Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
1.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593609

RESUMEN

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Asunto(s)
Azurina , Modelos Moleculares , Cinética , Electroquímica , Azurina/química , Azurina/genética , Azurina/metabolismo , Actinobacteria/química , Thermoplasmales/química , Espectroscopía de Resonancia por Spin del Electrón , Estructura Terciaria de Proteína , Hierro/metabolismo , Oxidación-Reducción , Biotecnología , Estabilidad Proteica , Secuencia Conservada/genética
2.
Mar Drugs ; 22(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667794

RESUMEN

An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 µg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.


Asunto(s)
Antibacterianos , Chromobacterium , Indoles , Simulación del Acoplamiento Molecular , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Actinobacteria/química , Cinamatos/farmacología , Cinamatos/aislamiento & purificación , Cinamatos/química , Biopelículas/efectos de los fármacos , Sedimentos Geológicos/microbiología , Organismos Acuáticos , China
3.
J Antibiot (Tokyo) ; 77(4): 201-205, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38273126

RESUMEN

Assisted by OSMAC strategy, one new p-terphenyl and two new α­pyrone derivates, namely nocarterphenyl I (1) and nocardiopyrone D-E (2-3), were obtained and characterized from the marine sediment-derived actinomycete Nocardiopsis sp. HDN154086. The structures of these compounds were determined on the basis of MS, NMR spectroscopic data and single-crystal X-ray diffraction. Compound 1 with a rare 2,2'-bithiazole structure among natural products showed promising activity against five bacteria with MIC values ranging from 0.8 to 1.6 µM and 3 exhibited notable antibacterial activity against MRSA compared the positive control ciprofloxacin.


Asunto(s)
Actinobacteria , Compuestos de Terfenilo , Actinobacteria/química , Nocardiopsis , Pironas/química , Estructura Molecular , Antibacterianos/química , Compuestos de Terfenilo/química
4.
Chem Biodivers ; 21(3): e202301617, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38193652

RESUMEN

In the current study, the actinomycetes associated with the red sea-derived soft coral Sarcophyton glaucum were investigated in terms of biological and chemical diversity. Four different media, M1, ISP2, Marine Agar (MA), and Actinomycete isolation agar (AIA) were used for the isolation of three strains of actinomycetes that were identified as Streptomyces sp. UR 25, Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. LC-HRMS analysis was used to investigate the chemical diversity of the isolated actinobacteria. The LC-HRMS data were statistically processed using MetaboAnalyst 5.0 viz to differentiate the extract groups and determine the optimal growth culturing conditions. Multivariate data statistical analysis revealed that the Micromonospora sp. extract cultured on (MA) medium is the most distinctive extract in terms of chemical composition. While, the Streptomyces sp. UR 25 extracts are differ significantly from Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. Biological investigation using in vitro cytotoxic assay for actinobacteria extracts revealed the prominent potentiality of the Streptomyces sp. UR 25 cultured on oligotrophic medium against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7) and human colon adenocarcinoma (CACO2) cell lines (IC50 =3.3, 4.2 and 6.8 µg/mL, respectively). SwissTarget Prediction speculated that among the identified compounds, 16-deethyl, indanomycin (8) could have reasonable affinity on HDM2 active site. In this respect, molecular docking study was performed for compound (8) to reveal a substantial affinity on HDM2 active site. In addition, molecular dynamics simulations were carried out at 200 ns for the most active compound (8) compared to the co-crystallized inhibitor DIZ giving deeper information regarding their thermodynamic and dynamic properties as well.


Asunto(s)
Actinobacteria , Adenocarcinoma , Antozoos , Antineoplásicos , Neoplasias del Colon , Streptomyces , Animales , Humanos , Actinobacteria/química , Océano Índico , Actinomyces , Agar/metabolismo , Células CACO-2 , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
5.
BMC Microbiol ; 23(1): 396, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087203

RESUMEN

Malaria is a persistent illness that is still a public health issue. On the other hand, marine organisms are considered a rich source of anti­infective drugs and other medically significant compounds. Herein, we reported the isolation of the actinomycete associated with the Red Sea sponge Callyspongia siphonella. Using "one strain many compounds" (OSMAC) approach, a suitable strain was identified and then sub-cultured in three different media (M1, ISP2 and OLIGO). The extracts were evaluated for their in-vitro antimalarial activity against Plasmodium falciparum strain and subsequently analyzed by Liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In addition, MetaboAnalyst 5.0 was used to statistically analyze the LC-MS data. Finally, Molecular docking was carried out for the dereplicated metabolites against lysyl-tRNA synthetase (PfKRS1). The phylogenetic study of the 16S rRNA sequence of the actinomycete isolate revealed its affiliation to Streptomyces genus. Antimalarial screening revealed that ISP2 media is the most active against Plasmodium falciparum strain. Based on LC-HR-MS based metabolomics and multivariate analyses, the static cultures of the media, ISP2 (ISP2-S) and M1 (M1-S), are the optimal media for metabolites production. OPLS-DA suggested that quinone derivatives are abundant in the extracts with the highest antimalarial activity. Fifteen compounds were identified where eight of these metabolites were correlated to the observed antimalarial activity of the active extracts. According to molecular docking experiments, saframycin Y3 and juglomycin E showed the greatest binding energy scores (-6.2 and -5.13) to lysyl-tRNA synthetase (PfKRS1), respectively. Using metabolomics and molecular docking investigation, the quinones, saframycin Y3 (5) and juglomycin E (1) were identified as promising antimalarial therapeutic candidates. Our approach can be used as a first evaluation stage in natural product drug development, facilitating the separation of chosen metabolites, particularly biologically active ones.


Asunto(s)
Actinobacteria , Antimaláricos , Callyspongia , Lisina-ARNt Ligasa , Animales , Antimaláricos/farmacología , Actinobacteria/genética , Actinobacteria/química , Callyspongia/química , Actinomyces/genética , Océano Índico , Filogenia , ARN Ribosómico 16S/genética , Simulación del Acoplamiento Molecular , Lisina-ARNt Ligasa/genética , Plasmodium falciparum
6.
Mar Drugs ; 21(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888471

RESUMEN

Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.


Asunto(s)
Actinobacteria , Antiinfecciosos , Nanopartículas del Metal , Actinobacteria/química , Antibacterianos/química , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana
7.
Org Lett ; 25(19): 3502-3507, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37162500

RESUMEN

Crosiellidines are intriguing pyrazine-alkylguanidine metabolites isolated from the minor actinomycete genus Crossiella. Their structures present an unprecedented 2-methoxy-3,5,6-trialkyl pyrazine scaffold and uncommon guanidine prenylations, including an exotic O-prenylated N-hydroxyguanidine moiety. The novel substitution pattern of the 2-methoxypyrazine core inaugurates a new class of naturally occurring pyrazine compounds, the biosynthetic implications of which are discussed herein. Isotopic feeding and genome analysis allowed us to propose a biosynthetic pathway from arginine. The crossiellidines exhibited remarkable, broad-spectrum antibacterial activity.


Asunto(s)
Actinobacteria , Actinomycetales , Pirazinas/farmacología , Actinomycetales/química , Actinobacteria/química , Antibacterianos/química , Vías Biosintéticas
8.
J Agric Food Chem ; 71(8): 3777-3789, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802538

RESUMEN

Eleven oleanane-type triterpenoids named soyasapogenols B1-B11 have been obtained unexpectedly from a marine actinomycete Nonomuraea sp. MYH522. Their structures have been determined by extensive analysis of spectroscopic experiments and X-ray crystallographic data. Soyasapogenols B1-B11 exhibit subtle differences in the positions and degrees of oxidation on an oleanane skeleton. The feeding experiment suggested that soyasapogenols might be derived from soyasaponin Bb through microbial-mediated conversion. The biotransformation pathways from soyasaponin Bb to five oleanane-type triterpenoids and six A-ring cleaved analogues were proposed. The assumed biotransformation involves an array of reactions including regio- and stereo-selective oxidation. These compounds alleviated the 5,6-dimethylxanthenone-4-acetic acid-induced inflammation in Raw264.7 cells via the stimulator of interferon genes/TBK1/NF-κB signaling pathway. The present work provided an efficient approach for rapid diversification of soyasaponins and for developing food supplements with potent anti-inflammatory effects.


Asunto(s)
Ácido Oleanólico , Triterpenos , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Células RAW 264.7 , Triterpenos/química , Actinobacteria/química
9.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364011

RESUMEN

Bacteria belonging to the phylum Actinobacteria are a very good source of antibiotics, and indeed dominate the current clinical antibiotic space. This paper reports Mutactimycin AP, a new compound belonging to an anthracycline-type family of antibiotics, isolated from a Saccharothrix sp. This actinobacterial strain was isolated from the rhizosphere of lupine plants growing in the extreme hyper-arid Atacama Desert. Structural characterization was carried out using electrospray ionization-mass spectrometry (ESI-MS) and NMR spectroscopy in combination with molecular modelling. The compound was tested against the ESKAPE pathogens, where it showed activity against MRSA and five strains associated with bovine mastitis, where it showed activity against Enterococcus pseudoavium and Staphylycoccus Aureus subsp. Aureus.


Asunto(s)
Actinobacteria , Actinomycetales , Bovinos , Animales , Femenino , Actinobacteria/química , Microbiología del Suelo , Bacterias , Antibacterianos/farmacología , Clima Desértico
10.
J Antibiot (Tokyo) ; 75(11): 610-618, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36076014

RESUMEN

Four novel cyclic enaminones, designated RD4123A-D (1-4), and a new 4-quinazolinone metabolite, RD4123E (5), were isolated from the culture extract of an unidentified actinomycete strain RD004123, which belongs to the family Micromonosporaceae. Structures of 1-5 were determined by spectroscopic analyses using NMR, MS, and electronic circular dichroism (ECD), combined with quantum chemical calculations of ECD and NMR chemical shifts and biosynthetic consideration. Compounds 1-5 showed weak to modest cytotoxicity against murine leukemia P388 cells, while being inactive against bacteria and fungi.


Asunto(s)
Actinobacteria , Micromonosporaceae , Actinobacteria/química , Animales , Dicroismo Circular , Ratones , Extractos Vegetales , Quinazolinonas
11.
Org Lett ; 24(39): 7188-7193, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36165456

RESUMEN

A genomic and spectroscopic signature-based search revealed a cycloaromatized enediyne, jejucarboside A (1), from a marine actinomycete strain. The structure of 1 was determined as a new cyclopenta[a]indene glycoside bearing carbonate functionality by nuclear magnetic resonance, high-resolution mass spectrometry (MS), MS/MS, infrared spectroscopy, and a modified Mosher's method. An iterative enediyne synthase pathway has been proposed for the putative biosynthesis of 1 by genomic analysis. Jejucarboside A exhibited cytotoxicity against the HCT116 colon carcinoma cells.


Asunto(s)
Actinobacteria , Indenos , Actinobacteria/química , Enediinos/química , Glicósidos/química , Indenos/química , Estructura Molecular , Espectrometría de Masas en Tándem
12.
Mar Drugs ; 20(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36005541

RESUMEN

Four actinomycete strains isolated from the coral Acropora austera and coral sand samples from the South China Sea, were found to produce a series of halogenated compounds baring similar ultraviolet absorption based on the analysis of HPLC and LC-MS. The production titers of halogenated compounds from Streptomyces diacarni SCSIO 64983 exceeded those of other similar strains leading us to focus on SCSIO 64983. Four new thiocarbazomycins A-B (1-2), chlocarbazomycin E (3), and brocarbazomycin A (4), together with three known chlocarbazomycins A-C (5-7) containing a carbazole core were identified, and their structures were determined using a combination of spectroscopic analysis including HRESIMS, 1D and 2D NMR. Structurally speaking, compounds 1 and 2 have the rare sulfur-containing carbazole nuclei, and 3 and 4 contain Cl and Br atoms, respectively. Although these compounds have not yet been found to have obvious biological activity, their discovery highlights the role of molecular libraries in subsequent drug discovery campaigns.


Asunto(s)
Actinobacteria , Antozoos , Actinobacteria/química , Actinomyces , Animales , Carbazoles , Arrecifes de Coral , Arena
13.
J Antibiot (Tokyo) ; 75(9): 523-525, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35918477

RESUMEN

A new member of ß-carboline alkaloids, Marinacarboline glucuronide (1), along with nine known compounds (2-10), were isolated from static liquid fermentation extracts of Actinoalloteichus cyanogriseus LHW52806 isolated from the marine sponge Phakellia fusca. Their structures were elucidated by NMR, mass spectrometry and single-crystal X-ray diffraction. All compounds exhibited neither antimicrobial activity nor cytotoxicity. Compounds 1, 8 and 10 showed anti-inflammatory potential of significant decreasing the expressions of IL- 6 in vitro at 20 µM.


Asunto(s)
Actinobacteria , Actinomycetales , Alcaloides , Poríferos , Actinobacteria/química , Actinomycetales/química , Alcaloides/química , Animales , Carbolinas/química , Carbolinas/farmacología , Glucurónidos , Estructura Molecular
14.
Mar Drugs ; 20(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35736177

RESUMEN

Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.


Asunto(s)
Actinobacteria , Alcaloides , Productos Biológicos , Policétidos , Actinobacteria/química , Alcaloides/metabolismo , Productos Biológicos/química , Nocardiopsis , Policétidos/química
15.
Molecules ; 27(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268843

RESUMEN

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/química , Internalización del Virus/efectos de los fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , COVID-19/virología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19
16.
J Antibiot (Tokyo) ; 75(5): 296-300, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322208

RESUMEN

Trehangelin E (1), a new bisacyl trehalose, was isolated from the culture extract of an actinomycete Polymorphospora sp. RD064483, along with three known congeners, trehangelins A, B, and D. Compound 1 is a new trehalose derivative acylated with (Z)-2-methyl-2-butenoic acid (angelic acid) at 3- and 6'-positions, as determined by NMR and MS analyses. Compound 1 promoted root elongation of germinated lettuce seeds by 30% at 1 µM and 90% at 10 µM compared to the nontreated seeds. Similar promoting activity of root elongation was also observed with trehangelins A and B at the same level.


Asunto(s)
Actinobacteria , Micromonosporaceae , Trehalosa , Actinobacteria/química , Micromonosporaceae/metabolismo , Reguladores del Crecimiento de las Plantas/química , Trehalosa/farmacología
17.
Chem Biodivers ; 19(4): e202200037, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35294106

RESUMEN

With the aim of finding new marine-derived skincare promoters, an assay-guided approach was employed to discover tyrosinase-modulating compounds from marine actinomycete. Here we describe a new 2,5-piperazinedione, named georgenione A (1), together with two previously described compounds, 5-(4'-hydroxybenzyl)hydantoin (2) and cyclo(Trp-Gly) (3), produced by actinomycete Georgenia sp. 40DY180, isolated from deep-sea sediments collected in the Pacific Ocean. Their structures were elucidated by a combination of spectroscopic analyses including 1D and 2D NMR and high-resolution mass spectrometric data. 5-(4'-hydroxybenzyl)hydantoin (2) displayed in vitro potent anti-tyrosinase activity with IC50 value of 36 µM, comparable to the commercially used positive control kojic acid (IC50 =46 µM) and arbutin (IC50 =100 µM). Compounds 1-3 were firstly reported from marine actinomycete Georgenia sp.


Asunto(s)
Actinobacteria , Hidantoínas , Actinobacteria/química , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Metabolismo Secundario
18.
J Antibiot (Tokyo) ; 75(1): 44-47, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34522026

RESUMEN

A rare actinomycetal strain of the genus Actinomycetospora was found to produce a new tryptophan derivative, designated mycetoindole (1). The structure of 1 was determined to be N-3-methylcrotonoyl (Z)-dehydrotryptophan by NMR and MS analytical methods. Compound 1 reduced the root growth of lettuce Lactuca sativa seedlings at concentrations above 0.1 µM and almost completely inhibited seed germination at 10 µM.


Asunto(s)
Actinobacteria/metabolismo , Actinobacteria/química , Animales , Bacterias/efectos de los fármacos , Fermentación , Germinación/efectos de los fármacos , Humanos , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones , Triptófano/análogos & derivados , Triptófano/biosíntesis
19.
Nat Prod Res ; 36(11): 2917-2922, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34039169

RESUMEN

Cancer is a hazard life-threatening disease, which affect huge population worldwide. Marine actinomycetes are considered as promising source for potential chemotherapeutic agents. In our study, we carried out metabolic profiling for Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 that were cultivated from the Red Sea sponge Amphimedon sp. to investigate their chemical diversity using different media conditions. The crude culture extracts were subjected to high-resolution mass spectrometry (HRMS) analysis. The chemical profiles of the different extracts of Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 revealed their richness in diverse metabolites and consequently twenty compounds (1-20) were annotated. Moreover, the obtained extracts of the differently cultivated Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 were investigated against three cell lines HepG2, MCF-7 and CACO2 and revealed the targeted cytotoxicity of Nocardia sp. and Nocardiopsis sp. metabolites against the three cell lines.


Asunto(s)
Actinobacteria , Antineoplásicos , Nocardia , Poríferos , Actinobacteria/química , Actinomyces , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células CACO-2 , Humanos , Nocardia/química , Nocardiopsis
20.
Gene ; 810: 146061, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34774682

RESUMEN

The dsz operon responsible for the biodesulfurization of organosulfurs is under the control of a 385 bp long promoter. Recently, a TetR family protein was identified which served as an activator of operon. Here we report that the TetR family protein (WP_058249973.1), named DszGR can specifically activate the dsz operon. Direct binding of the DszGR to DNA was observed at single molecule level by AFM. It was found that the binding of DszGR to the promoter DNA induces a bend by about âˆ¼40-50° degrees which may not be enough for the activation of the promoter. Thus, bendability in the promoter sequence was analyzed. The results show that the promoter has a curvature at around -235 and -200 bp with respect to dszA start codon. On mutating this region, a decrease in activity of the promoter was observed. Our results suggest that the DszGR protein binds to the upstream sequences and induces a bend, which is facilitated by further bending of the DNA which is required for dsz promoter activity. IHF binding site present in the promoter, and a significant reduction in desulphurization activity in the absence of either IHF subunits, suggested role of IHF in regulation of the dsz operon.


Asunto(s)
Actinobacteria/genética , Regulación Bacteriana de la Expresión Génica , Operón , Compuestos de Azufre/metabolismo , Actinobacteria/química , Actinobacteria/clasificación , Fenómenos Biofísicos , Escherichia coli/genética , Modelos Moleculares , Regiones Promotoras Genéticas , Rhodococcus/química , Rhodococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA