Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.922
Filtrar
1.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38321933

RESUMEN

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Metilación de ADN , Hígado , Pez Cebra , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , ADN/metabolismo , Replicación del ADN/genética , Embrión no Mamífero , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Fase S , Pez Cebra/genética , Pez Cebra/metabolismo , Activación Enzimática/genética
2.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38349040

RESUMEN

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN , Proteínas de Xenopus , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Activación Enzimática/genética , Fosforilación/genética
3.
J Biol Chem ; 300(3): 105688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280431

RESUMEN

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.


Asunto(s)
Citocromos b5 , Modelos Moleculares , Esteroide 17-alfa-Hidroxilasa , Humanos , Citocromos b5/genética , Citocromos b5/metabolismo , Fluorescencia , Hemo , Proteómica , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/metabolismo , Unión Proteica/genética , Activación Enzimática/genética , Estructura Cuaternaria de Proteína , Mutación
4.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141769

RESUMEN

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Asunto(s)
Anexina A2 , Artritis Reumatoide , Sistema de Señalización de MAP Quinasas , ARN Largo no Codificante , Sinoviocitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/fisiopatología , Proliferación Celular/genética , Células Cultivadas , Activación Enzimática/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Fosforilación/genética , Unión Proteica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sinoviocitos/citología , Sinoviocitos/metabolismo
5.
J Biol Chem ; 299(11): 105293, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774973

RESUMEN

ß-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether ß-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., ß-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate ß-arrestins, thereby limiting the ability to distinguish G protein from ß-arrestin-mediated signaling events. We used ß2-adrenergic receptor (ß2AR) and its ß2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, ß-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and ß-arrestins in controlling gene expression. We found that Gαs is not required for ß2AR and ß-arrestin conformational changes, ß-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in ß-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of ß2AR in wildtype and ß-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing ß-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of ß2AR. Overall, our results support that Gs is essential for ß2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas ß-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.


Asunto(s)
Proteínas de Unión al GTP , Regulación de la Expresión Génica , Receptores Adrenérgicos beta 2 , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células HEK293 , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Estructura Terciaria de Proteína , Isoformas de Proteínas , Activación Enzimática/genética
6.
J Biol Chem ; 299(10): 105198, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660917

RESUMEN

The bacterial cell envelope is the structure with which the bacterium engages with, and is protected from, its environment. Within this envelop is a conserved peptidoglycan polymer which confers shape and strength to the cell envelop. The enzymatic processes that build, remodel, and recycle the chemical components of this cross-linked polymer are preeminent targets of antibiotics and exploratory targets for emerging antibiotic structures. We report a comprehensive kinetic and structural analysis for one such enzyme, the Pseudomonas aeruginosa anhydro-N-acetylmuramic acid (anhNAM) kinase (AnmK). AnmK is an enzyme in the peptidoglycan-recycling pathway of this pathogen. It catalyzes the pairing of hydrolytic ring opening of anhNAM with concomitant ATP-dependent phosphoryl transfer. AnmK follows a random-sequential kinetic mechanism with respect to its anhNAM and ATP substrates. Crystallographic analyses of four distinct structures (apo AnmK, AnmK:AMPPNP, AnmK:AMPPNP:anhNAM, and AnmK:ATP:anhNAM) demonstrate that both substrates enter the active site independently in an ungated conformation of the substrate subsites, with protein loops acting as gates for anhNAM binding. Catalysis occurs within a closed conformational state for the enzyme. We observe this state crystallographically using ATP-mimetic molecules. A remarkable X-ray structure for dimeric AnmK sheds light on the precatalytic and postcatalytic ternary complexes. Computational simulations in conjunction with the high-resolution X-ray structures reveal the full catalytic cycle. We further report that a P. aeruginosa strain with disrupted anmK gene is more susceptible to the ß-lactam imipenem compared to the WT strain. These observations position AnmK for understanding the nexus among peptidoglycan recycling, susceptibility to antibiotics, and bacterial virulence.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Fosfotransferasas , Pseudomonas aeruginosa , Antibacterianos , Catálisis , Cristalografía por Rayos X , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estructura Terciaria de Proteína , Activación Enzimática/genética , Farmacorresistencia Bacteriana/genética
7.
J Biol Chem ; 299(9): 105115, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527777

RESUMEN

Erythropoietin-producing hepatoma (Eph) receptor tyrosine kinases regulate the migration and adhesion of cells that are required for many developmental processes and adult tissue homeostasis. In the intestinal epithelium, Eph signaling controls the positioning of cell types along the crypt-villus axis. Eph activity can suppress the progression of colorectal cancer (CRC). The most frequently mutated Eph receptor in metastatic CRC is EphB1. However, the functional effects of EphB1 mutations are mostly unknown. We expressed and purified the kinase domains of WT and five cancer-associated mutant EphB1 and developed assays to assess the functional effects of the mutations. Using purified proteins, we determined that CRC-associated mutations reduce the activity and stability of the folded structure of EphB1. By mammalian cell expression, we determined that CRC-associated mutant EphB1 receptors inhibit signal transducer and activator of transcription 3 and extracellular signal-regulated kinases 1 and 2 signaling. In contrast to the WT, the mutant EphB1 receptors are unable to suppress the migration of human CRC cells. The CRC-associated mutations also impair cell compartmentalization in an assay in which EphB1-expressing cells are cocultured with ligand (ephrin B1)-expressing cells. These results suggest that somatic mutations impair the kinase-dependent tumor suppressor function of EphB1 in CRC.


Asunto(s)
Neoplasias Colorrectales , Receptor EphB1 , Animales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/fisiopatología , Mutación , Receptor EphB1/genética , Receptor EphB1/metabolismo , Transducción de Señal/fisiología , Línea Celular , Activación Enzimática/genética , Estabilidad Proteica , Sistema de Señalización de MAP Quinasas/genética , Movimiento Celular/genética
8.
J Biol Chem ; 299(9): 105072, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474104

RESUMEN

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Asunto(s)
Arginina , Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Fosforilación , Arginina/metabolismo , Humanos , Animales , Ratones , Línea Celular , Células HEK293 , Activación Enzimática/genética , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Cristalización , Secuencia de Aminoácidos
9.
J Biol Chem ; 299(9): 105100, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507019

RESUMEN

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , ARN Nucleotidiltransferasas , Humanos , Intrones , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Empalme del ARN , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática/genética , Dominios Proteicos , Unión Proteica , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Entamoeba histolytica/enzimología , Entamoeba histolytica/genética , Metales Pesados/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(30): e2206588119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867821

RESUMEN

Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non-small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5'-triphosphate Km. Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Exones , Neoplasias Pulmonares , Alelos , Secuencias de Aminoácidos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Activación Enzimática/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Exones/genética , Humanos , Cinética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Eliminación de Secuencia
11.
J Biol Chem ; 298(6): 102012, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35525271

RESUMEN

Constitutive activation of the canonical NF-κB signaling pathway is a major factor in Kaposi's sarcoma-associated herpes virus pathogenesis where it is essential for the survival of primary effusion lymphoma. Central to this process is persistent upregulation of the inhibitor of κB kinase (IKK) complex by the virally encoded oncoprotein vFLIP. Although the physical interaction between vFLIP and the IKK kinase regulatory component essential for persistent activation, IKKγ, has been well characterized, it remains unclear how the kinase subunits are rendered active mechanistically. Using a combination of cell-based assays, biophysical techniques, and structural biology, we demonstrate here that vFLIP alone is sufficient to activate the IKK kinase complex. Furthermore, we identify weakly stabilized, high molecular weight vFLIP-IKKγ assemblies that are key to the activation process. Taken together, our results are the first to reveal that vFLIP-induced NF-κB activation pivots on the formation of structurally specific vFLIP-IKKγ multimers which have an important role in rendering the kinase subunits active through a process of autophosphorylation. This mechanism of NF-κB activation is in contrast to those utilized by endogenous cytokines and cellular FLIP homologues.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Activación Enzimática/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Oncogénicas/metabolismo , Sarcoma de Kaposi/enzimología , Sarcoma de Kaposi/virología , Proteínas Virales/metabolismo
12.
Bioengineered ; 13(2): 3207-3220, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35045793

RESUMEN

Acute pancreatitis (AP) is a common gastrointestinal disease with substantial morbidity and mortality. Pancreatic acinar intracellular trypsinogen activation (PAITA) is an important event in the early stage of AP. The present study aimed to investigate the effects of tRNA-derived fragments (tRFs) and the microRNA regulatory network on pancreatic acinar intracellular trypsinogen activation (PAITA) and identify novel key targets in AP. Taurolithocholic acid 3-sulfate (TLC-S)-treated AR42J cells were used to establish a PAITA model. Twenty differentially expressed tRFs and 35 DE microRNAs were identified in PAITA through gene sequencing. Based on these genes, we established the tRF-mRNA and microRNA-mRNA regulatory networks by using bioinformatics methods. The networks revealed 29 hub microRNAs (e.g., Let-7 family, miR-21-3p.) and 19 hub tRFs (e.g., tRF3-Thr-AGT, i-tRF-Met-CAT) in PAITA. GO analysis showed that the functions of the two networks were similar and mainly enriched in RNA splicing, mRNA processing, and so on. tRF3-Thr-AGT, targeting Btg2, Cd44, Zbp1, etc., was significantly decreased in PAITA. Moreover, the trypsinogen activation level was increased significantly in the tRF3-Thr-AGT deficiency groups, but rescued by tRF3-Thr-AGT mimics. The results revealed that downregulated tRF3-Thr-AGT was involved in PAITA. This study provides potential novel targets for researching the underlying mechanisms of AP.


Asunto(s)
Células Acinares/metabolismo , MicroARNs/metabolismo , Pancreatitis/metabolismo , ARN de Transferencia/metabolismo , Tripsinógeno/metabolismo , Animales , Línea Celular Tumoral , Activación Enzimática/genética , MicroARNs/genética , Pancreatitis/genética , Pancreatitis/patología , ARN de Transferencia/genética , Ratas , Tripsinógeno/genética
13.
J Virol ; 96(6): e0208521, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044209

RESUMEN

The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses (sNSVs) produces short capped primers for viral transcription by cleaving the host mRNAs. EN requires divalent metals as cofactors for nucleic acid substrates cleavage; however, the detailed mechanism of metal ion-dependent catalysis of ENs remains obscure. In this work, we reported the EN crystal structure of the Ebinur Lake virus (EBIV), an emerging mosquito-borne orthobunyavirus, and investigated its enzymatic properties and metal ion-based catalytic mechanism. In vitro biochemical data showed that EBIV EN is a specific RNA nuclease and prefers to cleave unstructured uridine-rich ssRNA. Structural comparison indicated that the overall structural architecture of EBIV EN is similar to that of other sNSV ENs, while the detailed active site configuration including the binding state of metal ions and the conformation of the LA/LB loop pair is different. Based on sequence conservation analysis, nine active site mutants were constructed, and seven crystal structures of them were determined. Mutations of active site residues associated with the two metal ions (Mn1 and Mn2) coordination abolished EN activity. Crystallographic analyses further revealed that none of these mutants bound two metal ions simultaneously in the active site. Importantly, we found that the perturbation of Mn1-coordination (metal site 1), resulted in the enhancement or elimination of Mn2-coordination (metal site 2). Taken together, our data provide structural evidence to support the two-metal-ion catalytic mechanism of EBIV EN and the correlation of metal binding at the two binding sites, which may be commonly shared by bunyaviruses or other sNSVs. IMPORTANCE The viral endonucleases (ENs) encoded by bunyaviruses and orthomyxoviruses play an essential role in initiating transcription by "snatching" capped primers from the host mRNAs. These ENs are metal-ion-dependent nucleases; however, the details of their catalytic mechanism remain elusive. Here, we reported high-resolution crystal structures of the wild-type and mutant ENs of a novel bunyavirus, the Ebinur Lake virus (EBIV), and revealed the structure and function relationship of EN. The EBIV EN exhibited differences in the details of active site structure compared to its homologues. Our data provided structural evidence to support a two-metal-ion catalytic mechanism of EBIV EN, and found the correlation of metal binding at both binding sites, which might reflect the dynamic structural properties that correlate to EN catalytic function. Taken together, our results revealed the structural characteristics of EBIV EN and made important implications for understanding the catalytic mechanism of cap-snatching ENs.


