence to deepen our understanding of the therapeutic role of curcumin at the proteomic level and may be useful to identify molecular targets for future drug discovery.


Asunto(s)
Antioxidantes/farmacología , Bleomicina/antagonistas & inhibidores , Curcumina/farmacología , Proteómica/métodos , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Células A549 , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Antibióticos Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Sitios de Unión , Bleomicina/farmacología , Calreticulina/genética , Calreticulina/metabolismo , Curcumina/química , Curcumina/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Simulación del Acoplamiento Molecular , Colágenos no Fibrilares/genética , Colágenos no Fibrilares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología , Colágeno Tipo XVII
17.
Hum Mol Genet ; 30(12): 1142-1153, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33751038

RESUMEN

Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.


Asunto(s)
Butirofilinas/genética , Estudio de Asociación del Genoma Completo , Factores Reguladores del Interferón/genética , Mieloma Múltiple/genética , Proteínas de Dominio T Box/genética , Acil-CoA Oxidasa/genética , Femenino , Predisposición Genética a la Enfermedad , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfocitos/patología , Linfoma Folicular/genética , Linfoma Folicular/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Masculino , Mieloma Múltiple/patología , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Tetraspaninas/genética , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Secuenciación del Exoma
18.
J Mol Endocrinol ; 66(3): 195-205, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33502338

RESUMEN

Acyl-coenzyme A oxidase 1 (ACOX1) is the first and rate-limiting enzyme in peroxisomal fatty acid ß-oxidation of fatty acids. Previous studies have reported that ACOX1 was correlated with the meat quality of livestock, while the role of ACOX1 in intramuscular adipogenesis of beef cattle and its transcriptional and post-transcriptional regulatory mechanisms remain unclear. In the present study, gain-of-function and loss-of-function assays demonstrated that ACOX1 positively regulated the adipogenesis of bovine intramuscular preadipocytes. The C/EBPα-binding sites in the bovine ACOX1 promoter region at -1142 to -1129 bp, -831 to -826 bp, and -303 to -298 bp were identified by promoter deletion analysis and site-directed mutagenesis. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) further showed that these three regions are C/EBPα-binding sites, both in vitro and in vivo, indicating that C/EBPα directly interacts with the bovine ACOX1 promoter and inhibits its transcription. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the ACOX1 3'UTR (3'UTR). Taken together, our findings suggest that ACOX1, regulated by transcription factor C/EBPα and miR-25-3p, promotes adipogenesis of bovine intramuscular preadipocytes via regulating peroxisomal fatty acid ß-oxidation.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Adipocitos/metabolismo , Adipogénesis , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Acil-CoA Oxidasa/genética , Adipogénesis/genética , Animales , Secuencia de Bases , Bovinos , Regulación hacia Abajo/genética , Masculino , MicroARNs/genética , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética
19.
Eur J Pharmacol ; 892: 173755, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33245899

RESUMEN

CTRP6, a newly identified adiponectin analogue, has been shown to be involved in inflammation, diabetes and cardiovascular diseases. Recently, increasing evidence has shown that CTRP6 plays a critical role in fibrotic diseases, such as myocardial fibrosis and skin fibrosis. FAO, an important energy source for kidney proximal tubular cells, also participates in the process of fibrosis. Therefore, our study aimed to investigate the effect of CTRP6 on mediating FAO in kidney fibrosis and the underlying associated mechanism. Firstly, the activity of CTRP6 and the key enzymes of FAO (CPT1A, ACOX1) were tested in vivo and vitro. Next, the regulatory effect of CTRP6/AMPK on FAO was accessed in animal models and in cell lines. Additionally, we explored the effect of exogenous recombinant CTRP6 on renal tubular epithelial cell differentiation. Decreased CTRP6 and p-AMPK were detected in UUO-induced kidney fibrosis and in TGF-ß1-treated HK-2 cells. We also observed that defective FAO occurred during kidney fibrosis. Moreover, the human CTRP6 peptide could inhibit the ECM deposition and promote the phosphorylation of AMPK by promoting FAO. However, the inhibitory effects of CTRP6 on TGF-ß1-induced ECM deposition and the protective effects of CTRP6 on FAO could be abolished by compound C, a selective inhibitor of AMPK. Compound C also reversed the CTRP6-mediated upregulation of p-AMPK. The mediation of FAO by CTRP6 plays a key role in kidney fibrosis by regulating TGF-ß1-induced renal tubular epithelial cell differentiation by promoting FAO, which is mediated via AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipoquinas/metabolismo , Colágeno/metabolismo , Ácidos Grasos/metabolismo , Enfermedades Renales/enzimología , Túbulos Renales Proximales/enzimología , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Adipoquinas/genética , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular , Colágeno/genética , Modelos Animales de Enfermedad , Fibrosis , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/genética , Enfermedades Renales/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Masculino , Ratones , Oxidación-Reducción , Fosforilación , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología , Obstrucción Ureteral/complicaciones
20.
Brain Dev ; 43(3): 475-481, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33234382

RESUMEN

Peroxisomal acyl-CoA oxidase (ACOX1) deficiency is a rare autosomal recessive single enzyme deficiency characterized by hypotonia, seizures, failure to thrive, developmental delay, and neurological regression starting from approximately 3 years of age. Here, we report two siblings with ACOX1 deficiency born to non-consanguineous Japanese parents. They showed mild global developmental delay from infancy and began to regress at 5 years 10 months and 5 years 6 months of age respectively. They gradually manifested with cerebellar ataxia, dysarthria, pyramidal signs, and dysphasia. Brain MRI revealed T2 high-intensity areas in the cerebellar white matter, bilateral middle cerebellar peduncle, and transverse tracts of the pons, followed by progressive atrophy of these areas. Intriguingly, the ratios of C24:0, C25:0, and C26:0 to C22:0 in plasma, which usually increase in ACOX1 deficiency were within normal ranges in both patients. On the other hand, whole exome sequencing revealed novel compound heterozygous variants in ACOX1: a frameshift variant (c.160delC:p.Leu54Serfs*18) and a missense variant (c.1259 T > C:p.Phe420Ser). The plasma concentration of individual very long chain fatty acids (C24:0, C25:0, and C26:0) was elevated, and we found that peroxisomes in fibroblasts of the patients were larger in size and fewer in number as previously reported in patients with ACOX1 deficiency. Furthermore, the C24:0 ß-oxidation activity was dramatically reduced. Our findings suggest that the elevation of individual plasma very long chain fatty acids concentration, genetic analysis including whole exome analysis, and biochemical studies on the patient's fibroblasts should be considered for the correct diagnosis of ACOX1 deficiency.


Asunto(s)
Acil-CoA Oxidasa/deficiencia , Acil-CoA Oxidasa/genética , Adrenoleucodistrofia/genética , Errores Innatos del Metabolismo Lipídico/genética , Femenino , Humanos , Masculino , Mutación , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...