Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.887
Filtrar
1.
Pharmacol Res ; 206: 107296, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971269

RESUMEN

The activity of sirtuin 1 (SIRT1, a member of the NAD+-dependent deacetylases family) decreases during aging as NAD+ levels naturally decline, thus increasing the risk of several age-associated diseases. Several sirtuin-activating compounds (STACs) have been developed to counteract the age-associated reduction in SIRT1 activity, and some of them are currently under development in clinical trials. STACs induce SIRT1 activation, either through allosteric activation of the enzyme in the presence of NAD+, or by increasing NAD+ levels by inhibiting its degradation or by supplying a key precursor in biosynthesis. In this study, we have identified (E)-2'-des-methyl sulindac analogues as a novel class of STACs that act also in the absence of NAD+, a peculiar behavior demonstrated through enzymatic and mass spectrometry experiments, both in vitro and in cell lines. The activation of the SIRT1 pathway was confirmed in vivo through gene expression and metabolomics analysis. Our data suggest that these compounds could serve as candidate leads for a novel therapeutic strategy aimed at addressing a key metabolic deficiency that may contribute to metabolic and age-associated diseases.


Asunto(s)
NAD , Sirtuina 1 , Sirtuina 1/metabolismo , NAD/metabolismo , Animales , Humanos , Activadores de Enzimas/farmacología , Línea Celular , Ratones , Masculino , Ratones Endogámicos C57BL , Descubrimiento de Drogas
3.
Bioorg Med Chem Lett ; 110: 129865, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950758

RESUMEN

Pyruvate kinase (PK) is an essential component of cellular metabolism, converting ADP and phosphoenolpyruvate (PEP) to pyruvate in the final step of glycolysis. Of the four unique isoforms of pyruvate kinase, R (PKR) is expressed exclusively in red blood cells and is a tetrameric enzyme that depends on fructose-1,6-bisphosphate (FBP) for activation. PKR deficiency leads to hemolysis of red blood cells resulting in anemia. Activation of PKR in both sickle cell disease and beta-thalassemia patients could lead to improved red blood cell fitness and survival. The discovery of a novel series of substituted urea PKR activators, via the serendipitous identification and diligent characterization of a minor impurity in an High Throughput Screening (HTS) hit will be discussed.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Piruvato Quinasa , Piruvato Quinasa/metabolismo , Piruvato Quinasa/antagonistas & inhibidores , Humanos , Descubrimiento de Drogas , Relación Estructura-Actividad , Urea/química , Urea/farmacología , Activadores de Enzimas/farmacología , Activadores de Enzimas/química , Activadores de Enzimas/síntesis química , Estructura Molecular , Animales
4.
Int J Biol Macromol ; 274(Pt 2): 133184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925176

RESUMEN

Pyruvate kinase (PK) activators have potential therapeutic applications in diseases such as sickle cell anemia. In this study, N-Substituted sulfonamide derivatives of 1,4-dihydropyridines were synthesized and evaluated as PK activators in vitro and using molecular docking studies. The compounds were synthesized by reacting dicarbonyl compounds with ammonium acetate, 5-nitrobenzaldehyde, and alumina sulfuric acid (ASA), followed by reduction and sulfonylation. The structures of the compounds were analyzed using spectroscopic techniques. DFT calculations provided insights into the electronic properties. Molecular docking of the compounds into the active site of PK showed favorable binding interactions. ADME evaluation indicated suitable solubility, BBB permeation, and lack of CYP450 inhibition. Overall, this study demonstrates the potential of new hybrid 1,4-dihydropyridine substituted sulfonamides as PK activators for further development. According to AC50 values, the compound (DTSF7, 0.97µM) is about 100-fold higher affective than the clinically used sulfonamide compound (AC50 = 90µM) for PK.


Asunto(s)
Simulación del Acoplamiento Molecular , Piruvato Quinasa , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Animales , Conejos , Piruvato Quinasa/metabolismo , Piruvato Quinasa/química , Músculos/efectos de los fármacos , Músculos/enzimología , Músculos/metabolismo , Activadores de Enzimas/farmacología , Activadores de Enzimas/química , Activadores de Enzimas/síntesis química , Dominio Catalítico , Relación Estructura-Actividad
5.
Bioorg Chem ; 150: 107527, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876005

RESUMEN

Two protoberberine alkaloids with a unique C28 skeleton, named xanthiumines A (1) and B (2), respectively, were isolated from the fruits of Xanthium sibiricum Patr. Their structures including absolute configurations were unequivocally established by the comprehensive NMR and MS spectroscopic data analysis together with gauge-independent atomic orbital (GIAO) NMR calculations, and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 are the first examples of natural protoberberine alkaloid with a phenolic acid group at C-13a. Their plausible biosynthetic pathway was proposed on the basis of the coexisting alkaloid monomer as the precursor. Furthermore, the effects and related molecular mechanism of compound 1 on hepatic lipid accumulation were also investigated in oleic acid (OA)-treated HepG2 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Alcaloides de Berberina , Frutas , Xanthium , Humanos , Frutas/química , Xanthium/química , Alcaloides de Berberina/química , Alcaloides de Berberina/farmacología , Alcaloides de Berberina/aislamiento & purificación , Células Hep G2 , Estructura Molecular , Proteínas Quinasas Activadas por AMP/metabolismo , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Activadores de Enzimas/farmacología , Activadores de Enzimas/química , Activadores de Enzimas/aislamiento & purificación
6.
Br J Pharmacol ; 181(18): 3346-3363, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38757416

RESUMEN

BACKGROUND AND PURPOSE: The AMP-activated protein kinase (AMPK) signalling pathway is a desirable target for various cardiovascular diseases (CVD), while the involvement of AMPK-mediated specific downstream pathways and effective interventions in hyperlipidaemia-induced endothelial dysfunction remain largely unknown. Herein, we aim to identify an effective AMPK activator and to explore its efficacy and mechanism against endothelial dysfunction. EXPERIMENTAL APPROACH: Molecular docking technique was adopted to screen for the potent AMPK activator among 11 most common rare ginsenosides. In vivo, poloxamer 407 (P407) was used to induce acute hyperlipidaemia in C57BL/6J mice. In vitro, palmitic acid (PA) was used to induce lipid toxicity in HAEC cells. KEY RESULTS: We discovered the strongest binding of ginsenoside Rh4 to AMPKα1 and confirmed the action of Rh4 on AMPK activation. Rh4 effectively attenuated hyperlipidaemia-related endothelial injury and oxidative stress both in vivo and in vitro and restored cell viability, mitochondrial membrane potential and mitochondrial oxygen consumption rate in HAEC cells. Mechanistically, Rh4 bound to AMPKα1 and simultaneously up-regulated AKT/eNOS-mediated NO release, promoted PGC-1α-mediated mitochondrial biogenesis and inhibited P38 MAPK/NFκB-mediated inflammatory responses in both P407-treated mice and PA-treated HAEC cells. The AMPK inhibitor Compound C treatment completely abrogated the regulation of Rh4 on the above pathways and weakened the lowering effect of Rh4 on endothelial impairment markers, suggesting that the beneficial effects of Rh4 are AMPK dependent. CONCLUSION AND IMPLICATIONS: Rh4 may serve as a novel AMPK activator to protect against hyperlipidaemia-induced endothelial dysfunction, providing new insights into the prevention and treatment of endothelial injury-associated CVD.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ginsenósidos , Ratones Endogámicos C57BL , Animales , Ginsenósidos/farmacología , Ginsenósidos/química , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Ratones , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Humanos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Activadores de Enzimas/farmacología , Células Cultivadas
7.
Chem Biol Drug Des ; 103(5): e14539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760181

RESUMEN

Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused 'mixed' type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Cinética , Humanos , Metoxaleno/farmacología , Metoxaleno/química , Activadores de Enzimas/química , Activadores de Enzimas/farmacología
8.
J Diabetes ; 16(5): e13544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664885

RESUMEN

As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Homeostasis , Humanos , Glucoquinasa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Activadores de Enzimas/uso terapéutico , Activadores de Enzimas/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Glucemia/metabolismo , Animales , Glucosa/metabolismo
9.
Chembiochem ; 25(12): e202400284, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38609329

RESUMEN

The proteasome is a multisubunit protease system responsible for the majority of the protein turnover in eukaryotic organisms. Dysregulation of this enzymatic complex leads to protein accumulation, subsequent aggregation, and ultimately diseased states; for that reason, positive modulation of its activity has been recently investigated as a therapeutic strategy for neurodegenerative and age-related diseases. The small molecule AM404 was recently identified as an activator of the 20S isoform of the proteasome and further exploration of the scaffold revealed the importance of the polyunsaturated fatty acid chain to elicit activity. Herein, we report the investigation of the aromatic region of the scaffold and the evaluation of the small molecules in a variety of proteasome activity and protein degradation assays. We found that derivatives A22 and A23, compared to AM404, exhibit enhanced proteasome activity in biochemical and cellular proteasome assays and more favorable cellular viability profiles. Additionally, these compounds demonstrate the ability to degrade intrinsically disordered proteins, regardless of their molecular weight, and the ability to restore the proteasome activity in the presence of toxic oligomeric α-Syn species in a biochemical setting.


Asunto(s)
Ácidos Araquidónicos , Activadores de Enzimas , Complejo de la Endopetidasa Proteasomal , Ácidos Araquidónicos/química , Ácidos Araquidónicos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Activación Enzimática/efectos de los fármacos , Proteolisis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas Intrínsecamente Desordenadas/metabolismo , Aminoácidos Aromáticos/metabolismo
10.
Haematologica ; 109(8): 2639-2652, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38450513

RESUMEN

Mitapivat, a pyruvate kinase activator, shows great potential as a sickle cell disease (SCD)-modifying therapy. The safety and efficacy of mitapivat as a long-term maintenance therapy are currently being evaluated in two open-label studies. Here we applied a comprehensive multi-omics approach to investigate the impact of activating pyruvate kinase on red blood cells (RBC) from 15 SCD patients. HbSS patients were enrolled in one of the open-label, extended studies (NCT04610866). Leukodepleted RBC obtained from fresh whole blood at baseline, prior to drug initiation, and at longitudinal timepoints over the course of the study were processed for multi-omics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBC. Mitapivat decreased 2,3-diphosphoglycerate levels, increased adenosine triphosphate levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of treatment, with minimal changes in reticulocyte counts. In the first 6 months of treatment there were also transient elevations of lysophosphatidylcholines and oxylipins with depletion of free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBC identified benefits for glycolysis, as well as activation of the Lands cycle.


Asunto(s)
Anemia de Células Falciformes , Eritrocitos , Piruvato Quinasa , Humanos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/sangre , Eritrocitos/metabolismo , Piruvato Quinasa/metabolismo , Masculino , Femenino , Adulto , Metaboloma , Metabolómica/métodos , Proteoma , Proteómica/métodos , Adolescente , Adulto Joven , Activación Enzimática , Glucólisis/efectos de los fármacos , Activadores de Enzimas/uso terapéutico , Activadores de Enzimas/farmacología , Resultado del Tratamiento , Multiómica
11.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361954

RESUMEN

Metabolic reprogramming is a key attribute of cancer progression. An altered expression of pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers. PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database of Indian medicinal plants to identify potential activators of PKM2. The initial screening was carried out for the physicochemical properties of the compounds, and then structure-based molecular docking was performed to select compounds based on their binding affinity towards PKM2. Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed decent stability of the protein-ligand complex and relatival conformational dynamics throughout the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive approach in treating human malignancy after required validation.


Asunto(s)
Activadores de Enzimas , Isoflavonas , Neoplasias , Piruvato Quinasa , Humanos , Línea Celular Tumoral , Proliferación Celular , Activadores de Enzimas/farmacología , Activadores de Enzimas/uso terapéutico , Glicósidos/farmacología , Glicósidos/uso terapéutico , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/metabolismo , Piruvato Quinasa/metabolismo
12.
SLAS Discov ; 27(8): 419-427, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089246

RESUMEN

Enzyme activation remains a largely under-represented and poorly exploited area of drug discovery despite some key literature examples of the successful application of enzyme activators by various mechanisms and their importance in a wide range of therapeutic interventions. Here we describe the background nomenclature, present the current position of this field of drug discovery and discuss the challenges of hit identification for enzyme activation, as well as our perspectives on the approaches needed to overcome these challenges in early drug discovery.


Asunto(s)
Activadores de Enzimas , Activadores de Enzimas/farmacología , Activadores de Enzimas/uso terapéutico
13.
CNS Neurosci Ther ; 28(6): 818-828, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35396903

RESUMEN

Chronic pain remains an unresolved problem. Current treatments have limited efficacy. Thus, novel therapeutic targets are urgently required for the development of more effective analgesics. An increasing number of studies have proved that sirtuin 1 (SIRT1) agonists can relieve chronic pain. In this review, we summarize recent progress in understanding the roles and mechanisms of SIRT1 in mediating chronic pain associated with peripheral nerve injury, chemotherapy-induced peripheral neuropathy, spinal cord injury, bone cancer, and complete Freund's adjuvant injection. Emerging studies have indicated that SIRT1 activation may exert positive effects on chronic pain relief by regulating inflammation, oxidative stress, and mitochondrial dysfunction. Therefore, SIRT1 agonists may serve as potential therapeutic drugs for chronic pain.


Asunto(s)
Dolor Crónico , Activadores de Enzimas , Sirtuina 1 , Analgésicos/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Activadores de Enzimas/farmacología , Humanos
14.
PLoS One ; 17(3): e0265761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312718

RESUMEN

Glucokinase activators are regarded as potent candidates for diabetes treatment, however, in clinical studies on patients with type 2 diabetes, a diminishing efficacy was observed after chronic treatment with them. The mechanism of this reduction has not been elucidated, and whether it is a class effect of glucokinase activators remains inconclusive. Here, we firstly identified a diabetic animal model that shows the diminished efficacy after long-term treatment with MK-0941, a glucokinase activator that exhibited diminished efficacy in a clinical study, and we analyzed the mechanism underlying its diminished efficacy. In addition, we evaluated the long-term efficacy of another glucokinase activator, TMG-123. Goto-Kakizaki rats were treated with MK-0941 and TMG-123 for 24 weeks. The results showed that glycated hemoglobin A1C levels and plasma glucose levels decreased transiently but increased over time with the continuation of treatment in the MK-0941-treated group, while decreased continuously in the TMG-123-treated group. Only in the TMG-123-treated group, higher plasma insulin levels were shown at the later stage of the treatment period. For the mechanism analysis, we conducted a hepatic enzyme assay and liver perfusion study in Goto-Kakizaki rats after chronic treatment with MK-0941 and TMG-123, and revealed that, only in the MK-0941-treated group, the activity of glucose-6-phosphatase was increased, and hepatic glucose utilization was decreased compared to the non-treated group. These data indicate that disruptions in hepatic glucose metabolism are involved in the diminished efficacy of glucokinase activators.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Activadores de Enzimas/farmacología , Activadores de Enzimas/uso terapéutico , Glucoquinasa/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Hígado/metabolismo , Ratas
15.
J Med Chem ; 65(3): 2497-2506, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35045253

RESUMEN

Manipulating the activities of E3 ubiquitin ligases with chemical ligands holds promise for correcting E3 malfunctions and repurposing the E3s for induced protein degradation in the cell. Herein, we report an alternative strategy to proteolysis-targeting chimeras (PROTACs) and molecular glues to induce protein degradation by constructing and screening a γ-AA peptide library for cyclic peptidomimetics binding to the HECT domain of E6AP, an E3 ubiquitinating p53 coerced by the human papillomavirus and regulating pathways implicated in neurodevelopmental disorders such as Angelman syndrome. We found that a γ-AA peptide P6, discovered from the affinity-based screening with the E6AP HECT domain, can significantly stimulate the ubiquitin ligase activity of E6AP to ubiquitinate its substrate proteins UbxD8, HHR23A, and ß-catenin in reconstituted reactions and HEK293T cells. Furthermore, P6 can accelerate the degradation of E6AP substrates in the cell by enhancing the catalytic activities of E6AP. Our work demonstrates the feasibility of using synthetic ligands to stimulate E3 activities in the cell. The E3 stimulators could be developed alongside E3 inhibitors and substrate recruiters such as PROTACs and molecular glues to leverage the full potential of protein ubiquitination pathways for drug development.


Asunto(s)
Activadores de Enzimas/farmacología , Péptidos Cíclicos/farmacología , Peptidomiméticos/farmacología , Proteolisis/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Proteínas Sanguíneas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Ligandos , Proteínas de la Membrana/metabolismo , Biblioteca de Péptidos , beta Catenina/metabolismo
16.
PLoS One ; 17(1): e0261000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085251

RESUMEN

BACKGROUND: Diabetic nephropathy is associated with endothelial dysfunction and oxidative stress, in which the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway is impaired. We hypothesize that sGC stimulator Compound 1 can enhance NO signaling, reduce proteinuria in a diabetic nephropathy preclinical model with diminished NO bioavailability and increased oxidized sGC. Therefore, we evaluated the effect of sGC stimulator Compound 1 on the renal effect in obese ZSF1 (ZSF1 OB) rats. MATERIALS AND METHODS: The sGC stimulator Compound 1, the standard of care agent Enalapril, and a combination of Compound 1 and Enalapril were administered chronically to obese ZSF1 rats for 6 months. Mean arterial pressure, heart rate, creatinine clearance for glomerular filtration rate (eGFR), urinary protein excretion to creatinine ratio (UPCR), and urinary albumin excretion ratio (UACR) were determined during the study. The histopathology of glomerular and interstitial lesions was assessed at the completion of the study. RESULTS: While both Compound 1 and Enalapril significantly reduced blood pressure, the combination of Compound 1 and Enalapril normalized blood pressure levels. Compound 1 improved eGFR and reduced UPCR and UACR. A combination of Enalapril and Compound 1 resulted in a marked reduction in UPCR and UACR and improved GFR. CONCLUSION: The sGC stimulator Compound 1 as a monotherapy slowed renal disease progression, and a combination of the sGC stimulator with Enalapril provided greater renal protection in a rodent model of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Enalaprilato/administración & dosificación , Activadores de Enzimas/administración & dosificación , Guanilil Ciclasa Soluble/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Células CHO , Cricetulus , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Enalaprilato/farmacología , Activadores de Enzimas/farmacología , Perfilación de la Expresión Génica , Pruebas de Función Renal , Masculino , Óxido Nítrico/metabolismo , Estrés Oxidativo , Proyectos Piloto , Ratas , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
17.
Oncol Rep ; 47(2)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34958113

RESUMEN

CXC chemokine receptor 7 (CXCR7) is frequently overexpressed in cancer and plays a significant role in tumor growth and metastasis. Consequently, inhibition of CXCR7 is important for treatment strategies. However, little is known concerning the biological role of CXCR7 and its underlying mechanisms in head and neck squamous cell carcinoma (HNSCC). The present study investigated the role of CXCR7 in HNSCC, as well as the effects of decursin, a pyranocoumarin compound isolated from Angelica gigas Nakai, on CXCR7 and its downstream signaling. Expression levels of CXCR7 in HNSCC cells were examined using flow cytometry, reverse transcriptase PCR, western blot analysis, and immunofluorescence. The effects of CXCR7 on cell proliferation, migration, and invasion were studied using CCK­8, gap closure, and transwell assays. The results revealed that decursin significantly reduced CXCR7 expression and inhibited cell proliferation, migration, and invasion of human HNSCC cell lines. In addition, decursin induced G0/G1 cell cycle arrest in CXCR7­overexpressing cells and decreased the levels of cyclin A, cyclin E, and CDK2. Furthermore, CXCR7 promoted cancer progression via the STAT3/c­Myc pathway in HNSCC; suppression of CXCR7 with decursin prevented this effect. These results suggest that CXCR7 promotes cancer progression through the STAT3/c­Myc pathway and that the natural compound decursin targets CXCR7 and may be valuable in the treatment of HNSCC.


Asunto(s)
Benzopiranos/farmacología , Butiratos/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Receptores CXCR/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Regulación hacia Abajo , Activadores de Enzimas/farmacología , Humanos
18.
Chem Biol Drug Des ; 99(2): 247-263, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34714587

RESUMEN

Glucokinase is a key enzyme which converts glucose into glucose-6-phosphate in the liver and pancreatic cells of the human. In the liver, glucokinase promotes the synthesis of glycogen, and in the pancreas, it helps in glucose-sensitive insulin release. It serves as a "glucose sensor" and thereby plays an important role in the regulation of glucose homeostasis. Due to this activity, glucokinase is considered as an attractive drug target for type 2 diabetes. It created a lot of interest among the researchers, and several small molecules were discovered. The research work was initiated in 1990. However, the hypoglycemic effect, increased liver burden, and loss of efficacy over time were faced during clinical development. Dorzagliatin, a novel glucokinase activator that acts on both the liver and pancreas, is in the late-stage clinical development. TTP399, a promising hepatoselective GK activator, showed a clinically significant and sustained reduction in glycated hemoglobin with a low risk of adverse effects. The successful findings generated immense interest to continue further research in finding small molecule GK activators for the treatment of type 2 diabetes. The article covers different series of GK activators reported over the past decade and the structural insights into the GK-GK activator binding which, we believe will stimulate the discovery of novel GK activators to treat type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Activadores de Enzimas/farmacología , Glucoquinasa/efectos de los fármacos , Hipoglucemiantes/farmacología , Animales , Descubrimiento de Drogas , Activadores de Enzimas/química , Activadores de Enzimas/uso terapéutico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico
19.
J Biomol Struct Dyn ; 40(4): 1629-1638, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33034258

RESUMEN

Prostate cancer (PC) is one of the major impediments affecting men, which leads approximately 31,620 deaths in both developing and developed countries. Although some chemotherapy drugs have been reported for prostate cancer, they are not effective due to the lack of safety, efficacy and low selectivity. Hence, the novel alternative anticancer agents with remarkable effect are highly appreciable. Natural plants contain several bio-active compounds which have been traditionally used for the various medical treatments. Particularly, naringin is a natural bio-active compound commonly found in the citrus fruits, which have shown numerous biological activities. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene, which activates both lipid phosphates and protein phosphates. The PTEN gene is negative regulator of PI3K/AKT/mTOR pathways, since, this signaling pathway play an essential role in the cell survival, proliferation and migration. In the present in silico investigation, structure based virtual screening, molecular docking, molecular dynamics simulation and Adsorption, Distribution, Metabolism, Excretion (ADME) prediction were employed to determine the binding affinity, stability and drug likeness properties of top ranked screened compounds and naringin, respectively. The results revealed that the complex has good molecular interactions, binding stability (peak between 0.3 and 0.4 nm) and no violations in the Lipinski Rule of 5 in naringin, but the screened compounds violated the drug likeness properties. From the in silico analyses, it is identified that naringin compound might assist in the development of novel therapeutic candidate against prostate cancer. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Activadores de Enzimas/farmacología , Flavanonas/farmacología , Fosfohidrolasa PTEN , Neoplasias de la Próstata , Humanos , Masculino , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/tratamiento farmacológico
20.
Molecules ; 26(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34885917

RESUMEN

After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Aminas/química , Aminas/farmacología , Aminoácidos/química , Aminoácidos/farmacología , Animales , Humanos , Modelos Moleculares , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...