Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Chemosphere ; 339: 139753, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37553041

RESUMEN

Evidence on liver injury and non-alcoholic fatty liver disease (NAFLD) from volatile organic compounds (VOCs) exposure is insufficient. A cross-sectional study including 3011 US adults from the National Health and Nutrition Examination Survey was conducted to explore the associations of urinary exposure biomarkers (EBs) for 13 VOCs (toluene, xylene, ethylbenzene, styrene, acrylamide, N,N-dimethylformamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, propylene oxide, and 1-bromopropane) with liver injury biomarkers and the risk of NAFLD by performing single-chemical (survey weight regression) and mixture (Bayesian kernel machine regression [BKMR] and weighted quantile sum [WQS]) analyses. We found significant positive associations of EBs for toluene and 1-bromopropane with alanine aminotransferase (ALT), EBs for toluene, crotonaldehyde, and 1,3-butadiene with asparate aminotransferase (AST), EBs for 1,3-butadiene and cyanide with alkaline phosphatase (ALP), EBs for xylene and cyanide with hepamet fibrosis score (HFS), EBs for the total 13 VOCs (except propylene oxide) with United States fatty liver index (USFLI), and EBs for xylene, N,N-dimethylformamide, acrolein, crotonaldehyde, and acrylonitrile with NALFD; and significant inverse associations of EBs for ethylbenzene, styrene, acrylamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, and propylene oxide with total bilirubin, EBs for ethylbenzene, styrene, acrylamide, acrolein, 1,3-butadiene, acrylonitrile, and cyanide with albumin (ALB), EBs for ethylbenzene, styrene, acrylamide, N,N-dimethylformamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, and propylene oxide with total protein (TP), and EB for 1-bromopropane with AST/ALT (all P-FDR<0.05). In BKMR and WQS, the mixture of VOC-EBs was significantly positively associated with ALT, AST, ALP, HFS, USFLI, and the risk of NAFLD, while significantly inversely associated with TBIL, ALB, TP, and AST/ALT. VOCs exposure was associated with liver injury and increased risk of NAFLD in US adults. These findings highlight that great attention should be paid to the potential risk of liver health damage from VOCs exposure.


Asunto(s)
Acrilonitrilo , Enfermedad del Hígado Graso no Alcohólico , Compuestos Orgánicos Volátiles , Humanos , Adulto , Estados Unidos/epidemiología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Compuestos Orgánicos Volátiles/análisis , Xilenos/análisis , Encuestas Nutricionales , Acroleína , Acrilonitrilo/toxicidad , Teorema de Bayes , Estudios Transversales , Dimetilformamida , Tolueno/análisis , Biomarcadores , Acrilamidas , Estirenos/análisis
2.
Crit Rev Toxicol ; 53(2): 69-116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37278976

RESUMEN

Acrylonitrile (ACN) is a known rodent and possible human carcinogen. There have also been concerns as to it causing adverse reproductive health effects. Numerous genotoxicity studies at the somatic level in a variety of test systems have demonstrated ACN's mutagenicity; its potential to induce mutations in germ cells has also been evaluated. ACN is metabolized to reactive intermediates capable of forming adducts with macromolecules including DNA, a necessary first step in establishing a direct mutagenic mode of action (MOA) for its carcinogenicity. The mutagenicity of ACN has been well demonstrated, however, numerous studies have found no evidence for the capacity of ACN to induce direct DNA lesions that initiate the mutagenic process. Although ACN and its oxidative metabolite (2-cyanoethylene oxide or CNEO) have been shown to bind in vitro with isolated DNA and associated proteins, usually under non-physiological conditions, studies in mammalian cells or in vivo have provided little specification as to an ACN-DNA reaction. Only one early study in rats has shown an ACN/CNEO DNA adduct in liver, a non-target tissue for its carcinogenicity in the rat. By contrast, numerous studies have shown that ACN can act indirectly to induce at least one DNA adduct by forming reactive oxygen species (ROS) in vivo, but it has not been definitively shown that the resulting DNA damage is causative for the induction of mutations. Genotoxicity studies for ACN in somatic and germinal cells are summarized and critically reviewed. Significant data gaps have been identified for bringing together the massive data base that provides the basis of ACN's current genotoxicity profile.


Asunto(s)
Acrilonitrilo , Mutágenos , Ratas , Humanos , Animales , Mutágenos/toxicidad , Aductos de ADN , Acrilonitrilo/toxicidad , Pruebas de Mutagenicidad , Daño del ADN , ADN , Mamíferos
3.
Sci Total Environ ; 889: 164303, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211097

RESUMEN

Little is known about how brominated flame retardants (NBFRs) and microplastics (MPs) co-pollution influences soil organisms. Here, we investigated the impacts of acrylonitrile butadiene styrene (ABS)-MPs in soil on the 28-d dynamic bioaccumulation, tissue damage, and transcriptional responses of decabromodiphenyl ethane (DBDPE) in Eisenia fetida by simulating different pollution scenarios (10 mg kg-1 DBDPE, 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-MPs, and 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-resin). The results show ABS resin did not influence DBDPE bioaccumulation or distribution, but ABS-MPs, particularly 74-187 µm size of MPs, prolonged DBDPE equilibrium time and significantly promoted DBDPE bioaccumulation in tissue (1.76-2.38 folds) and epidermis (2.72-3.34 folds). However, ABS-MPs and ABS-resin reduced DBDPE concentrations of intestines by 22.2-30.6 % and 37.3 %, respectively. DBDPE-MPs caused more serious epidermis and intestines damages than DBDPE. Additionally, compared to the control, DBDPE significantly up-regulated 1957 genes and down-regulated 2203 genes; meanwhile, DBDPE-MPs up-regulated 1475 genes and down-regulated 2231 genes. DBDPE and DBDPE-MPs both regulated lysosome, phagosome, and apoptosis as the top 3 enriched pathways, while DBDPE-MPs specifically regulated signaling pathways and compound metabolism. This study demonstrated that the presence of ABS-MPs aggravated the biotoxicity of DBDPE, providing scientific information for assessing the ecological risks of MPs and additives from e-waste in soil.


Asunto(s)
Acrilonitrilo , Oligoquetos , Animales , Microplásticos , Plásticos/toxicidad , Acrilonitrilo/toxicidad , Bioacumulación , Butadienos/toxicidad , Poliestirenos/toxicidad , Suelo
4.
Med Gas Res ; 13(3): 142-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36571380

RESUMEN

Acrylonitrile is a potential carcinogen for humans, and exposure to this substance can cause adverse effects for workers. This study aimed to carcinogenic and health risk assessment of acrylonitrile vapor exposure in exposed personnel of a petrochemical complex. This crosssectional study was performed in 2019 in a petrochemical complex. In this study, to sample and determine acrylonitrile's respiratory exposure, the method provided by the National Institute of Occupational Safety and Health (NIOSH 1601) was used, and a total of 45 inhaled air samples were sampled from men workers, aged 39.43 ± 9.37 years. All subjects' mean exposure to acrylonitrile vapors was 71.1 ± 122.8 µg/m3. Also, the mean exposure index among all subjects was 0.02 ± 0.034. The non-carcinogenic risk assessment results showed that the mean Hazard quotient index was 4.04 ± 6.93. The mean lifetime cancer risk index was also 2.1 × 10-3 ± 3.5 × 10-3 and was in the definite risk range. Considering that both carcinogenicity and health indicators of exposure to acrylonitrile in the studied petrochemical complex are more than the recommended limits, the necessary engineering and management measures to control and manage the risk to an acceptable level are essential to improving the worker's health.


Asunto(s)
Acrilonitrilo , Exposición Profesional , Masculino , Estados Unidos , Humanos , Acrilonitrilo/toxicidad , Estudios Transversales , Exposición Profesional/efectos adversos , United States Environmental Protection Agency , Carcinógenos , Medición de Riesgo
5.
Toxicol Lett ; 373: 141-147, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402260

RESUMEN

Exposure to the vinyl monomer acrylonitrile (AN) is primarily occupational. AN is also found in cigarette smoke. AN can be detoxified to form N-acetyl-S-(2-cyanoethyl)-cysteine (CEMA) or activated to 2-cyanoethylene oxide (CEO) and detoxified to form N-acetyl-S-(1-cyano-2-hydroxyethyl)-cysteine (CHEMA) and N-acetyl-S-(2-hydroxyethyl)-cysteine (HEMA). These urinary mercapturic acids (MAs) are considered to be potential biomarkers of AN exposure. This study assessed personal AN exposure, urinary MAs (CEMA, CHEMA, and HEMA), and cotinine (a biomarker of cigarette smoke) in 80 AN-exposed and 23 non-exposed factory workers from urine samples provided before and after work shifts. Unambiguous linear correlations were observed between levels of urinary CEMA and CHEMA with personal AN exposures, indicating their potential as chemically-specific biomarkers for AN exposures. AN exposure was the dominant factor in MA formation for AN-exposed workers, whereas urinary cotinine used as a biomarker showed that cigarette smoke exposure was the primary factor for non-exposed workers. The CHEMA/CEMA and (CHEMA+HEMA)/CEMA ratios in this human study differ from those in similar studies of AN-treated rats and mice in literature, suggesting a possible dose- and species-dependent effect in AN metabolic activation and detoxification.


Asunto(s)
Acrilonitrilo , Animales , Humanos , Ratones , Ratas , Acetilcisteína/orina , Acrilonitrilo/toxicidad , Acrilonitrilo/orina , Biomarcadores/orina , Cotinina
6.
Int J Toxicol ; 41(4): 312-328, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35586871

RESUMEN

This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 µg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.


Asunto(s)
Acrilonitrilo , Contaminación del Aire Interior , Acrilonitrilo/toxicidad , Contaminación del Aire Interior/análisis , Butadienos/toxicidad , Células Epiteliales , Humanos , Tamaño de la Partícula , Material Particulado , Impresión Tridimensional , Estireno/análisis , Estireno/toxicidad
7.
Chem Biol Interact ; 360: 109934, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429547

RESUMEN

Acrylonitrile is an organic chemical synthetic monomer that is widely used in food packaging and manufacturing. Animal studies have reported that acrylonitrile is carcinogenic and toxic, but the effects on the female reproductive function in mammals are unknown. In the present study, we report that acrylonitrile treatment affects ovarian homeostasis in mice, resulting in impaired follicular development. Follicles in acrylonitrile-exposed mice exhibited high levels of inflammation and apoptosis, and acrylonitrile treatment interfered with oocyte development. Transcriptomics analysis showed that acrylonitrile altered the expression of oocyte genes related to apoptosis, oxidative stress, endoplasmic reticulum stress, and autophagy. Further molecular tests revealed that acrylonitrile induced early apoptosis, DNA damage, elevated levels of reactive oxygen species, endoplasmic reticulum abnormalities, and lysosomal aggregation. We also observed disruption of mitochondrial structure and distribution and depolarization of membrane potential. Finally, acrylonitrile treatment in female mice decreased the number and weight of offspring. Altogether, these findings suggest that acrylonitrile impairs the stability of the ovarian internal environment, which in turn affects oocyte development and reduces the number of offspring.


Asunto(s)
Acrilonitrilo , Acrilonitrilo/metabolismo , Acrilonitrilo/toxicidad , Animales , Apoptosis , Femenino , Inflamación/metabolismo , Mamíferos , Ratones , Mitocondrias/metabolismo , Oocitos
8.
Toxicology ; 451: 152685, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486070

RESUMEN

Hydrogen sulfide (H2S) as the third gasotransmitter molecule serves various biological regulatory roles in health and disease. Acrylonitrile (AN) is a common occupational toxicant and environmental pollutant, causing brain and liver damage in mammals. The biotransformation of AN is dependent-upon reduced glutathione (GSH), cysteine and other sulfur-containing compounds. However, the effects of AN on the endogenous H2S biosynthesis pathway have yet to be determined. Herein, we demonstrated that a single exposure to AN (at 25, 50, or 75 mg/kg for 1, 6 or 24 h) decreased the endogenous H2S content and H2S-producing capacity in a dose-dependent manner, both in the cerebral cortex and liver of rats in vivo. In addition, the inhibitory effects of AN (1, 2.5, 5, 10 mM for 12 h) on the H2S content and/or the expression of H2S-producing enzymes were also found both in primary rat astrocytes and rat liver cell line (BRL cells). Impairment in the H2S biosynthesis pathway was also assessed in primary rat astrocytes treated with AN. It was found that inhibition of the cystathionine-ß-synthase (CBS)/3-mercaptopyruvate sulfurtransferase (3-MPST)-H2S pathway with the CBS inhibitor or 3-MPST-targeted siRNA significantly increased the AN-induced (5 mM for 12 h) cytotoxicity in astrocytes. In turn, CBS activation or 3-MPST overexpression as well as exogenous NaHS supplementation significantly attenuated AN-induced cytotoxicity. Taken together, endogenous H2S biosynthesis pathway was disrupted in rats acutely exposed to AN, which contributes to acute AN neurotoxicity in primary rat astrocytes.


Asunto(s)
Acrilonitrilo/toxicidad , Astrocitos/metabolismo , Encéfalo/metabolismo , Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Sulfurtransferasas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sulfuro de Hidrógeno/antagonistas & inhibidores , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
Drug Chem Toxicol ; 44(2): 130-139, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31258002

RESUMEN

Diabetes mellitus is a significant global public health issue. The diabetic state not only precipitates chronic disease but also has the potential to change the toxicity of drugs and chemicals. Acrylonitrile (AN) is a potent neurotoxin widely used in industrial products. This study used a streptozotocin (STZ)-induced diabetic rat model to examine the role of cytochrome P450 2E1 (CYP2E1) in acute AN toxicity. The protective effect of phenethyl isothiocyanate (PEITC), a phytochemical inhibitor of CYP2E1, was also investigated. A higher incidence of convulsions and loss of the righting reflex, and decreased rates of survival, as well as elevated CYP2E1 activity, were observed in diabetic rats treated with AN when compared to those in non-diabetic rats, suggesting that diabetes confers susceptibility to the acute toxicity of AN. Pretreatment with PEITC (20-80 mg/kg) followed by AN injection alleviated the acute toxicity of AN in diabetic rats as evidenced by the decreased incidence of convulsions and loss of righting reflex, and increased rates of survival. PEITC pretreatment at 40 and 80 mg/kg decreased hepatic CYP2E1 activity in AN-exposed diabetic rats. PEITC pretreatment (20 mg/kg) increased the glutathione (GSH) content and glutathione S-transferase (GST) activity and further decreased ROS levels in AN-exposed diabetic rats. Collectively, STZ-induced diabetic rats were more sensitive to AN-induced acute toxicity mainly due to CYP2E1 induction, and PEITC pretreatment significantly alleviated the acute toxicity of AN in STZ-induced diabetic rats. PEITC might be considered as a potential effective chemo-preventive agent against AN-induced acute toxicity in individuals with an underlying diabetic condition.


Asunto(s)
Acrilonitrilo/toxicidad , Inhibidores del Citocromo P-450 CYP2E1/farmacología , Diabetes Mellitus Experimental/fisiopatología , Isotiocianatos/farmacología , Animales , Citocromo P-450 CYP2E1/efectos de los fármacos , Citocromo P-450 CYP2E1/metabolismo , Inhibidores del Citocromo P-450 CYP2E1/administración & dosificación , Relación Dosis-Respuesta a Droga , Isotiocianatos/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Reflejo de Enderezamiento/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Estreptozocina , Tasa de Supervivencia
10.
J Toxicol Sci ; 45(11): 713-724, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132245

RESUMEN

Acrylonitrile (AN), which is widely utilized in the manufacture of plastics, acrylamide, acrylic fibers, and resins, is also one of main components of cigarette smoke (CS). In this study, we examined the effects of AN on the cell viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. A cell viability assay confirmed that AN decreased the cell proliferation of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 increased in response to AN treatment for 48 hr. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to AN were also measured by a dichlorofluorescein diacetate (DCFH-DA) assay, which revealed that ROS levels increased in response to AN treatment for 48 hr. Moreover, western blot assay confirmed that AN treatment of JEG-3 and BeWo cells for 4 hr promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α), C/EBP homologous protein (CHOP) and caspase 12, which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress)-related apoptosis. Overall, the protein expression of p53 and Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to AN treatment for 48 hr. Taken together, these results suggest that AN has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by activating ROS.


Asunto(s)
Acrilonitrilo/efectos adversos , Acrilonitrilo/toxicidad , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Coriocarcinoma/metabolismo , Coriocarcinoma/patología , Especies Reactivas de Oxígeno/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Coriocarcinoma/fisiopatología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Chem Res Toxicol ; 33(7): 1609-1622, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32529823

RESUMEN

Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in multiple organs/tissues of rats by unresolved mechanisms. For this report, evidence for ACN-induced direct/indirect DNA damage and mutagenesis was investigated by assessing the ability of ACN, or its reactive metabolite, 2-cyanoethylene oxide (CEO), to bind to DNA in vitro, to form select DNA adducts [N7-(2'-oxoethyl)guanine, N2,3-ethenoguanine, 1,N6-ethenodeoxyadenosine, and 3,N4-ethenodeoxycytidine] in vitro and/or in vivo, and to perturb the frequency and spectra of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene in rats exposed to ACN in drinking water. Adducts and frequencies and spectra of Hprt mutations were analyzed using published methods. Treatment of DNA from human TK6 lymphoblastoid cells with [2,3-14C]-CEO produced dose-dependent binding of 14C-CEO equivalents, and treatment of DNA from control rat brain/liver with CEO induced dose-related formation of N7-(2'-oxoethyl)guanine. No etheno-DNA adducts were detected in target tissues (brain and forestomach) or nontarget tissues (liver and spleen) in rats exposed to 0, 3, 10, 33, 100, or 300 ppm ACN for up to 105 days or to 0 or 500 ppm ACN for ∼15 months; whereas N7-(2'-oxoethyl)guanine was consistently measured at nonsignificant concentrations near the assay detection limit only in liver of animals exposed to 300 or 500 ppm ACN for ≥2 weeks. Significant dose-related increases in Hprt mutant frequencies occurred in T-lymphocytes from spleens of rats exposed to 33-500 ppm ACN for 4 weeks. Comparisons of "mutagenic potency estimates" for control rats versus rats exposed to 500 ppm ACN for 4 weeks to analogous data from rats/mice treated at a similar age with N-ethyl-N-nitrosourea or 1,3-butadiene suggest that ACN has relatively limited mutagenic effects in rats. Considerable overlap between the sites and types of mutations in ACN-exposed rats and butadiene-exposed rats/mice, but not controls, provides evidence that the carcinogenicity of these epoxide-forming chemicals involves corresponding mutagenic mechanisms.


Asunto(s)
Acrilonitrilo/toxicidad , Carcinógenos/toxicidad , Aductos de ADN/análisis , Guanina/análisis , Hipoxantina Fosforribosiltransferasa/genética , Acrilonitrilo/administración & dosificación , Acrilonitrilo/metabolismo , Administración Oral , Animales , Carcinógenos/administración & dosificación , Carcinógenos/metabolismo , Células Cultivadas , Aductos de ADN/biosíntesis , Relación Dosis-Respuesta a Droga , Óxido de Etileno/administración & dosificación , Óxido de Etileno/análogos & derivados , Óxido de Etileno/metabolismo , Óxido de Etileno/toxicidad , Femenino , Guanina/análogos & derivados , Guanina/biosíntesis , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Masculino , Ratones , Ratas , Ratas Endogámicas F344
12.
Chem Res Toxicol ; 33(7): 1623-1632, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32529832

RESUMEN

Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in the mouse via unresolved mechanisms. For this report, complementary and previously described methods were used to assess in vivo genotoxicity and/or mutagenicity of ACN in several mouse models, including (i) female mice devoid of cytochrome P450 2E1 (CYP2E1), which yields the epoxide intermediate cyanoethylene oxide (CEO), (ii) male lacZ transgenic mice, and (iii) female (wild-type) B6C3F1 mice. Exposures of wild-type mice and CYP2E1-null mice to ACN at 0, 2.5 (wild-type mice only), 10, 20, or 60 (CYP2E1-null mice only) mg/kg body weight by gavage for 6 weeks (5 days/week) produced no elevations in the frequencies of micronucleated erythrocytes, but induced significant dose-dependent increases in DNA damage, detected by the alkaline (pH >13) Comet assay, in one target tissue (forestomach) and one nontarget tissue (liver) of wild-type mice only. ACN exposures by gavage also caused significant dose-related elevations in the frequencies of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) reporter gene of T-lymphocytes from spleens of wild-type mice; however, Hprt mutant frequencies were significantly increased in CYP2E1-null mice only at a high dose of ACN (60 mg/kg) that is lethal to wild-type mice. Similarly, drinking water exposures of lacZ transgenic mice to 0, 100, 500, or 750 ppm ACN for 4 weeks caused significant dose-dependent elevations in Hprt mutant frequencies in splenic T-cells; however, these ACN exposures did not increase the frequency of lacZ transgene mutations above spontaneous background levels in several tissues from the same animals. Together, the Comet assay and Hprt mutant frequency data from these studies indicate that oxidative metabolism of ACN by CYP2E1 to CEO is central to the induction of the majority of DNA damage and mutations in ACN-exposed mice, but ACN itself also may contribute to the carcinogenic modes of action via mechanisms involving direct and/or indirect DNA reactivity.


Asunto(s)
Acrilonitrilo/toxicidad , Carcinógenos/toxicidad , Citocromo P-450 CYP2E1/metabolismo , Hipoxantina Fosforribosiltransferasa/metabolismo , Acrilonitrilo/administración & dosificación , Acrilonitrilo/metabolismo , Administración Oral , Animales , Biomarcadores/análisis , Carcinógenos/administración & dosificación , Carcinógenos/metabolismo , Citocromo P-450 CYP2E1/análisis , Citocromo P-450 CYP2E1/genética , Daño del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Hipoxantina Fosforribosiltransferasa/análisis , Hipoxantina Fosforribosiltransferasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Pruebas de Mutagenicidad , Mutación , Bazo/efectos de los fármacos , Bazo/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
13.
Anal Chem ; 91(10): 6730-6737, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31001974

RESUMEN

Unveiling the synergism among multiple organelles for fully exploring the mysteries of the cell has drawn more and more attention. Herein, we developed two two-photon fluorescent bioprobes (Lyso-TA and Mito-QA), of which the conformational change triggered an "off-on" fluorescent response. Lyso-TA can real-time monitor the fusion and movement of lysosomes as well as unveil the mitophagy process with the engagement of lysosomes. Mito-QA was transformed from Lyso-TA by one-step ambient temperature reaction, visualizing the dysfunctional mitochondria through a shift from mitochondria to nucleoli. With superior two-photon absorption cross section, good biocompatibility, and greater penetration depth, two small bioprobes were both applied in in vivo bioimaging of brain tissues and zebrafish.


Asunto(s)
Acrilonitrilo/síntesis química , Colorantes Fluorescentes/química , Lisosomas/metabolismo , Mitocondrias/metabolismo , Acrilonitrilo/análogos & derivados , Acrilonitrilo/efectos de la radiación , Acrilonitrilo/toxicidad , Animales , Encéfalo/metabolismo , Nucléolo Celular/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Mitofagia/fisiología , Conformación Molecular , Fotones , Pez Cebra
14.
Toxicol Ind Health ; 35(5): 387-397, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30991910

RESUMEN

Cytochrome P450 2E1 (CYP2E1) can be induced by diabetes mellitus, nonalcoholic liver disease, and obesity. This study assessed the protective effects of three sulfur compounds, namely phenethyl isothiocyanate (PEITC), dimethyl trisulfide (DMTS), and sodium thiosulfate (STS), on acrylonitrile (ACN)-induced acute toxicity in rats enriched with CYP2E1. PEITC and DMTS were administered intragastrically (i.g.), whereas STS was injected intraperitoneally (i.p.) at an identical dose of 0.5 mmol/kg for 3 days in acetone-pretreated rats before ACN (90 mg/kg) injection (i.p.). Acetone-treated rats that expressed high levels of CYP2E1 were more susceptible to ACN-induced acute toxicity. The sulfur compounds reduced the rate of convulsions and loss of the righting reflex in acute ACN-exposed CYP2E1-induced rats; PEITC and DMTS also increased the survival rates. PEITC inhibited hepatic CYP2E1 activity and protected hepatic and cerebral cytochrome c oxidase (CcOx) activities in acute ACN-exposed CYP2E1-enriched rats; DMTS protected hepatic CcOx activity. DMTS attenuated ACN-induced oxidative injury by reducing malondialdehyde (MDA) levels and increasing glutathione content in the brain. STS only reduced cerebral MDA levels, whereas PEITC did not exhibit any antioxidant effects. Collectively, PEITC provided superior protective effects against ACN-induced acute toxicity in rats with increased CYP2E1 activity, followed by DMTS; STS provided limited effects. PEITC and DMTS might be considered as promising chemopreventive agents against ACN-induced acute toxicity in vulnerable subpopulations with increased CYP2E1 activity.


Asunto(s)
Acrilonitrilo/toxicidad , Isotiocianatos/farmacología , Reflejo de Enderezamiento/efectos de los fármacos , Convulsiones/prevención & control , Sulfuros/farmacología , Tiosulfatos/farmacología , Animales , Citocromo P-450 CYP2E1/administración & dosificación , Sistema Enzimático del Citocromo P-450/análisis , Estimación de Kaplan-Meier , Masculino , Mortalidad , Distribución Aleatoria , Ratas , Convulsiones/inducido químicamente , Compuestos de Azufre/farmacología
15.
Am J Epidemiol ; 188(8): 1484-1492, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30927363

RESUMEN

We extended the mortality follow-up of a cohort of 25,460 workers employed at 8 acrylonitrile (AN)-producing facilities in the United States by 21 years. Using 8,124 deaths and 1,023,922 person-years of follow-up, we evaluated the relationship between occupational AN exposure and death. Standardized mortality ratios (SMRs) based on deaths through December 31, 2011, were calculated. Work histories and monitoring data were used to develop quantitative estimates of AN exposure. Hazard ratios were estimated by Cox proportional hazards regression. All-cause mortality and death from total cancer were less than expected compared with the US population. We observed an excess of death due to mesothelioma (SMR = 2.24, 95% confidence interval (CI): 1.39, 3.42); no other SMRs were elevated overall. Cox regression analyses revealed an elevated risk of lung and bronchial cancer (n = 808 deaths; for >12.1 ppm-year vs. unexposed, hazard ratio (HR) = 1.43, 95% CI: 1.13, 1.81; P for trend = 0.05), lagged 10 years, that was robust in sensitivity analyses adjusted for smoking and co-exposures including asbestos. Death resulting from bladder cancer (for >2.56 ppm vs. unexposed, lagged 10-year HR = 2.96, 95% CI: 1.38, 6.34; P for trend = 0.02) and pneumonitis (for >3.12 ppm-year vs. unexposed, HR = 4.73, 95% CI: 1.42, 15.76; P for trend = 0.007) was also associated with AN exposure. We provide additional evidence of an association between AN exposure and lung cancer, as well as possible increased risk for death due to bladder cancer and pneumonitis.


Asunto(s)
Acrilonitrilo/toxicidad , Mortalidad/tendencias , Enfermedades Profesionales/mortalidad , Exposición Profesional/efectos adversos , Anciano , Anciano de 80 o más Años , Causas de Muerte , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiología
16.
Environ Sci Pollut Res Int ; 25(35): 35301-35311, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30341758

RESUMEN

Acrylonitrile (ACN) spills in marine environment have the potential to cause ecological hazards and consequences, but currently little is known about the disruptive effects of ACN on marine organisms. In the present study, we investigated the lethal and sublethal effects of ACN on juvenile flounder Paralichthys olivaceus. The results showed that the 96-h LC50 of ACN to P. olivaceus juveniles was 6.07 mg/L. The fish were then exposed to different sublethal concentrations (0.1, 0.2, and 0.4 mg/L) of ACN for 28 days and then transferred to clean seawater and keep in clean seawater for 14 days to simulate the conditions of a spill incident. Biomarkers (EROD, GST, SOD, AChE activity, and levels of LPO and DNA alkaline unwinding) were tested in liver and brain. The weight gain rates and specific growth rate of juvenile marine flounder exposed to ACN (≥ 0.1 mg/L) for 28 days decreased significantly, indicating that ACN had an inhibitory effect on juvenile growth. Deformity of fish tails was observed on individuals exposed to the highest concentration (0.4 mg/L ACN) for 14 days, and the malformation rate was 38% after 28-day exposure. The present study provides the first evidence that ACN causes inhibition of AChE activity in fish brain. Furthermore, the results showed that ACN can significantly inhibit SOD activity and cause lipid peroxidation and DNA damage in fish brain. The results indicated that brain is more sensitive to ACN toxicity compared to liver and provides a suitable tissue for biomonitoring. The biomarkers measured during the depuration period showed that the effects caused by ACN were reversible when the exposure concentration was lower than 0.4 mg/L. These results highlight the adverse effects of ACN in brain of fish, which should be considered in environmental risk assessment. Biomarkers including AChE activity, LPO, and DNA damage of brain tissue should be included in fish bioassays for toxic effect assessment of ACN spills.


Asunto(s)
Acrilonitrilo/toxicidad , Lenguado/fisiología , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Biomarcadores/metabolismo , Lenguado/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Agua de Mar
17.
Environ Toxicol Pharmacol ; 64: 122-130, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30342373

RESUMEN

The antioxidant enzymes and detoxification parameters responses of the scallop Chlamys farreri to different degree of acrylonitrile (AN) were investigated. Accordingly, the median lethal concentration (LC50) at 96 h was 98.5 mg/L AN. Results from chronic toxicity test demonstrated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were stimulated in the highest two doses of AN (2.0 and 5.0 mg/L), but significantly inhibited in the highest concentration (5.0 mg/L) at the end of the exposure. The levels of DNA strand breaks, lipid peroxidation (LPO) and protein carbonyl (PC) contents showed damage effects exposed AN at the highest two doses. Additionally, AN significantly induced the enzymatic activity of glutathione-s-transferase (GST), related mRNA expression levels of P-glycoprotein (P-gp) and GST-pi; and no significant changes were found on CYP1A1 mRNA expression and ethoxyresorufin O-deethylase (EROD) activity. Our results indicated that P-gp and GST-pi mRNA expression in digestive glands of the scallop C. farreri may potentially be used in ecological risk assessment of hazardous and noxious substances (HNS) contamination of marine.


Asunto(s)
Acrilonitrilo/toxicidad , Sistema Digestivo/efectos de los fármacos , Sustancias Peligrosas/toxicidad , Pectinidae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Daño del ADN , Sistema Digestivo/metabolismo , Sistema Digestivo/patología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pectinidae/metabolismo
18.
Arch Toxicol ; 92(6): 2093-2108, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29725710

RESUMEN

Hydrogen sulfide (H2S), the third gasotransmitter, has been shown to act as a neuroprotective factor in numerous pathological processes; however, its underlying mechanism(s) of action remain unclear. It is widely accepted that activation of moderate autophagy and the Nrf2/ARE signaling pathway play important roles in the biological self-defense systems. In the present study, we investigated whether exogenous H2S protects against the cytotoxicity of acrylonitrile (AN), a neurotoxin, in primary rat astrocytes. We found that pretreatment for 1 h with sodium hydrosulfide (NaHS), a donor of H2S (200-800 µM), significantly attenuated the AN-induced decrease in cell viability, increase in lactate dehydrogenase release and morphological changes. Furthermore, NaHS significantly attenuated AN-induced oxidative stress by reducing reactive oxygen species (ROS) levels and increasing glutathione (GSH) concentration. Moreover, NaHS activated the autophagic flux, detectable as a change in autophagy-related proteins (Beclin-1, Atg5 and p62), the formation of acidic vesicular organelles and LC3B aggregation, confirmed by adenoviral expression of mRFP-GFP-LC3. Additionally, NaHS stimulated translocation of Nrf2 into the nucleus and increased expression of heme oxygenase-1 and γ-glutamylcysteine synthetase, downstream targets of Nrf2. Notably, the autophagy inhibitor 3-methyladenine and Beclin-1, or Nrf2-targeted siRNA, significantly attenuated the neuroprotective effects of NaHS against AN-induced neurotoxicity. In conclusion, we identified a crucial role of  autophagy and the Nrf2/ARE signaling pathway in H2S-mediated neuroprotection against AN-induced toxicity in primary rat astrocytes. Our findings provide novel insights into the mechanisms of H2S-mediated neuroprotection, and suggest that H2S-based donors may serve as potential new candidate drugs to treat AN-induced neurotoxicity.


Asunto(s)
Acrilonitrilo/toxicidad , Elementos de Respuesta Antioxidante , Astrocitos/efectos de los fármacos , Autofagia/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Células Cultivadas , Cultivo Primario de Células , Ratas Sprague-Dawley , Transducción de Señal
19.
Environ Sci Pollut Res Int ; 24(35): 27277-27287, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965194

RESUMEN

Hazardous and noxious substances (HNS) spill in the marine environment is an issue of growing concern, and it will mostly continue to do so in the future owing to the increase of high chemical traffic. Nevertheless, the effects of HNS spill on marine environment, especially on aquatic organisms are unclear. Consequently, it is emergent to provide valuable information for the toxicities to marine biota caused by HNS spill. Accordingly, the acute toxicity of three preferential HNS and sub-lethal effects of acrylonitrile on Brachionus plicatilis were evaluated. The median lethal concentration (LC50) at 24 h were 47.2 mg acrylonitrile L-1, 276.9 mg styrene L-1, and 488.3 mg p-xylene L-1, respectively. Sub-lethal toxicity effects of acrylonitrile on feeding behavior, development, and reproduction parameters of B. plicatilis were also evaluated. Results demonstrated that rates of filtration and ingestion were significantly reduced at 2.0, 4.0, and 8.0 mg L-1 of acrylonitrile. Additionally, reproductive period, fecundity, and life span were significantly decreased at high acrylonitrile concentrations. Conversely, juvenile period was significantly increased at the highest two doses and no effects were observed on embryonic development and post-reproductive period. Meanwhile, we found that ingestion rate decline could be a good predictor of reproduction toxicity in B. plicatilis and ecologically relevant endpoint for toxicity assessment. These data will be useful to assess and deal with marine HNS spillages.


Asunto(s)
Acrilonitrilo/toxicidad , Rotíferos/efectos de los fármacos , Estireno/toxicidad , Contaminantes Químicos del Agua/toxicidad , Xilenos/toxicidad , Animales , Conducta Alimentaria/efectos de los fármacos , Sustancias Peligrosas/toxicidad , Longevidad/efectos de los fármacos , Reproducción/efectos de los fármacos , Rotíferos/crecimiento & desarrollo , Rotíferos/fisiología
20.
Food Chem Toxicol ; 109(Pt 1): 517-525, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28963002

RESUMEN

This study aimed to investigate the protective effects of apigenin (AP), a flavonoid found in plants, against acrylonitrile (ACN)-induced subchronic sperm and testes injury in rats. Male Sprague-Dawley rats were randomly divided into four groups: a control group (corn oil), an ACN group (ACN 50 mg kg-1), an ACN + AP1 group (ACN + AP 234 mg kg-1), and an ACN + AP2 group (ACN + AP 468 mg kg-1). The ACN + AP group received AP by gavage after treatment with 50 mg kg-1 ACN for 30 min, whereas the rats in the control group were given an equivalent volume of corn oil. The gavage was conducted 6 days per week for 12 weeks. The results showed that AP increased the sperm concentration, motility, and mitochondrial membrane potential (MMP) (P < 0.05), which were reduced by ACN. Conversely, reactive oxygen species (ROS) and malondialdehyde (MDA) were significantly decreased by AP (P < 0.05). AP improved the damage of the ultrastructure of sperm caused by ACN. AP reduced the pathological injuries and spermatogenic cell apoptosis caused by ACN in rat testes. AP also increased glutathione peroxidase activity and decreased MDA content. In conclusion, AP reduces ACN-induced decreasing sperm quality by inhibition of inflammation and oxidative stress.


Asunto(s)
Acrilonitrilo/toxicidad , Apigenina/farmacología , Sustancias Protectoras/farmacología , Espermatozoides/efectos de los fármacos , Animales , Antioxidantes/farmacología , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuento de Espermatozoides , Espermatozoides/citología , Espermatozoides/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...