Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Plant Physiol ; 188(2): 1028-1042, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35060611

RESUMEN

Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.


Asunto(s)
Adaptación Ocular/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Adaptación Ocular/genética , Cloroplastos/genética , Ferredoxina-NADP Reductasa/genética , Variación Genética , Genotipo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética
3.
Plant Cell Physiol ; 63(1): 45-56, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34523687

RESUMEN

Jasmonate (JA)-induced plant senescence has been mainly studied with a dark/starvation-promoted system using detached leaves; yet, the induction of whole-plant senescence by JA remains largely unclear. This work reports the finding of a JA-induced whole-plant senescence of tobacco under light/non-starvation conditions and the investigation of underlying regulations. Methyl jasmonate (MeJA) treatment induces the whole-plant senescence of tobacco in a light-intensity-dependent manner, which is suppressed by silencing of NtCOI1 that encodes the receptor protein of JA-Ile (the bioactive derivative of JA). MeJA treatment could induce the senescence-specific cysteine protease gene SAG12 and another cysteine protease gene SAG-L1 to high expression levels in the detached leaf patches under dark conditions but failed to induce their expression in tobacco whole plants under light conditions. Furthermore, MeJA attenuates the RuBisCo activase (RCA) level in the detached leaves but has no effect on this protein in the whole plant under light conditions. A genome-wide transcriptional assay also supports the presence of a differential regulatory pattern of senescence-related genes during MeJA-induced whole-plant senescence under non-starvation conditions and results in the finding of a chlorophylase activity increase in this process. We also observed that the MeJA-induced senescence of tobacco whole plants is reversible, which is accompanied by a structural change of chloroplasts. This work provides novel insights into JA-induced plant senescence under non-starvation conditions and is helpful to dissect the JA-synchronized process of whole-plant senescence.


Asunto(s)
Ciclopentanos/efectos adversos , Nicotiana/genética , Nicotiana/fisiología , Oxilipinas/efectos adversos , Senescencia de la Planta/efectos de los fármacos , Senescencia de la Planta/genética , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/genética , Adaptación a la Oscuridad/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
4.
Plant Cell Physiol ; 63(1): 92-103, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34623443

RESUMEN

Light-dependent activation of chloroplast enzymes is required for the rapid induction of photosynthesis after a shift from dark to light. The thioredoxin (Trx) system plays a central role in this process. In chloroplasts, the Trx system consists of two pathways: the ferredoxin (Fd)/Trx pathway and the nicotinamide adenine dinucleotide phosphate (NADPH)-Trx reductase C (NTRC) pathway. In Arabidopsis (Arabidopsis thaliana) mutants defective in either pathway, the photoreduction of thiol enzymes was impaired, resulting in decreased carbon fixation. The close relationship between the Fd/Trx pathway and proton gradient regulation 5 (PGR5)-dependent photosystem I cyclic electron transport (PSI CET) in the induction of photosynthesis was recently elucidated. However, how the PGR5-dependent pathway is involved in the NTRC pathway is unclear, although NTRC has been suggested to physically interact with PGR5. In this study, we analyzed Arabidopsis mutants lacking either the PGR5 or the chloroplast NADH dehydrogenase-like complex (NDH)-dependent PSI CET pathway in the ntrc mutant background. The ntrc pgr5 double mutant suppressed both the growth defects and the high non-photochemical quenching phenotype of the ntrc mutant when grown under long-day conditions. By contrast, the inactivation of NDH activity with the chlororespiratory reduction 2-2 mutant failed to suppress either phenotype. We discovered that the phenotypic rescue of ntrc by pgr5 is caused by the partial restoration of Trx-dependent reduction of thiol enzymes. These results suggest that electron partitioning to the PGR5-dependent pathway and the Trx system needs to be properly regulated for the activation of the Calvin-Benson-Bassham cycle enzymes during the induction of photosynthesis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Redes y Vías Metabólicas/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/genética , Adaptación a la Oscuridad/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Redes y Vías Metabólicas/genética , Mutación , Fotosíntesis/fisiología , Reductasa de Tiorredoxina-Disulfuro/genética
5.
Plant Physiol ; 188(2): 1294-1311, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34718759

RESUMEN

Shade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with neighboring vegetation, maximizing sunlight capture for photosynthesis. This rapid growth adaptation, known as the shade-avoidance response (SAR), comes at a cost: reduced biomass, crop yield, and root growth. Significant progress has been made on the mechanistic understanding of hypocotyl elongation during SAR; however, the molecular interpretation of root growth repression is not well understood. Here, we explore the mechanisms by which SAR induced by low red:far-red light restricts primary and lateral root (LR) growth. By analyzing the whole-genome transcriptome, we identified a core set of shade-induced genes in roots of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) seedlings grown in the shade. Abiotic and biotic stressors also induce many of these shade-induced genes and are predominantly regulated by WRKY transcription factors. Correspondingly, a majority of WRKY genes were among the shade-induced genes. Functional analysis using transgenics of these shade-induced WRKYs revealed that their role is essentially to restrict primary root and LR growth in the shade; captivatingly, they did not affect hypocotyl elongation. Similarly, we also found that ethylene hormone signaling is necessary for limiting root growth in the shade. We propose that during SAR, shade-induced WRKY26, 45, and 75, and ethylene reprogram gene expression in the root to restrict its growth and development.


Asunto(s)
Adaptación Ocular/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Etilenos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Factores de Transcripción
6.
Plant Sci ; 313: 111073, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763865

RESUMEN

MicroRNAs (miRNAs), a class of single-stranded non-coding RNA of 20-24 nucleotides, regulate gene expression by target gene transcript cleavage or translation inhibition. The phytohormone auxin is a crucial regulator of almost every process involved in plant growth and development. Several studies have demonstrated the involvement of miRNA(s) in the regulation of the auxin signaling pathway and plant development. However, very few studies have identified the auxin-mediated regulation of miRNA(s). In this study, we reveal the detailed mechanism of auxin-mediated regulation of the cell wall-related miR775- Galactosyl transferase (GalT) module, which plays an important role in root growth in Arabidopsis thaliana. We also showed two interdependent mechanisms by which miR775 regulates root growth: miR775-GalT and light-mediated sucrose-dependent pathways. Treatment of GUS reporter lines with Indole Acetic Acid (IAA), sucrose, and light apparently enhanced the abundance of miR775 in root tissue. miR775 overexpressing (miR775OX) lines showed changes in root architecture, including increased primary root growth and root hair, by targeting GalT. miR775OX lines also showed tolerance toward low Pi. These results provide new insights into the auxin regulation of cell wall-related miR775 and suggest its significant role in plant root growth and development by modifying the cell wall.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , MicroARNs/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Sacarosa/metabolismo , Adaptación Ocular/efectos de los fármacos , Adaptación Ocular/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Crecimiento y Desarrollo/genética , Redes y Vías Metabólicas/genética
7.
Plant Sci ; 313: 111095, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763878

RESUMEN

Photoperiod is dominant environmental factor that controls plant growth and development. Even though research on plants response to photoperiod is significant in agriculture, molecular mechanisms of garlic in response to photoperiod remain largely unknown. In the current investigation, 3 months old garlic plants were treated with long day (LD) and short day (SD) for 10 and 20 days after treatment (DAT). Liquid chromatography-mass spectrometry (LC-MS) analysis of phytohormones exhibited that indole-3-acetic acid (IAA), zeatin riboside (ZR) and salicylic acid (SA) were observed maximum under LD at 10 DAT, whereas abscisic acid (ABA), gibberellic acid 3 (GA3), zeatin (ZT) and jasmonic acid (JA) were observed maximum under LD at 20 DAT. Transcriptome sequencing analysis was done to evaluate the transcriptional response to LD and SD. Differentially expressed genes (DEGs) were detected to have pathway enrichment. i.e., DNA binding transcription factor activity, transcription regulator activity, transferase activity, transferring hexosyl groups, and sequence specific-DNA binding activity, plant hormone signal transduction, circadian rhythm-plant, biosynthesis of amino acids, phenylpropanoid biosynthesis, and starch and sucrose metabolism. Furthermore, 28 and 40 DEGs were identified related to photoperiod and hormone signaling, respectively and their interaction in response to LD and SD were discussed in detail. Outcomes of current investigation might be useful to provide novel resources for garlic bulb formation in response to photoperiod.


Asunto(s)
Adaptación Ocular/genética , Ajo/crecimiento & desarrollo , Ajo/genética , Fotoperiodo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcriptoma
8.
Plant Commun ; 2(6): 100245, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34778751

RESUMEN

Improvements in plant architecture, such as reduced plant height under high-density planting, are important for agricultural production. Light and gibberellin (GA) are essential external and internal cues that affect plant architecture. In this study, we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum L.). We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis. Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins. Interestingly, we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction. We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction. Based on these findings, we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction, thereby stabilizing DELLA proteins and enhancing their repression of plant growth.


Asunto(s)
Adaptación Ocular/genética , Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Nicotiana/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de la radiación , Triticum/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Variación Genética , Genotipo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/genética , Transducción de Señal/efectos de los fármacos , Nicotiana/genética , Nicotiana/metabolismo , Triticum/genética , Triticum/metabolismo
9.
Plant Sci ; 312: 111046, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620444

RESUMEN

Barren stalks and kernel abortion are the major obstacles that hinder maize production. After many years of inbreeding, our group produced a pair of barren stalk/non-barren stalk near-isogenic lines SN98A/SN98B. Under weak light stress, the barren stalk rate is up to 98 % in SN98A but zero in SN98B. Therefore, we consider that SN98A is a weak light-sensitive inbred line whereas SN98B is insensitive. In the present study, the near-isogenic lines SN98A/SN98B were used as test materials to conduct cytological and photosynthetic physiological analyses of the physiological mechanism associated with the differences in maize barren stalk induced by weak light stress. The results showed that weak light stress increased the accumulation of reactive oxygen species (ROS), decreased the function of chloroplasts, destroyed the normal rosette structure, inhibited photosynthetic electron transport, and enhanced lipid peroxidation. The actual photochemical quantum efficiency for PSI (Y(I)) and PSII (Y(II)), relative electron transfer rate for PSI (ETR(I)) and PSII (ETR(II)), and the P700 activities decreased significantly in the leaves of SN98A and SN98B under weak light stress, where the decreases were greater in SN98A than SN98B. After 10 days of shading treatment, the O2·- production rate, H2O2 contents, the yield of regulated energy dissipation (Y(NPQ)), the donor side restriction for PSI (Y(ND)) and the quantum efficiency of cyclic electron flow photochemistry were always higher in SN98A than SN98B, and the antioxidant enzyme activities were always lower in SN98A than those in SN98B. These results show that SN98B has a stronger ability to remove ROS at its source, and maintain the integrity of the structure and function of the photosynthetic system. This self-protection mechanism is an important physiological reason for its adaptation to weak light.


Asunto(s)
Adaptación Ocular/genética , Adaptación Ocular/efectos de la radiación , Fotosíntesis/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de la radiación , Energía Solar , Zea mays/genética , Zea mays/efectos de la radiación , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de la radiación , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Variación Genética , Genotipo , Fotosíntesis/genética , Zea mays/crecimiento & desarrollo
11.
J Plant Physiol ; 265: 153507, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34478919

RESUMEN

Dihydroxyacid dehydratase (EC 4.2.1.9) participates in metabolism of branched chain amino acids, in CoA biosynthesis and in the conversion of hydroxycitric acid that accumulates in several plants. In maize (Zea mays L.), this enzyme is encoded by the two genes (Dhad1 and Dhad2), having different patterns of their expression during germination. We have demonstrated the inhibition of Dhad1 expression by light and the opposite effect of light on Dhad2. These effects were phytochrome-dependent and involved methylation/demethylation of promoters. Incubation of maize plants in a nitrogen atmosphere resulted in Dhad1 activation peaking at 12 h, which coincided with the decrease in promoter methylation. The gene Dhad2 was activated only during the first 6 h of anoxia, with no correlation with the level of promoter methylation. Salt stress (150 mM NaCl) caused the activation of expression of Dhad2 while the expression of Dhad1 was inhibited in the first hour and then after 12 h incubation with NaCl. We conclude that the expression of two genes encoding dihydroxyacid dehydratase reveals the opposite or different patterns of regulation by light, anoxia and salinity. The mechanisms underlying these modifications involve promoter methylation and result in corresponding changes in the enzymatic activity of the conversion of hydroxycitrate to 2-oxoglutarate.


Asunto(s)
Adaptación Ocular/genética , Hidroliasas/genética , Hipoxia/genética , Hipoxia/metabolismo , Estrés Salino/genética , Estrés Salino/fisiología , Zea mays/genética , Zea mays/metabolismo , Adaptación Ocular/fisiología , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Hidroliasas/metabolismo
12.
Nat Plants ; 7(9): 1213-1219, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34354260

RESUMEN

To compensate for a sessile nature, plants have developed sophisticated mechanisms to sense varying environmental conditions. Phytochromes (phys) are light and temperature sensors that regulate downstream genes to render plants responsive to environmental stimuli1-4. Here, we show that phyB directly triggers the formation of a repressive chromatin loop by physically interacting with VERNALIZATION INSENSITIVE 3-LIKE1/VERNALIZATION 5 (VIL1/VRN5), a component of Polycomb Repressive Complex 2 (PRC2)5,6, in a light-dependent manner. VIL1 and phyB cooperatively contribute to the repression of growth-promoting genes through the enrichment of Histone H3 Lys27 trimethylation (H3K27me3), a repressive histone modification. In addition, phyB and VIL1 mediate the formation of a chromatin loop to facilitate the repression of ATHB2. Our findings show that phyB directly utilizes chromatin remodelling to regulate the expression of target genes in a light-dependent manner.


Asunto(s)
Aclimatación/genética , Adaptación Ocular/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas de Homeodominio/metabolismo , Fitocromo B/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Ensamble y Desensamble de Cromatina/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Proteínas de Homeodominio/genética , Mutación , Dedos de Zinc PHD/genética , Dedos de Zinc PHD/fisiología , Fitocromo B/genética , Proteínas del Grupo Polycomb/genética , Estrés Fisiológico/fisiología
13.
J Plant Physiol ; 265: 153492, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34385120

RESUMEN

The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.


Asunto(s)
Adaptación Ocular/genética , Chenopodium/crecimiento & desarrollo , Chenopodium/genética , Oscuridad , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/genética , Fotoperiodo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcriptoma
14.
Photosynth Res ; 148(3): 137-152, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34236566

RESUMEN

The heliobacteria, a family of anoxygenic phototrophs, possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria can also grow chemotrophically via pyruvate metabolism in the dark. In the heliobacteria, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for the mobile cytochrome c553 other than the photochemical reaction center. We have, therefore, hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. We used a two-step method for CRISPR-based genome editing in Heliobacterium modesticaldum to delete the genes encoding the four major subunits of the cytochrome bc complex. Genotypic analysis verified the deletion of the petCBDA gene cluster encoding the catalytic components of the complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was over 100 times slower in the ∆petCBDA mutant compared to the wild-type. Steady-state levels of oxidized P800 (the primary donor of the photochemical reaction center) were much higher in the ∆petCBDA mutant at every light level, consistent with a limitation in electron flow to the reaction center. The ∆petCBDA mutant was unable to grow phototrophically on acetate plus CO2 but could grow chemotrophically on pyruvate as a carbon source similar to the wild-type strain in the dark. The mutants could be complemented by reintroduction of the petCBDA gene cluster on a plasmid expressed from the clostridial eno promoter.


Asunto(s)
Supervivencia Celular/fisiología , Clostridiales/genética , Clostridiales/metabolismo , Citocromos/genética , Citocromos/metabolismo , Eliminación de Gen , Fotosíntesis/fisiología , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/genética , Adaptación a la Oscuridad/fisiología , Mutación , Fotosíntesis/genética
15.
Plant Signal Behav ; 16(6): 1913307, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33853508

RESUMEN

Light is an important environmental factor for plant growth and development. Phytochrome B (phyB), a classical red/far-red light receptor, plays vital role in controlling plant photomorphogenesis and light-induced stomatal opening. Phytohormone abscisic acid (ABA) accumulates rapidly and triggers a series of physiological and molecular events during the responses to multiple abiotic stresses. Recent studies showed that phyB mutant synthesizes more ABA and exhibits improved tolerance to salt and cold stress, suggesting that a crosstalk exists between light and ABA signaling pathway. However, whether ABA signaling components mediate responses to light remains unclear. Here, we showed that SnRK2.6 (Sucrose Nonfermenting 1-Related Protein Kinase 2.6), a key regulator in ABA signaling, interacts with phyB and participates in light-induced stomatal opening. First, we checked the interaction between phyB and SnRK2s, and found that SnRK2.2/2.3/2.6 kinases physically interacted with phyB in yeast and in vitro. We also performed co-IP assay to support that SnRK2.6 interacts with phyB in plant. To investigate the role of SnRK2.6 in red light-induced stomatal opening, we obtained the snrk2.6 mutant and overexpression lines, and found that snrk2.6 mutant exhibited a significantly larger stomatal aperture under red light treatment, while the two independent overexpression lines showed significantly smaller stomatal aperture, indicative of a negative role for SnRK2.6 in red light-induced stomatal opening. The interaction of SnRK2.6 with red light receptor and the negative role of SnRK2.6 in red light-induced stomatal opening provide new evidence for the crosstalk between ABA and red light in guard cell signaling.


Asunto(s)
Fitocromo B/genética , Fitocromo B/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Saccharomyces/crecimiento & desarrollo , Saccharomyces/genética , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
16.
Plant Commun ; 1(3): 100044, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33367240

RESUMEN

Green plants on the earth have evolved intricate mechanisms to acclimatize to and utilize sunlight. In Arabidopsis, light signals are perceived by photoreceptors and transmitted through divergent but overlapping signaling networks to modulate plant photomorphogenic development. COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) was first cloned as a central repressor of photomorphogenesis in higher plants and has been extensively studied for over 30 years. It acts as a RING E3 ubiquitin ligase downstream of multiple photoreceptors to target key light-signaling regulators for degradation, primarily as part of large protein complexes. The mammalian counterpart of COP1 is a pluripotent regulator of tumorigenesis and metabolism. A great deal of information on COP1 has been derived from whole-genome sequencing and functional studies in lower green plants, which enables us to illustrate its evolutionary history. Here, we review the current understanding about COP1, with a focus on the conservation and functional diversification of COP1 and its signaling partners in different taxonomic clades.


Asunto(s)
Adaptación Ocular/genética , Adaptación Ocular/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Evolución Molecular , Desarrollo de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
17.
Plant Physiol ; 184(4): 1762-1774, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33004613

RESUMEN

The Chlamydomonas reinhardtii Compromised Hydrolysis of Triacylglycerols7 (CHT7) protein has been previously implicated in the regulation of DNA metabolism and cell-cycle-related gene expression during nitrogen (N) deprivation, and its predicted protein interaction domains are necessary for function. Here, we examined impacts of the cht7 mutation during the cell division cycle under nutrient deficiency in light-dark synchronized cultures. We explored the potential mechanisms affecting CHT7 complex activities during the cell cycle and N starvation, with a focus on the possible interaction between CHT7 and the C. reinhardtii retinoblastoma tumor suppressor (RB) protein homolog MAT3. Notably, the absence of CHT7 did not negatively impact the synchrony of cell division and cell cycle progression during diel growth. Although the majority of CHT7 and MAT3/RB proteins were observed in separate complexes by blue native-PAGE, the two proteins coimmunoprecipitated both during synchronized growth and following N deprivation, suggesting the presence of low abundance subcomplexes containing CHT7 and MAT3/RB. Furthermore, we observed several phosphorylated isoforms of CHT7 under these conditions. To test the potential role of phosphorylation on the structure and function of CHT7, we performed site-directed mutagenesis of previously identified phosphorylated amino acids within CHT7. These phosphorylated residues were dispensable for CHT7 function, but phosphorylated variants of CHT7 persisted, indicating that yet-unidentified residues within CHT7 are also likely phosphorylated. Based on the interaction of CHT7 and MAT3/RB, we postulate the presence of a low-abundance or transient regulatory complex in C. reinhardtii that may be similar to DREAM-like complexes in other organisms.


Asunto(s)
Adaptación Ocular/fisiología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Adaptación a la Oscuridad/fisiología , Estadios del Ciclo de Vida/genética , Estadios del Ciclo de Vida/fisiología , Nitrógeno/fisiología , Adaptación Ocular/genética , Adaptación a la Oscuridad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación
18.
J Oleo Sci ; 69(4): 359-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32249263

RESUMEN

Biodiesel production from microalgae is still not commercially realized due to the high cost of production. High light-tolerance has been suggested as a desirable phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Nevertheless, it has not been shown if algae with such a phenotype would have better efficiency for lipid production. To determine lipid productivity in high light-tolerant mutants, and to understand the pathways involved in high light-tolerant phenotype, two very high light-tolerant mutants of the green alga Chlamydomonas reinhardtii - CAL028_01_28 and CAL034_01_48 - were selected from eighteen high light-tolerant mutants from the CAL collection. Under high light intensity conditions, and the presence of reactive oxygen species, which are conditions constantly experienced by algae growing in open-pond environments, these strains exhibited higher photosynthetic efficiency and improved survival. The physiological characterization of these mutants revealed that the detoxification of ROS by carotenoids and antioxidant enzymes is crucial for their growth under high light conditions. Neither mutant was affected in terms of its ability to accumulate lipid under nitrogen-depleted condition. More importantly, lipid productivity under high light conditions increased twofold in these mutants compared to that of the wild-type. Taken together, very high light-tolerant mutants confer a high potential for biofuel production under outdoor conditions, and their improved ability to survive under oxidative stress is an important key for efficient growth under outdoor conditions.


Asunto(s)
Adaptación Ocular/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Lípidos/biosíntesis , Mutación , Fotofobia/genética , Biocombustibles , Chlamydomonas/fisiología , Estrés Oxidativo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
19.
J Neurosci ; 40(1): 143-158, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31685652

RESUMEN

Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENTDscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.


Asunto(s)
Movimientos Oculares/fisiología , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Células Amacrinas/fisiología , Animales , Animales Modificados Genéticamente , Señalización del Calcio , Moléculas de Adhesión Celular/fisiología , Movimientos Oculares/genética , Fijación Ocular/genética , Fijación Ocular/fisiología , Larva , Locomoción , Fatiga Muscular , Mutación , Músculos Oculomotores/crecimiento & desarrollo , Músculos Oculomotores/fisiopatología , Retina/crecimiento & desarrollo , Retina/ultraestructura , Movimientos Sacádicos/genética , Movimientos Sacádicos/fisiología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/fisiología
20.
Proc Natl Acad Sci U S A ; 116(13): 6457-6462, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846551

RESUMEN

Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide.


Asunto(s)
Aclimatación/fisiología , Aclimatación/efectos de la radiación , Adaptación Ocular/fisiología , Adaptación Ocular/efectos de la radiación , Color , Synechococcus/enzimología , Synechococcus/metabolismo , Aclimatación/genética , Adaptación Ocular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica , Genes Bacterianos/genética , Liasas/metabolismo , Mutación , Ficobilinas , Ficoeritrina , Proteínas Recombinantes , Agua de Mar/microbiología , Synechococcus/genética , Synechococcus/efectos de la radiación , Urobilina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...