Asunto(s)
Endonucleasas , Orthobunyavirus , Proteínas Virales , Animales , Catálisis , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Activación Enzimática/genética , Mutación , Orthobunyavirus/enzimología , Orthobunyavirus/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Oncogene ; 41(3): 372-386, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34759346

RESUMEN

Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Activación Enzimática/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Técnicas de Cultivo de Célula , Dimerización , Humanos , Transfección , Quinasa Tipo Polo 1
15.
Nucleic Acids Res ; 50(D1): D571-D577, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850161

RESUMEN

Thirty years have elapsed since the emergence of the classification of carbohydrate-active enzymes in sequence-based families that became the CAZy database over 20 years ago, freely available for browsing and download at www.cazy.org. In the era of large scale sequencing and high-throughput Biology, it is important to examine the position of this specialist database that is deeply rooted in human curation. The three primary tasks of the CAZy curators are (i) to maintain and update the family classification of this class of enzymes, (ii) to classify sequences newly released by GenBank and the Protein Data Bank and (iii) to capture and present functional information for each family. The CAZy website is updated once a month. Here we briefly summarize the increase in novel families and the annotations conducted during the last 8 years. We present several important changes that facilitate taxonomic navigation, and allow to download the entirety of the annotations. Most importantly we highlight the considerable amount of work that accompanies the analysis and report of biochemical data from the literature.


Asunto(s)
Carbohidratos/química , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Enzimas/química , Carbohidratos/clasificación , Activación Enzimática/genética , Enzimas/clasificación , Humanos
16.
J Biol Chem ; 297(6): 101428, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801548

RESUMEN

Small GTPases cycle between an inactive GDP-bound and an active GTP-bound state to control various cellular events, such as cell proliferation, cytoskeleton organization, and membrane trafficking. Clarifying the guanine nucleotide-bound states of small GTPases is vital for understanding the regulation of small GTPase functions and the subsequent cellular responses. Although several methods have been developed to analyze small GTPase activities, our knowledge of the activities for many small GTPases is limited, partly because of the lack of versatile methods to estimate small GTPase activity without unique probes and specialized equipment. In the present study, we developed a versatile and straightforward HPLC-based assay to analyze the activation status of small GTPases by directly quantifying the amounts of guanine nucleotides bound to them. This assay was validated by analyzing the RAS-subfamily GTPases, including HRAS, which showed that the ratios of GTP-bound forms were comparable with those obtained in previous studies. Furthermore, we applied this assay to the investigation of psychiatric disorder-associated mutations of RHEB (RHEB/P37L and RHEB/S68P), revealing that both mutations cause an increase in the ratio of the GTP-bound form in cells. Mechanistically, loss of sensitivity to TSC2 (a GTPase-activating protein for RHEB) for RHEB/P37L, as well as both decreased sensitivity to TSC2 and accelerated guanine-nucleotide exchange for RHEB/S68P, is involved in the increase of their GTP-bound forms, respectively. In summary, the HPLC-based assay developed in this study provides a valuable tool for analyzing small GTPases for which the activities and regulatory mechanisms are less well understood.


Asunto(s)
Trastornos Mentales , Mutación Missense , Proteína Homóloga de Ras Enriquecida en el Cerebro , Sustitución de Aminoácidos , Cromatografía Líquida de Alta Presión , Activación Enzimática/genética , Células HEK293 , Células HeLa , Humanos , Trastornos Mentales/enzimología , Trastornos Mentales/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo
17.
Am J Physiol Endocrinol Metab ; 321(6): E753-E765, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747201

RESUMEN

Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.


Asunto(s)
Resistencia a la Insulina/genética , Lipoproteína Lipasa/metabolismo , Miocardio/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Animales , Células Cultivadas , Activación Enzimática/genética , Femenino , Corazón/fisiología , Insulina/metabolismo , Masculino , Especificidad de Órganos/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Regulación hacia Arriba/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo
18.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638542

RESUMEN

Preeclampsia is a pregnancy disorder associated with shallow placentation, forcing placental cells to live in hypoxic conditions. This activates the transcription factor kappa B (NFκB) in maternal and placental cells. Although the role of NFκB in preeclampsia is well documented, its mechanism of activation in trophoblastic cells has been never studied. This study investigates the mechanism of NFκB activation in a first trimester trophoblastic cell line (HTR8/SVneo) stimulated by a medium containing serum from preeclamptic (PE) or normotensive (C) women in hypoxic (2% O2) or normoxic (8% O2) conditions. The results indicate that in HTR8/SVneo cells, the most widely studied NFκB pathways, i.e., canonical, non-canonical and atypical, are downregulated in environment PE 2% O2 in comparison to C 8% O2. Therefore, other pathways may be responsible for NFκB activation. One such pathway depends on the activation of NFκB by the p53/RSK1 complex through its phosphorylation at Serine 536 (pNFκB Ser536). The data generated by our study show that inhibition of the p53/RSK1 pathway by p53-targeted siRNA results in a depletion of pNFκB Ser536 in the nucleus, but only in cells incubated with PE serum at 2% O2. Thus, the p53/RSK1 complex might play a critical role in the activation of NFκB in trophoblastic cells and preeclamptic placentas.


Asunto(s)
FN-kappa B/metabolismo , Preeclampsia/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Trofoblastos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Hipoxia de la Célula/fisiología , Línea Celular , Activación Enzimática/genética , Femenino , Humanos , Placenta/patología , Embarazo , Interferencia de ARN , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética
19.
Cancer Sci ; 112(12): 4909-4919, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632667

RESUMEN

Bladder cancer is a common tumor with a high recurrence rate and high fatality rate, and its mechanism of occurrence and development remains unclear. Many proteins and metabolites reprogram at different stages of tumor development to support tumor cell growth. The moonlighting effect happens when a protein performs multiple functions simultaneously in a cell. In this study, we identified a metabolic protein, MTHFD2, which participates in the cell cycle by binding to CDK2 in bladder cancer. MTHFD2 has been shown to affect bladder cancer cell growth, which is independent of its metabolic function. We found that MTHFD2 was involved in cell cycle regulation and could encourage cell cycle progression by activating CDK2 and sequentially affecting E2F1 activation. In addition, moonlighting MTHFD2 might be regulated by the dynamics of the mitochondria. In conclusion, MTHFD2 localizes in the nucleus to perform a distinct function of catalyzing metabolic reactions. Moreover, the nuclear MTHFD2 activates CDK2 and promotes bladder cancer cell growth by modulating the cell cycle.


Asunto(s)
Aminohidrolasas/genética , Quinasa 2 Dependiente de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Enzimas Multifuncionales/genética , Neoplasias de la Vejiga Urinaria/genética , Aminohidrolasas/metabolismo , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Activación Enzimática/genética , Femenino , Células HEK293 , Humanos , Masculino , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones Endogámicos BALB C , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Enzimas Multifuncionales/metabolismo , Unión Proteica , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/terapia
20.
Biochem Soc Trans ; 49(5): 2007-2019, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623388

RESUMEN

Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.


Asunto(s)
Bioingeniería/métodos , Producción de Cultivos/métodos , Fotosíntesis/genética , Ingeniería de Proteínas/métodos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Catálisis , Cloroplastos/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Activación Enzimática/genética , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Ribulosa-Bifosfato Carboxilasa/genética , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA