Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros













Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3985, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734677

RESUMEN

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Asunto(s)
Acuagliceroporinas , Microscopía por Crioelectrón , Melarsoprol , Simulación de Dinámica Molecular , Pentamidina , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Acuagliceroporinas/metabolismo , Acuagliceroporinas/química , Melarsoprol/metabolismo , Melarsoprol/química , Pentamidina/química , Pentamidina/metabolismo , Transporte Biológico , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Humanos
2.
Exp Eye Res ; 240: 109828, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354944

RESUMEN

Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and H2O2. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens. Western blotting showed AQP3 in the lens exists as 25 kDa non-glycosylated and 37 kDa glycosylated monomeric forms in all lens species. To identify the regions in the lens where AQP3 is expressed Western blotting was repeated using epithelial, outer cortical and inner cortical/core fractions isolated from the mouse lens. AQP3 was found in all lens regions, with the highest signal of non-glycosylated AQP3 being found in the epithelium. While in the inner cortex/core region AQP3 signal was not only lower but was predominately from the glycosylated form of AQP3. Immunolabelling of lens sections with AQP3 antibodies confirmed that AQP3 is found in all regions of the adult mouse, and also revealed that the subcellular distribution of AQP3 changes as a function of fiber cell differentiation. In epithelial and peripheral fiber cells of the outer cortex AQP3 labelling was predominately associated with membrane vesicles in the cytoplasm, but in the deeper regions of the lens AQP3 labelling was associated with the plasma membranes of fiber cells located in the inner cortex and core of the lens. To determine how this adult pattern of AQP3 subcellular distribution was established, immunolabelling for AQP3 was performed on embryonic and postnatal lenses. AQP3 expression was first detected on embryonic day (E) 11 in the membranes of primary fiber cells that have started to elongate and fill the lumen of the lens vesicle, while later at E16 the AQP3 labelling in the primary fiber cells had shifted to a predominately cytoplasmic location. In the following postnatal (P) stages of lens growth at P3 and P6, AQP3 labelling remained cytoplasmic across all regions of the lens and it was not until P15 when the pattern of localisation of AQP3 changed to an adult distribution with cytoplasmic labelling detected in the outer cortex and membrane localisation detected in the inner cortex and core of the lens. Comparison of the AQP3 labelling pattern to those obtained previously for AQP0 and AQP5 showed that the subcellular distribution was more similar to AQP5 than AQP0, but there were still significant differences that suggest AQP3 may have unique roles in the maintenance of lens transparency.


Asunto(s)
Acuaporina 3 , Cristalino , Animales , Bovinos , Humanos , Ratones , Ratas , Acuagliceroporinas/metabolismo , Acuaporina 3/genética , Acuaporina 3/metabolismo , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , Mamíferos , Agua/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338845

RESUMEN

The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Humanos , Bovinos , Masculino , Animales , Acuaporina 3/genética , Acuaporina 3/metabolismo , Acuaporinas/metabolismo , Semen/metabolismo , Epidídimo/metabolismo , Acuagliceroporinas/metabolismo
4.
Zoolog Sci ; 40(6): 455-462, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064372

RESUMEN

Aquaporin (AQP) 7 and AQP9 are membrane channel proteins called aquaglyceroporins and are related to glucose and lipid metabolism. AQP7 is mainly expressed in white adipose tissue (WAT) and is involved in releasing glycerol into the bloodstream. AQP9 is the glycerol channel in the liver that supplies glycerol to the hepatic cells. In this study, we investigated the relationship between the expression of aquaglyceroporins and lifestyle-related diseases, such as obesity and fatty liver, using 22-week-old db/db mice. Body weight, WAT, and liver weight showed increases in db/db mice. The levels of liver lipids, plasma lipids, insulin, and leptin were also increased in db/db mice. Gene expression related to fatty acid and triglyceride synthesis in the liver was enhanced in db/db mice. In addition, gene and protein expression of gluconeogenesis-related enzymes was increased. Conversely, lipolysis-related gene expression in WAT was reduced. In the db/db mice, AQP9 expression in the liver was raised; however, AQP7 expression in WAT was reduced. These results suggest that in db/db mice, enhanced hepatic AQP9 expression increased the supply of glycerol to the liver and induced fatty liver and hyperglycemia. Additionally, reduced AQP7 expression in WAT is associated with excessive lipid accumulation in adipocytes. Aquaglyceroporins are essential molecules for glucose and lipid metabolism, and may be potential target molecules for the treatment of obesity and lifestyle-related diseases.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Hígado Graso , Obesidad , Animales , Ratones , Acuagliceroporinas/genética , Acuagliceroporinas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Lípidos , Hígado/metabolismo , Obesidad/genética , Obesidad/metabolismo
5.
Cells ; 12(15)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37566082

RESUMEN

Osmoregulation plays a vital role in sperm function, encompassing spermatogenesis, maturation, and fertilization. Aquaglyceroporins, a subclass of aquaporins (AQPs), facilitate the transport of water and glycerol across the sperm membrane, with glycerol serving as an important substrate for sperm bioenergetics. This study aimed to elucidate the significance of AQP-mediated glycerol permeability in sperm motility. The presence and localization of AQP3 and AQP7 in human sperm were assessed using immunofluorescence. Subsequently, the glycerol permeability of spermatozoa obtained from normozoospermic individuals (n = 30) was measured, using stopped-flow light scattering, after incubation with specific aquaporin inhibitors targeting AQP3 (DFP00173), AQP7 (Z433927330), or general aquaglyceroporin (phloretin). Sperm from asthenozoospermic men (n = 30) were utilized to evaluate the AQP7-mediated glycerol permeability, and to compare it with that of normozoospermic men. Furthermore, hypermotile capacitated sperm cells were examined, to determine the AQP7 expression and membrane glycerol permeability. AQP3 was predominantly observed in the tail region, while AQP7 was present in the head, midpiece, and tail of human sperm. Our findings indicate that AQP7 plays a key role in glycerol permeability, as the inhibition of AQP7 resulted in a 55% decrease in glycerol diffusion across the sperm membrane. Importantly, this glycerol permeability impairment was evident in spermatozoa from asthenozoospermic individuals, suggesting the dysregulation of AQP7-mediated glycerol transport, despite similar AQP7 levels. Conversely, the AQP7 expression increased in capacitated sperm, compared to non-capacitated sperm. Hence, AQP7-mediated permeability may serve as a valuable indicator of sperm motility, and be crucial in sperm function.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Astenozoospermia , Humanos , Masculino , Acuagliceroporinas/metabolismo , Acuaporinas/metabolismo , Glicerol/metabolismo , Permeabilidad , Semen/metabolismo , Capacitación Espermática , Motilidad Espermática
6.
Mol Biol Cell ; 34(9): ar92, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379203

RESUMEN

The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.


Asunto(s)
Acuagliceroporinas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Glicerol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acuagliceroporinas/metabolismo , Presión Hidrostática , Fosforilación , Pared Celular/metabolismo
7.
J Mol Evol ; 91(4): 441-457, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37149832

RESUMEN

Aquaporins (AQPs) are integral membrane proteins responsible for water transport across cellular membranes in both prokaryotes and eukaryotes. A subfamily of AQPs, known as aquaglyceroporins (AQGPs), facilitate the transport of small solutes such as glycerol, water, and other solutes across cellular membranes. These proteins are involved in a variety of physiological processes, such as organogenesis, wound healing, and hydration. Although AQPs have been studied extensively in different species, their conservation patterns, phylogenetic relationships, and evolution in mammals remain unexplored. In the present study, 119 AQGP coding sequences from 31 mammalian species were analysed to identify conserved residues, gene organisation, and most importantly, the nature of AQGP gene selection. Repertoire analysis revealed the absence of AQP7, 9, and 10 genes in certain species of Primates, Rodentia, and Diprotodontia, although not all three genes were absent in a single species. Two Asparagine-Proline-Alanine (NPA) motifs located at the N- and C-terminal ends, aspartic acid (D) residues, and the ar/R region were conserved in AQP3, 9, and 10. Six exons encoding the functional MIP domain of AQGP genes were found to be conserved across mammalian species. Evolutionary analysis indicated signatures of positive selection in AQP7, 9, and 10 amongst different mammalian lineages. Furthermore, substitutions of certain amino acids located close to critical residues may alter AQGP functionality, which is crucial for substrate selectivity, pore formation, and transport efficiency required for the maintenance of homeostasis in different mammalian species.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Animales , Acuagliceroporinas/genética , Acuagliceroporinas/química , Acuagliceroporinas/metabolismo , Filogenia , Secuencia de Aminoácidos , Acuaporinas/química , Acuaporinas/genética , Acuaporinas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Agua/metabolismo
8.
Eur Phys J E Soft Matter ; 46(1): 3, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656387

RESUMEN

The aquaglyceroporin-7 (AQP7) protein channels facilitate the permeation of glycerol and water molecules through cell membranes by passive diffusion and play a crucial role in cell physiology. Considering the wide-spirit usage of radiofrequency electromagnetic fields in our daily life, in this study, the effects of constant and GHz electric fields were investigated on the dynamics of glycerol and water molecules inside the AQP7. To this end, four different molecular simulation groups were carried out in the absence and presence of electric fields. The results reveal that the free energy profile of the glycerol permeation inside the channel is reduced in the presence of the field of 0.2 mV/nm and the oscillating field of 10 GHz. In addition, exposing the channel to the electric field of 0.2 mV/nm assisted the water transport through the channel with no considerable effect on channel stability. These observations provide a framework for understanding how such fields could alter normal operation of protein channels, which may lead to disease beginning or being used in disease treatment. Glycerol and water molecules permeation through the aquaglyceroporin-7 channel can be influenced by application of external electric fields.


Asunto(s)
Acuagliceroporinas , Simulación de Dinámica Molecular , Acuagliceroporinas/metabolismo , Glicerol/metabolismo , Agua , Transporte Biológico
9.
Adv Exp Med Biol ; 1398: 289-302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36717502

RESUMEN

Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function, in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Resistencia a la Insulina , Enfermedades Metabólicas , Obesidad , Humanos , Acuagliceroporinas/genética , Acuagliceroporinas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Glicerol/metabolismo , Lípidos , Obesidad/genética , Obesidad/metabolismo
10.
Microbiol Spectr ; 10(5): e0249622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36106896

RESUMEN

The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) is a human nasopharyngeal commensal, and host N-glycan metabolism promotes its colonization and invasion. It has been reported that glucose represses, while fetuin, a glycoconjugated model protein, induces, the genes involved in N-glycan degradation through the two-component system TCS07. However, the mechanisms of glucose repression and TCS07 induction remain unknown. Previously, we found that the pneumococcal aquaglyceroporin Pn-AqpC facilitates oxygen uptake, thereby contributing to the antioxidant potential and virulence. In this study, through Tandem Mass Tag (TMT) quantitative proteomics, we found that the deletion of Pn-aqpC caused a marked upregulation of 11 proteins involved in N-glycan degradation in glucose-grown pneumococcus R6. Both quantitative RT-PCR and GFP fluorescence reporters revealed that the upregulation of N-glycan genes was completely dependent on response regulator (RR) 07, but not on the histidine kinase HK07 of TCS07 or the phosphoryl-receiving aspartate residue of RR07 in ΔPn-aqpC, indicating that RR07 was activated in an HK07-independent manner when Pn-AqpC was absent. The deletion of Pn-aqpC also enhanced the expression of pyruvate formate lyase and increased formate production, probably due to reduced cellular oxygen content, indicating that a shunt of glucose catabolism to mixed acid fermentation occurs. Notably, formate induced the N-glycan degradation genes in glucose-grown R6, but the deletion of rr07 abolished this induction, indicating that formate activates RR07. However, the induction of N-glycan degradation proteins reduced the intraspecies competition of R6 in glucose. Therefore, although N-glycan degradation promotes pneumococcal pathogenesis, the glucose metabolites-based RR07 regulation reported here is of importance for balancing growth fitness and the pathogenicity of pneumococcus. IMPORTANCE Pneumococcus, a human opportunistic pathogen, is capable of metabolizing host complex N-glycans. N-glycan degradation promotes pneumococcus colonization in the nasopharynx as well as invasion into deeper tissues, thus significantly contributing to pathogenesis. It is known that the two-component system 07 induces the N-glycan metabolizing genes; however, how TCS07 is activated remains unknown. This study reveals that formate, the anaerobic fermentation metabolite of pneumococcus, is a novel activator of the response regulator (RR) 07. Although the high expression of N-glycan degradation genes promotes pneumococcal colonization in the nasopharynx and pathogenesis, this reduces pneumococcal growth fitness in glucose as indicated in this work. Notably, the presence of Pn-AqpC, an oxygen-transporting aquaglyceroporin, enables pneumococcus to maintain glucose homolactic acid fermentation, thus reducing formate production, maintaining RR07 inactivation, and controlling N-glycan degrading genes at a non-induced status. Thus, this study highlights a novel fermentation metabolism pattern linking TCS-regulated carbohydrate utilization strategies as a trade-off between the fitness and the pathogenicity of pneumococcus.


Asunto(s)
Acuagliceroporinas , Liasas , Humanos , Streptococcus pneumoniae/metabolismo , Fermentación , Histidina Quinasa/metabolismo , Ácido Aspártico/metabolismo , Antioxidantes/metabolismo , Polisacáridos , Formiatos/metabolismo , Glucosa/metabolismo , Fetuínas/metabolismo , Acuagliceroporinas/metabolismo , Piruvatos/metabolismo , Liasas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-35988877

RESUMEN

The effect of acute hypoosmotic stress on the neural response was investigated using the neurons identified in the abdominal ganglion of the amphibious mollusk Onchidium. The membrane potential of an identified neuron (Ip-1/2) was not significantly altered in 50% hypoosmotic artificial sea water. In isotonic 50% artificial seawater (ASW) with osmolarity that was compensated for using glycerol or urea, the membrane potentials of Ip-1/2 were also not altered compared to those in 50% hypoosmotic ASW. However, hyperpolarization was induced in isotonic 50% ASW when osmolarity was compensated for using sucrose or mannose. In the presence of volume-regulated anion channel (VRAC) inhibitors (niflumic acid and glibenclamide), the Ip-1/2 membrane potentials were hyperpolarized in 50% hypoosmotic ASW. These results suggest that there is a compensatory mechanism involving aquaglyceroporin and VRAC-like channels that maintains membrane potential under hypoosmotic conditions. Here, we detected the expression of aquaglyceroporin mRNA in neural tissues of Onchidium.


Asunto(s)
Acuagliceroporinas , Gastrópodos , Animales , Aniones/metabolismo , Aniones/farmacología , Acuagliceroporinas/metabolismo , Acuagliceroporinas/farmacología , Gastrópodos/metabolismo , Gliburida/metabolismo , Gliburida/farmacología , Glicerol/metabolismo , Manosa/metabolismo , Manosa/farmacología , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Ácido Niflúmico/metabolismo , Ácido Niflúmico/farmacología , ARN Mensajero/metabolismo , Sacarosa/metabolismo
12.
Med Oncol ; 39(11): 174, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972604

RESUMEN

Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.


Asunto(s)
Acuagliceroporinas , Neoplasias , Acuagliceroporinas/metabolismo , Glicerol/metabolismo , Humanos , Peróxido de Hidrógeno , Neoplasias/genética
13.
Reprod Domest Anim ; 57 Suppl 5: 78-81, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35467055

RESUMEN

Artificial insemination (AI) for pigs relies on liquid storage of extended semen at 17°C, which preserves sperm quality and ensures its fertilizing capacity. Routine quality controls include the evaluation of sperm motility, viability and capacitation status. The physiological functions of all these features depend on transmembrane aquaporins (AQPs), proteins playing key roles in osmoadaptation. In this study, we made a relative quantification, using RT-qPCR, of the mRNA of several sperm AQPs in AI-liquid semen doses before and after a 48-hr incubation period, aiming to determine possible quantitative compromising expression changes during the process that could serve as a diagnostic tool. Our results showed a decrease in classical sperm motility variables (total and progressive motility and velocity) and sperm viability after 48-hr storage, whereas capacitation status increased overtime. mRNA expression increased in the orthodox AQP4 and AQP6 after 48-hr incubation, relative to control (0 hr) and 24-hr time-points. Moreover, mRNA expression of aquaglyceroporins AQP3, AQP7 and AQP10 was higher after 48-hr incubation, confirmed by AQP7-protein validation using Western blot. Our results indicate that expression levels of AQPs-mRNA can change in ejaculated pig spermatozoa under conditions of ex-vivo incubation that could modify sperm homeostasis, suggesting it could eventually become a relevant molecular biomarker to assess the efficiency of liquid storage of pig semen.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Preservación de Semen , Animales , Acuagliceroporinas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Biomarcadores/metabolismo , Masculino , ARN Mensajero/metabolismo , Semen/metabolismo , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides/fisiología , Porcinos
14.
Histochem Cell Biol ; 157(6): 623-639, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35235046

RESUMEN

The glycerol channel AQP7 facilitates glycerol efflux from adipose tissue (AT), and AQP7 deficiency has been suggested to promote obesity. However, the release of glycerol from AT is not fully blocked in AQP7-deficient mice, which suggests that either alternative glycerol channels are present in AT or significant simple diffusion of glycerol occurs. Previous investigations of the expression of other aquaglyceroporins (AQP3, AQP9, AQP10) than AQP7 in AT are contradictory. Therefore, we here aim at determining the cellular localization of AQP3 and AQP9 in addition to AQP7 in human and mouse AT using well-characterized antibodies for immunohistochemistry (IHC) and immunoblotting as well as available single-cell transcriptomic data from human and mouse AT. We confirm that AQP7 is expressed in endothelial cells and adipocytes in human AT and find ex vivo evidence for interaction between AQP7 and perilipin-1 in adipocytes. In addition, labeling for AQP7 in human AT also includes CD68-positive cells. No labeling for AQP3 or AQP9 was identified in endothelial cells or adipocytes in human or mouse AT using IHC. Instead, in human AT, AQP3 was predominantly found in erythrocytes, whereas AQP9 expression was observed in a small number of CD15-positive cells. The transcriptomic data revealed that AQP3 mRNA was found in a low number of cells in most of the identified cell clusters, whereas AQP9 mRNA was found in myeloid cell clusters as well as in clusters likely representing mesothelial progenitor cells. No AQP10 mRNA was identified in human AT. In conclusion, the presented results do not suggest a functional overlap between AQP3/AQP9/AQP10 and AQP7 in human or mouse white AT.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Acuagliceroporinas/genética , Acuagliceroporinas/metabolismo , Acuaporinas/metabolismo , Células Endoteliales/metabolismo , Glicerol/metabolismo , Humanos , Ratones , ARN Mensajero/metabolismo
15.
Biochim Biophys Acta Biomembr ; 1864(1): 183795, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627746

RESUMEN

Aquaporins play a crucial role in water homeostasis in the human body, and recently the physiological importance of aquaporins as glycerol channels have been demonstrated. The aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) represent key glycerol channels, enabling glycerol flux across the membranes of cells. Adipocytes are the major source of glycerol and during lipolysis, glycerol is released to be metabolized by other tissues through a well-orchestrated process. Here we show that both AQP3 and AQP7 bind to the lipid droplet protein perilipin 1 (PLIN1), suggesting that PLIN1 is involved in the coordination of the subcellular translocation of aquaglyceroporins in human adipocytes. Moreover, in addition to aquaglyceroporins, we discovered by transcriptome sequencing that AQP1 is expressed in human primary adipocytes. AQP1 is mainly a water channel and thus is thought to be involved in the response to hyper-osmotic stress by efflux of water during hyperglycemia. Thus, this data suggests a contribution of both orthodox aquaporin and aquaglyceroporin in human adipocytes to maintain the homeostasis of glycerol and water during fasting and feeding.


Asunto(s)
Acuaporina 1/genética , Acuaporina 3/genética , Acuaporinas/genética , Hiperglucemia/genética , Perilipina-1/genética , Adipocitos/metabolismo , Acuagliceroporinas/genética , Acuagliceroporinas/metabolismo , Acuaporina 3/metabolismo , Acuaporinas/metabolismo , Regulación de la Expresión Génica/genética , Glicerol/metabolismo , Homeostasis/genética , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/patología , Transcriptoma/genética , Agua/metabolismo
16.
Commun Biol ; 4(1): 643, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059783

RESUMEN

Transmembrane conductance of small uncharged solutes such as glycerol typically occurs through aquaglyceroporins (Glps), which are commonly encoded by multiple genes in metazoan organisms. To date, however, little is known concerning the evolution of Glps in Crustacea or what forces might underly such apparent gene redundancy. Here, we show that Glp evolution in Crustacea is highly divergent, ranging from single copy genes in species of pedunculate barnacles, tadpole shrimps, isopods, amphipods and decapods to up to 10 copies in diplostracan water fleas although with monophyletic origins in each lineage. By contrast the evolution of Glps in Copepoda appears to be polyphyletic, with surprisingly high rates of gene duplication occurring in a genera- and species-specific manner. Based upon functional experiments on the Glps from a parasitic copepod (Lepeophtheirus salmonis), we show that such lineage-level gene duplication and splice variation is coupled with a high rate of neofunctionalization. In the case of L. salmonis, splice variation of a given gene resulted in tissue- or sex-specific expression of the channels, with each variant evolving unique sites for protein kinase C (PKC)- or protein kinase A (PKA)-regulation of intracellular membrane trafficking. The combined data sets thus reveal that mutations favouring a high fidelity control of intracellular trafficking regulation can be a selection force for the evolution and retention of multiple Glps in copepods.


Asunto(s)
Acuagliceroporinas/genética , Crustáceos/genética , Animales , Acuagliceroporinas/metabolismo , Evolución Biológica , Copépodos/genética , Crustáceos/metabolismo , Evolución Molecular , Variación Genética/genética , Familia de Multigenes/genética , Filogenia , Isoformas de Proteínas/genética
17.
Genes (Basel) ; 11(11)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213096

RESUMEN

Current therapy for visceral leishmaniasis (VL), compromised by drug resistance, toxicity, and high cost, demands for more effective, safer, and low-cost drugs. Artemisinin has been found to be an effectual drug alternative in experimental models of leishmaniasis. Comparative genome and transcriptome analysis of in vitro-adapted artesunate-resistant (K133AS-R) and -sensitive wild-type (K133WT) Leishmania donovani parasites was carried out using next-generation sequencing and single-color DNA microarray technology, respectively, to identify genes and interlinked pathways contributing to drug resistance. Whole-genome sequence analysis of K133WT vs. K133AS-R parasites revealed substantial variation among the two and identified 240 single nucleotide polymorphisms (SNPs), 237 insertion deletions (InDels), 616 copy number variations (CNVs) (377 deletions and 239 duplications), and trisomy of chromosome 12 in K133AS-R parasites. Transcriptome analysis revealed differential expression of 208 genes (fold change ≥ 2) in K133AS-R parasites. Functional categorization and analysis of modulated genes of interlinked pathways pointed out plausible adaptations in K133AS-R parasites, such as (i) a dependency on lipid and amino acid metabolism for generating energy, (ii) reduced DNA and protein synthesis leading to parasites in the quiescence state, and (iii) active drug efflux. The upregulated expression of cathepsin-L like protease, amastin-like surface protein, and amino acid transporter and downregulated expression of the gene encoding ABCG2, pteridine receptor, adenylatecyclase-type receptor, phosphoaceylglucosamine mutase, and certain hypothetical proteins are concordant with genomic alterations suggesting their potential role in drug resistance. The study provided an understanding of the molecular basis linked to artemisinin resistance in Leishmania parasites, which may be advantageous for safeguarding this drug for future use.


Asunto(s)
Antiprotozoarios/farmacología , Resistencia a Medicamentos/genética , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Animales , Acuagliceroporinas/genética , Acuagliceroporinas/metabolismo , Artemisininas/farmacología , Artesunato/farmacología , Cromosomas , Resistencia a Medicamentos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Frecuencia de los Genes , Genoma de Protozoos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Leishmaniasis Visceral/parasitología , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma
18.
Cells ; 9(10)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096791

RESUMEN

Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei parasites. The T. brucei aquaglyceroporin isoform 2, TbAQP2, has been linked to the uptake of pentamidine. Negative membrane potentials and transmembrane pH gradients were suggested to promote transport of the dicationic antitrypanosomal drug. Application of ionophores to trypanosomes further hinted at direct inhibition of TbAQP2 by carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Here, we tested for direct effects of three classical ionophores (CCCP, nigericin, gramicidin) on the functionality of TbAQP2 and the related TbAQP3 at conditions that are independent from the membrane potential or a proton gradient. We expressed TbAQP2 and TbAQP3 in yeast, and determined permeability of uncharged glycerol at neutral pH using stopped-flow light scattering. The mobile proton carrier CCCP directly inhibited TbAQP2 glycerol permeability at an IC50 of 2 µM, and TbAQP3 to a much lesser extent (IC50 around 1 mM) likely due to different selectivity filter layouts. Nigericin, another mobile carrier, left both isoforms unaffected. The membrane-integral pore-forming gramicidin evenly inhibited TbAQP2 and TbAQP2 in the double-digit micromolar range. Our data exemplify the need for suitable controls to detect unwanted ionophore side effects even when used at concentrations that are typically recommended to disturb the transmembrane ion distribution.


Asunto(s)
Acuagliceroporinas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Gramicidina/farmacología , Ionóforos/farmacología , Nigericina/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Acuagliceroporinas/química , Carbonil Cianuro m-Clorofenil Hidrazona/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Glicerol/metabolismo , Gramicidina/química , Concentración de Iones de Hidrógeno , Modelos Biológicos , Nigericina/química , Saccharomyces cerevisiae/metabolismo
19.
Ecotoxicol Environ Saf ; 205: 111131, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32827964

RESUMEN

Arsenic (As) is one of the most toxic contaminants to food crops, and as such, decreasing crops uptake and accumulation of As cannot be overemphasized. Here, we characterized a functional wheat NIP2;1 homolog of the As transporter, TaNIP2;1. TaNIP2;1 expression was suppressed by arsenite (As(III)) in wheat. Ectopic expression of TaNIP2;1 in the Δfps1 yeast mutant enhanced yeast sensitivity towards As(III). Conversely, the elevated expression of TaNIP2;1 in Δacr3 mutants decreased yeast sensitivity to arsenate (As(V)), demonstrating that TaNIP2;1 showed both influx and efflux transport activities for As(III) in yeasts. This is further supported by increased As concentration in the yeast cells that overproduce TaNIP2;1 in Δfps1, while As concentration decreased in Δacr3. Furthermore, ectopic expression of TaNIP2;1 in Arabidopsis confirmed that TaNIP2;1 can transport As into plants, as supported by increased sensitivity to and uptake of As(III). No change in plant sensitivity was found to Cu(II), Cd(II), Zn(II) or Ni(II), indicating that transport activity of TaNIP2;1 is specific for As(III). Taken together, our data show that TaNIP2;1 may be involved in As(III) transportation in plants. This finding reveals a functional gene that can be manipulated to reduce As content in wheat.


Asunto(s)
Acuagliceroporinas/genética , Arabidopsis/efectos de los fármacos , Arsenitos/toxicidad , Expresión Génica Ectópica/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Triticum/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Acuagliceroporinas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arsenitos/metabolismo , Bioacumulación , Transporte Biológico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Contaminantes del Suelo/metabolismo , Triticum/genética , Triticum/metabolismo
20.
Cells ; 9(7)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664262

RESUMEN

Transmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids. Currently, gene copy numbers and BLAST are poor predictors of orthologous relationships due to asymmetric glp gene evolution in the different lineages. Such asymmetries can impact estimations of divergence times by millions of years. Experimental investigations of the salmonid channels demonstrated that approximately half of the 20 ancestral paralogs are functional, with neofunctionalization occurring at the transcriptional level rather than the protein transport properties. The combined findings resolve the origins and diversification of glps over >800 million years old and thus form the novel basis for proposing a pandeuterostome glp gene nomenclature.


Asunto(s)
Salmo salar/metabolismo , Animales , Acuagliceroporinas/metabolismo , Femenino , Proteínas de Peces/metabolismo , Glicerol/metabolismo , Masculino , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA