Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.831
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731943

RESUMEN

Protein kinases are essential regulators of cell function and represent one of the largest and most diverse protein families. They are particularly influential in signal transduction and coordinating complex processes like the cell cycle. Out of the 518 human protein kinases identified, 478 are part of a single superfamily sharing catalytic domains that are related in sequence. The dysregulation of protein kinases due to certain mutations has been associated with various diseases, including cancer. Although most of the protein kinase inhibitors identified as type I or type II primarily target the ATP-binding pockets of kinases, the structural and sequential resemblances among these pockets pose a significant challenge for selective inhibition. Therefore, targeting allosteric pockets that are beside highly conserved ATP pockets has emerged as a promising strategy to prevail current limitations, such as poor selectivity and drug resistance. In this article, we compared the binding pockets of various protein kinases for which allosteric (type III) inhibitors have already been developed. Additionally, understanding the structure and shape of existing ligands could aid in identifying key interaction sites within the allosteric pockets of kinases. This comprehensive review aims to facilitate the design of more effective and selective allosteric inhibitors.


Asunto(s)
Sitio Alostérico , Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Regulación Alostérica , Sitios de Unión , Unión Proteica , Ligandos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Dominio Catalítico , Modelos Moleculares
2.
Analyst ; 149(10): 2796-2800, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38669149

RESUMEN

A near-infrared fluorescent nanoprobe consisting of Nile blue-capped ZIF-90 is first proposed for real-time imaging of mitochondrial ATP. Owing to the strong binding of ATP with Zn2+, the structure of the probe is disrupted, leading to the release of fluorescent NB.


Asunto(s)
Adenosina Trifosfato , Colorantes Fluorescentes , Mitocondrias , Oxazinas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Oxazinas/química , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Células HeLa , Rayos Infrarrojos , Imagen Óptica/métodos , Nanopartículas/química
3.
PLoS Comput Biol ; 20(4): e1012005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662764

RESUMEN

Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.


Asunto(s)
Adenosina Trifosfato , Cadenas Pesadas de Miosina , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Termodinámica , Simulación de Dinámica Molecular , Biología Computacional/métodos , Hidrólisis , Sitios de Unión , Modelos Moleculares , Conformación Proteica
4.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38666407

RESUMEN

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Asunto(s)
Adenosina Trifosfato , Antineoplásicos , Rayos Infrarrojos , Animales , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Inmunoterapia , Reposicionamiento de Medicamentos , Humanos , Rayos Láser , Terapia Fototérmica , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Alginatos/química , Femenino , Hidrogeles/química , Hidrogeles/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Artemisininas/química , Artemisininas/farmacología
5.
Nat Commun ; 15(1): 3564, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670952

RESUMEN

Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.


Asunto(s)
Electroforesis , Propiedades de Superficie , Electroforesis/métodos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Polilisina/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Humanos , Electricidad Estática
6.
Elife ; 122024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578670

RESUMEN

P2X receptors are extracellular ATP-gated ion channels that form homo- or heterotrimers and consist of seven subtypes. They are expressed in various tissues, including neuronal and nonneuronal cells, and play critical roles in physiological processes such as neurotransmission, inflammation, pain, and cancer. As a result, P2X receptors have attracted considerable interest as drug targets, and various competitive inhibitors have been developed. However, although several P2X receptor structures from different subtypes have been reported, the limited structural information of P2X receptors in complex with competitive antagonists hampers the understanding of orthosteric inhibition, hindering the further design and optimization of those antagonists for drug discovery. We determined the cryogenic electron microscopy (cryo-EM) structures of the mammalian P2X7 receptor in complex with two classical competitive antagonists of pyridoxal-5'-phosphate derivatives, pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) and pyridoxal phosphate-6-azophenyl-2',5'-disulfonic acid (PPADS), and performed structure-based mutational analysis by patch-clamp recording as well as molecular dynamics (MD) simulations. Our structures revealed the orthosteric site for PPADS/PPNDS, and structural comparison with the previously reported apo- and ATP-bound structures showed how PPADS/PPNDS binding inhibits the conformational changes associated with channel activation. In addition, structure-based mutational analysis identified key residues involved in the PPNDS sensitivity of P2X1 and P2X3, which are known to have higher affinity for PPADS/PPNDS than other P2X subtypes.


Asunto(s)
Adenosina Trifosfato , Simulación de Dinámica Molecular , Animales , Adenosina Trifosfato/química , Mamíferos
7.
Nat Commun ; 15(1): 3603, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684662

RESUMEN

The ability to sense chemical gradients and respond with directional motility and chemical activity is a defining feature of complex living systems. There is a strong interest among scientists to design synthetic systems that emulate these properties. Here, we realize and control such behaviors in a synthetic system by tailoring multivalent interactions of adenosine nucleotides with catalytic microbeads. We first show that multivalent interactions of the bead with gradients of adenosine mono-, di- and trinucleotides (AM/D/TP) control both the phoretic motion and a proton-transfer catalytic reaction, and find that both effects are diminished greatly with increasing valence of phosphates. We exploit this behavior by using enzymatic hydrolysis of ATP to AMP, which downregulates multivalent interactivity in situ. This produces a sudden increase in transport of the catalytic microbeads (a phoretic jump), which is accompanied by increased catalytic activity. Finally, we show how this enzymatic activity can be systematically tuned, leading to simultaneous in situ spatial and temporal control of the location of the microbeads, as well as the products of the reaction that they catalyze. These findings open up new avenues for utilizing multivalent interaction-mediated programming of complex chemo-mechanical behaviors into active systems.


Asunto(s)
Adenosina Trifosfato , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Hidrólisis , Catálisis , Coloides/química , Microesferas , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina/metabolismo , Adenosina/química
8.
Nature ; 629(8011): 467-473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471529

RESUMEN

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Bacteriófagos , Microscopía por Crioelectrón , Inmunidad Innata , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Apoproteínas/química , Apoproteínas/inmunología , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , ADN/metabolismo , ADN/química , División del ADN , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Viabilidad Microbiana , Bacillus cereus/química , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bacillus cereus/ultraestructura , Estructura Cuaternaria de Proteína , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN-Topoisomerasas/química , ADN-Topoisomerasas/metabolismo , ADN-Topoisomerasas/ultraestructura
9.
Angew Chem Int Ed Engl ; 63(20): e202317463, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38503689

RESUMEN

Controllably regulating the electrostatic bilayer of nanogold colloids is a significant premise for synthesizing spherical nucleic acid (SNA) and building ordered plasmonic architectures. We develop a facile acoustic levitation reactor to universally synthesize SNAs with an ultra-high density of DNA strands, which is even higher than those of various state-of-the-art methods. Results reveal a new mechanism of DNA grafting via acoustic wave that can reconfigure the ligands on colloidal surfaces. The acoustic levitation reactor enables substrate-free three-dimentional (3D) spatial assembly of SNAs with controllable interparticle nanogaps through regulating DNA lengths. This kind of architecture may overcome the plasmonic enhancement limits by blocking electron tunneling and breaking electrostatic shielding in dried aggregations. Finite element simulations support the architecture with 3D spatial plasmonic hotspot matrix, and its ultrahigh surface-enhanced Raman scattering (SERS) capability is evidenced by in situ untargeted tracking of biomolecular events during photothermal stimulation (PTS)-induced cell death process. For biomarker diagnosis, the conjugation of adenosine triphosphate (ATP) aptamer onto SNAs enables in situ targeted tracking of ATP during PTS-induced cell death process. Particularly, the CD71 receptor and integrin α3ß1 protein on PL45 cell membrance could be well distinguished by label-free SERS fingerprints when using specific XQ-2d and DML-7 aptamers, respectively, to synthesize SNA architectures. Our current acoustic levitation reactor offers a new method for synthesizing SNAs and enables both targeted and untargeted SERS analysis for tracking molecular events in living systems. It promises great potentials in biochemical synthesis and sensing in future.


Asunto(s)
Oro , Espectrometría Raman , Oro/química , ADN/química , Nanopartículas del Metal/química , Acústica , Humanos , Propiedades de Superficie , Adenosina Trifosfato/química
10.
Talanta ; 274: 125992, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552479

RESUMEN

Organic photoelectrochemical transistor (OPECT) biosensor is now appearing in perspective of public, which characterized by amplified the grating electrode potential by ion transport. In this study, the DNA network formed by the hybridization chain reaction (HCR) detects the target adenosine triphosphate (ATP) by adjusting the surface potential of the new heterojunction of ZnIn2S4/MXene. The formation of DNA network amplifies the detection signal of ATP. Significantly, OPECT biosensor could further amplify the signal, which calculated the gain achieved 103, which is consistent with the gain signal of the previously reported OPECT biosensor. Furthermore, the OPECT biosensor achieved a highly sensitivity detection of the target ATP, which the linear detection range is 0.03 pM-30 nM, and the detection limit is 0.03 pM, and illustrated a high selectivity to ATP. The proposed OPECT biosensor achieved signal amplification by adjusting the surface potential of ZnIn2S4/MXene through cascade DNA network, which provides a new direction for the detection of biomolecules.


Asunto(s)
Adenosina Trifosfato , Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Transistores Electrónicos , Zinc , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Técnicas Biosensibles/métodos , ADN/química , ADN/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Zinc/química , Indio/química , Procesos Fotoquímicos , Límite de Detección , Hibridación de Ácido Nucleico
11.
Angew Chem Int Ed Engl ; 63(21): e202400273, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38527309

RESUMEN

Nitrogenase reduces N2 to NH3 at its active-site cofactor. Previous studies of an N2-bound Mo-nitrogenase from Azotobacter vinelandii suggest binding of three N2 species via asymmetric belt-sulfur displacements in the two cofactors of its catalytic component (designated Av1*), leading to the proposal of stepwise N2 reduction involving all cofactor belt-sulfur sites; yet, the evidence for the existence of multiple N2 species on Av1* remains elusive. Here we report a study of ATP-independent, EuII/SO3 2--driven turnover of Av1* using GC-MS and frequency-selective pulse NMR techniques. Our data demonstrate incorporation of D2-derived D by Av1* into the products of C2H2- and H+-reduction, and decreased formation of NH3 by Av1* concomitant with the release of N2 under H2; moreover, they reveal a strict dependence of these activities on SO3 2-. These observations point to the presence of distinct N2 species on Av1*, thereby providing strong support for our proposed mechanism of stepwise reduction of N2 via belt-sulfur mobilization.


Asunto(s)
Azotobacter vinelandii , Nitrógeno , Nitrogenasa , Nitrogenasa/metabolismo , Nitrogenasa/química , Azotobacter vinelandii/metabolismo , Azotobacter vinelandii/enzimología , Nitrógeno/química , Nitrógeno/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química
12.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38298175

RESUMEN

The ability of mutations to facilitate adaptation is central to evolution. To understand how mutations can lead to functional adaptation in a complex molecular machine, we created a defective version of the T4 clamp-loader complex, which is essential for DNA replication. This variant, which is ∼5,000-fold less active than the wild type, was made by replacing the catalytic domains with those from another phage. A directed-evolution experiment revealed that multiple substitutions to a single negatively charged residue in the chimeric clamp loader-Asp 86-restore fitness to within ∼20-fold of wild type. These mutations remove an adventitious electrostatic repulsive interaction between Asp 86 and the sliding clamp. Thus, the fitness decrease of the chimeric clamp loader is caused by a reduction in affinity between the clamp loader and the clamp. Deep mutagenesis shows that the reduced fitness of the chimeric clamp loader is also compensated for by lysine and arginine substitutions of several DNA-proximal residues in the clamp loader or the sliding clamp. Our results demonstrate that there is a latent capacity for increasing the affinity of the clamp loader for DNA and the sliding clamp, such that even single-point mutations can readily compensate for the loss of function due to suboptimal interactions elsewhere.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN
13.
Nat Chem ; 16(3): 363-372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326645

RESUMEN

The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato , Humanos , Adenosina Trifosfato/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteína que Contiene Valosina , Simulación de Dinámica Molecular
14.
J Am Chem Soc ; 146(10): 7105-7115, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417151

RESUMEN

The binding of nucleotides is crucial for signal transduction as it induces conformational protein changes, leading to downstream cellular responses. Synthetic receptors that bind nucleotides and transduce the binding event into global conformational rearrangements are highly challenging to design, especially those that operate in an aqueous solution. Much work is focused on evaluating functionalized dyes to detect nucleotides, whereas coupling of a nucleotide-induced conformational switching to a sensing event has not been reported to date. We disclose synthetic receptors that undergo a global conformational rearrangement upon nucleotide binding. Integrating naphthalimide and the pyridinium ion into the structure enables stabilization of the folded conformation and efficient fluorescence quenching. The binding of a nucleotide rearranges the receptor conformation and alters the strong fluorescence enhancement. The methylpyridinium-containing receptor demonstrated high sensing selectivity for adenosine 5'-triphosphate (ATP) and a record 160-fold fluorescence enhancement. It can detect fluctuations of ATP in HeLa cells and possesses low cytotoxicity. The developed systems present an attractive approach for designing ATP-responsive artificial molecular switches that operate in water and integrate a strong fluorescence response.


Asunto(s)
Adenosina Trifosfato , Receptores Artificiales , Humanos , Adenosina Trifosfato/química , Fluorescencia , Células HeLa , Nucleótidos/metabolismo , Tomografía de Emisión de Positrones , Espectrometría de Fluorescencia , Conformación Proteica , Colorantes Fluorescentes/química , Adenosina Difosfato/metabolismo
15.
Structure ; 32(5): 575-584.e3, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38412855

RESUMEN

Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.


Asunto(s)
Adenosina Trifosfato , Chaperonina 60 , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Chaperonina 60/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Unión Proteica , Sitios de Unión , Estabilidad Proteica , Mutación , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Conformación Proteica
16.
Anal Chim Acta ; 1293: 342200, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331549

RESUMEN

Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.


Asunto(s)
Adenosina Trifosfato , Nanopartículas del Metal , Adenosina Trifosfato/química , Oro/química , Pulpa Dental , Nanopartículas del Metal/química , Diferenciación Celular , Células Madre
17.
J Mol Biol ; 436(5): 168439, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185322

RESUMEN

The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.


Asunto(s)
Adenilil Ciclasas , Proteínas Bacterianas , Oscillatoria , Fotorreceptores Microbianos , Adenosina Trifosfato/química , Adenilil Ciclasas/química , Adenilil Ciclasas/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de la radiación , Flavina-Adenina Dinucleótido/química , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Oscillatoria/enzimología , Dominio Catalítico , Triptófano/química , Metionina/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efectos de la radiación , Activación Enzimática
18.
J Mol Biol ; 436(2): 168373, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992890

RESUMEN

The G-quadruplex (G4) is a distinct geometric and electrophysical structure compared to classical double-stranded DNA, and its stability can impede essential cellular processes such as replication, transcription, and translation. This study focuses on the BsPif1 helicase, revealing its ability to bind independently to both single-stranded DNA (ssDNA) and G4 structures. The unfolding activity of BsPif1 on G4 relies on the presence of a single tail chain, and the covalent continuity between the single tail chain and the G4's main chain is necessary for efficient G4 unwinding. This suggests that ATP hydrolysis-driven ssDNA translocation exerts a pull force on G4 unwinding. Molecular dynamics simulations identified a specific region within BsPif1 that contains five crucial amino acid sites responsible for G4 binding and unwinding. A "molecular wire stripper" model is proposed to explain BsPif1's mechanism of G4 unwinding. These findings provide a new theoretical foundation for further exploration of the G4 development mechanism in Pif1 family helicases.


Asunto(s)
Adenosina Trifosfato , ADN Helicasas , ADN de Cadena Simple , G-Cuádruplex , Adenosina Trifosfato/química , ADN de Cadena Simple/química , Hidrólisis , Simulación de Dinámica Molecular , ADN Helicasas/química
19.
ACS Appl Mater Interfaces ; 16(1): 1712-1718, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113293

RESUMEN

Herein, an adenosine triphosphate (ATP)-induced enzyme-catalyzed cascade reaction system based on metal-organic framework/alkaline phosphatase (MOF/ALP) nanocomposites was designed to establish a surface-enhanced Raman spectroscopy (SERS) biosensor for use in rapid, sensitive ATP detection. Numerous ALP molecules were first encapsulated using ZIF-90 to temporarily deactivate the enzyme activity, similar to a lock. Au nanostars (AuNSs), as SERS-enhancing substrates, were combined with o-phenylenediamine (OPD) to form AuNSs@OPD, which could significantly improve the Raman signal of OPD. When the target ATP interacted with the MOF/ALP nanocomposites, ATP could act as a key to open the MOF structure, releasing ALP, which should further catalyze the conversion of OPD to oxOPD with the aid of ascorbic acid 2-phosphate. Therefore, with the increasing concentrations of ATP, more ALP was released to catalyze the conversion of OPD, resulting in the reduced intensity of the Raman peak at 1262 cm-1, corresponding to the level of OPD. Based on this principle, the ATP-induced enzyme-catalyzed cascade reaction SERS biosensor enabled the ultrasensitive detection of ATP, with a low detection limit of 0.075 pM. Consequently, this study provides a novel strategy for use in the ultrasensitive, rapid detection of ATP, which displays considerable potential for application in the fields of biomedicine and disease diagnosis.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Fenilendiaminas , Estructuras Metalorgánicas/química , Fosfatasa Alcalina/química , Adenosina Trifosfato/química , Espectrometría Raman/métodos , Inmunoensayo , Catálisis , Oro/química , Nanopartículas del Metal/química
20.
Bioorg Med Chem ; 96: 117509, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948922

RESUMEN

d-Alanine-d-alanine ligase (Ddl) catalyses the ATP-dependent formation of d-Ala-d-Ala, a critical component in bacterial cell wall biosynthesis and is a validated target for new antimicrobial agents. Here, we describe the structure-guided design, synthesis, and evaluation of ATP-competitive N-acyl-substituted sulfamides 27-36, 42, 46, 47 as inhibitors of Staphylococcus aureus Ddl (SaDdl). A crystal structure of SaDdl complexed with ATP and d-Ala-d-Ala (PDB: 7U9K) identified ATP-mimetic 8 as an initial scaffold for further inhibitor design. Evaluation of 8 in SaDdl enzyme inhibition assays revealed the ability to reduce enzyme activity to 72 ± 8 % (IC50 = 1.6 mM). The sulfamide linker of 8 was extended with 2-(4-methoxyphenyl)ethanol to give 29, to investigate further interactions with the d-Ala pocket of SaDdl, as predicted by molecular docking. This compound reduced enzyme activity to 89 ± 1 %, with replacement of the 4-methoxyphenyl group in 29 with alternative phenyl substituents (27, 28, 31-33, 35, 36) failing to significantly improve on this (80-89 % remaining enzyme activity). Exchanging these phenyl substituents with selected heterocycles (42, 46, 47) did improve activity, with the most active compound (42) reducing SaDdl activity to 70 ± 1 % (IC50 = 1.7 mM), which compares favourably to the FDA-approved inhibitor d-cycloserine (DCS) (IC50 = 0.1 mM). To the best of our knowledge, this is the first reported study of bisubstrate SaDdl inhibitors.


Asunto(s)
Alanina , Péptido Sintasas , Simulación del Acoplamiento Molecular , Péptido Sintasas/química , Adenosina Trifosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA