Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.682
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725030

RESUMEN

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Asunto(s)
Glioblastoma , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Ratones , Progresión de la Enfermedad , Línea Celular Tumoral , Proliferación Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Ratones Desnudos , Apoptosis
2.
ACS Synth Biol ; 13(5): 1572-1581, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38717981

RESUMEN

Inside cells, various biological systems work cooperatively for homeostasis and self-replication. These systems do not work independently as they compete for shared elements like ATP and NADH. However, it has been believed that such competition is not a problem in codependent biological systems such as the energy-supplying glycolysis and the energy-consuming translation system. In this study, we biochemically reconstituted the coupling system of glycolysis and translation using purified elements and found that the competition for ATP between glycolysis and protein synthesis interferes with their coupling. Both experiments and simulations revealed that this interference is derived from a metabolic tug-of-war between glycolysis and translation based on their reaction rates, which changes the threshold of the initial substrate concentration for the success coupling. By the metabolic tug-of-war, translation energized by strong glycolysis is facilitated by an exogenous ATPase, which normally inhibits translation. These findings provide chemical insights into the mechanism of competition among biological systems in living cells and provide a framework for the construction of synthetic metabolism in vitro.


Asunto(s)
Adenosina Trifosfato , Glucólisis , Biosíntesis de Proteínas , Adenosina Trifosfato/metabolismo , NAD/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética
3.
BMC Biol ; 22(1): 105, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702628

RESUMEN

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
4.
Commun Biol ; 7(1): 533, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710747

RESUMEN

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Supresoras de Tumor , Alas de Animales , Animales , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Apoptosis , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Regulación del Desarrollo de la Expresión Génica , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo
5.
Sci Adv ; 10(18): eadl6082, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701207

RESUMEN

The AAA+-ATPase valosin-containing protein (VCP; also called p97 or Cdc48), a major protein unfolding machinery with a variety of essential functions, localizes to different subcellular compartments where it has different functions. However, the processes regulating the distribution of VCP between the cytosol and nucleus are not understood. Here, we identified p37 (also called UBXN2B) as a major factor regulating VCP nucleocytoplasmic shuttling. p37-dependent VCP localization was crucial for local cytosolic VCP functions, such as autophagy, and nuclear functions in DNA damage repair. Mutations in VCP causing multisystem proteinopathy enhanced its association with p37, leading to decreased nuclear localization of VCP, which enhanced susceptibility to DNA damage accumulation. Both VCP localization and DNA damage susceptibility in cells with such mutations were normalized by lowering p37 levels. Thus, we uncovered a mechanism by which VCP nucleocytoplasmic distribution is fine-tuned, providing a means for VCP to respond appropriately to local needs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Núcleo Celular , Citosol , Proteína que Contiene Valosina , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Humanos , Citosol/metabolismo , Núcleo Celular/metabolismo , Mutación , Transporte Activo de Núcleo Celular , Daño del ADN , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte de Proteínas , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reparación del ADN , Autofagia , Unión Proteica , Células HEK293
6.
Biol Res ; 57(1): 22, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704609

RESUMEN

BACKGROUND: Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS: Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS: Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/genética , Ensamble y Desensamble de Cromatina/fisiología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/metabolismo
7.
Mol Cell ; 84(10): 1821-1823, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759622

RESUMEN

In this issue, Ji et al.1 show how a multipass membrane protein that initially inserts into the endoplasmic reticulum in a mostly inverted topology is post-translationally dislocated, re-inserted, and folded with the help of ATP13A1, a P-type ATPase.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Retículo Endoplásmico/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Pliegue de Proteína , Humanos
8.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570188

RESUMEN

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Asunto(s)
Proteínas Priónicas , Priones , Proteínas Priónicas/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteostasis , Ubiquitina/metabolismo , Priones/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557192

RESUMEN

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Asunto(s)
Adenosina Trifosfatasas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratas , Ratones , Animales , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Línea Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores Androgénicos , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
10.
Expert Opin Ther Pat ; 34(3): 159-169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38578210

RESUMEN

INTRODUCTION: The multi-subunit SWI/SNF chromatin remodeling complex is a key epigenetic regulator for many cellular processes, and several subunits are found to be mutated in human cancers. The inactivating mutations of SMARCA4, the ATPase subunit of the complex, result in cellular dependency on the paralog SMARCA2 for survival. This observed synthetic lethal relationship posits targeting SMARCA2 in SMARCA4-deficient settings as an attractive therapeutic target in oncology. AREAS COVERED: This review covers patent literature disclosed during the 2019-30 June 2023 period which claim ATPase inhibitors and PROTAC degraders that bind to the ATPase domain of SMARCA2 and/or SMARCA4. A total of 16 documents from 6 applicants are presented. EXPERT OPINION: The demonstration of cellular dependence on SMARCA2 ATPase activity in SMARCA4-deficient settings has prompted substantial research toward SMARCA2-targeting therapies. Although selectively targeting the ATPase domain of SMARCA2 is viewed as challenging, several ATPase inhibitor scaffolds have been disclosed within the last five years. Most early compounds are weakly selective, but these efforts have culminated in the first dual SMARCA2/SMARCA4 ATPase inhibitor to enter clinical trials. Data from the ongoing clinical trials, as well as continued advancement of SMARCA2-selective ATPase inhibitors, are anticipated to significantly impact the field of therapies, targeting SMARCA4-deficient tumors.


Asunto(s)
Antineoplásicos , ADN Helicasas , Terapia Molecular Dirigida , Neoplasias , Proteínas Nucleares , Patentes como Asunto , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Antineoplásicos/farmacología , ADN Helicasas/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Animales , Mutaciones Letales Sintéticas , Mutación , Adenosina Trifosfatasas/metabolismo
11.
J Mol Biol ; 436(10): 168575, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641238

RESUMEN

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.


Asunto(s)
Adenosina Trifosfatasas , Lisina , Lisina/metabolismo , Lisina/genética , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteínas MutL/química , Dominio Catalítico , Secuencia de Aminoácidos , Secuencia Conservada , Concentración de Iones de Hidrógeno , Catálisis , Factores de Transcripción
12.
mBio ; 15(5): e0285023, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564676

RESUMEN

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al ADN , Mitosis , Complejos Multiproteicos , Plasmodium falciparum , Proteínas Protozoarias , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Plasmodium falciparum/crecimiento & desarrollo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Eritrocitos/parasitología , Técnicas de Inactivación de Genes , Humanos
13.
Appl Environ Microbiol ; 90(5): e0041824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624198

RESUMEN

Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , GMP Cíclico , Lysobacter , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Lysobacter/metabolismo , Lysobacter/genética , Lysobacter/enzimología , Sistemas de Secreción Tipo II/metabolismo , Sistemas de Secreción Tipo II/genética , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica , Antifúngicos/metabolismo
14.
EMBO Rep ; 25(5): 2239-2257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632376

RESUMEN

The PIWI-interacting RNA (piRNA) pathway plays a crucial role in silencing transposons in the germline. piRNA-guided target cleavage by PIWI proteins triggers the biogenesis of new piRNAs from the cleaved RNA fragments. This process, known as the ping-pong cycle, is mediated by the two PIWI proteins, Siwi and BmAgo3, in silkworms. However, the detailed molecular mechanism of the ping-pong cycle remains largely unclear. Here, we show that Spindle-E (Spn-E), a putative ATP-dependent RNA helicase, is essential for BmAgo3-dependent production of Siwi-bound piRNAs in the ping-pong cycle and that this function of Spn-E requires its ATPase activity. Moreover, Spn-E acts to suppress homotypic Siwi-Siwi ping-pong, but this function of Spn-E is independent of its ATPase activity. These results highlight the dual role of Spn-E in facilitating proper heterotypic ping-pong in silkworms.


Asunto(s)
Bombyx , ARN Interferente Pequeño , Bombyx/genética , Bombyx/metabolismo , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , ARN de Interacción con Piwi
15.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652748

RESUMEN

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Segregación Cromosómica , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
16.
Oncol Rep ; 51(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639175

RESUMEN

At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non­SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.


Asunto(s)
Proteínas de Ciclo Celular , Complejos Multiproteicos , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Adenosina Trifosfatasas/metabolismo , Mitosis , Neoplasias/genética
17.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597493

RESUMEN

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Asunto(s)
Paraquat , Sistema Renina-Angiotensina , Ratas , Animales , Masculino , Especies Reactivas de Oxígeno/metabolismo , Paraquat/metabolismo , Paraquat/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Creatinina/metabolismo , Creatinina/orina , Interleucina-6 , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Riñón , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Sodio/metabolismo , Sodio/farmacología , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología
18.
Protein Sci ; 33(5): e4981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591662

RESUMEN

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Asunto(s)
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Síntesis Translesional de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/genética , Replicación del ADN
19.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542345

RESUMEN

Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of images of the protein in multiple conformations. Various methods exist for capturing the conformational variability through analysis of cryo-EM data. Here, we analyzed the conformational variability in the hexameric AAA + ATPase p97, a complex with a six-fold rotational symmetric core surrounded by six flexible N-domains. We compared the performance of discrete classification methods with our recently developed method, MDSPACE, which uses 3D-to-2D flexible fitting of an atomic structure to images based on molecular dynamics (MD) simulations. Our analysis detected a novel conformation adopted by approximately 2% of the particles in the dataset and determined that the N-domains of p97 sway by up to 60° around a central position. This study demonstrates the application of MDSPACE in analyzing the continuous conformational changes in partially symmetrical protein complexes, systems notoriously difficult to analyze due to the alignment errors caused by their partial symmetry.


Asunto(s)
Adenosina Trifosfatasas , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Microscopía por Crioelectrón/métodos , Adenosina Trifosfatasas/metabolismo
20.
mBio ; 15(4): e0003124, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38501868

RESUMEN

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Asunto(s)
Adenosina Trifosfatasas , Endopeptidasa Clp , Streptomyces , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Proteolisis , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Péptido Hidrolasas/metabolismo , Adenosina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA