Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.674
Filtrar
1.
Compr Physiol ; 14(3): 5521-5579, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39109972

RESUMEN

Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.


Asunto(s)
Tejido Adiposo , Médula Ósea , Humanos , Animales , Médula Ósea/metabolismo , Médula Ósea/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Adipocitos/metabolismo , Adipocitos/fisiología , Adipogénesis/fisiología
2.
Biomed Pharmacother ; 177: 117073, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981239

RESUMEN

Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.


Asunto(s)
Adipocitos , Adipogénesis , Adipogénesis/fisiología , Humanos , Animales , Adipocitos/metabolismo , PPAR gamma/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica
3.
FASEB J ; 38(14): e23836, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39044640

RESUMEN

Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipocitos , Adipogénesis , Leptina , Transducción de Señal , Animales , Adipogénesis/fisiología , Bovinos , Adipocitos/metabolismo , Adipocitos/citología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Leptina/metabolismo , Leptina/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/citología
4.
Front Endocrinol (Lausanne) ; 15: 1404697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982993

RESUMEN

Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.


Asunto(s)
Adipogénesis , Autofagia , Inflamación , Estrés Oxidativo , Adipogénesis/fisiología , Humanos , Autofagia/fisiología , Estrés Oxidativo/fisiología , Inflamación/metabolismo , Inflamación/patología , Animales , Adipocitos/metabolismo , Adipocitos/patología , Obesidad/metabolismo , Obesidad/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología
5.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982992

RESUMEN

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Asunto(s)
Esferoides Celulares , Termogénesis , Animales , Ratones , Esferoides Celulares/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Ratones Endogámicos C57BL , Masculino , Adipocitos/metabolismo , Adipocitos/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Células Cultivadas , Adipocitos Beige/metabolismo , Adipocitos Beige/citología , Metabolismo Energético , Adipogénesis/fisiología , Sistemas Microfisiológicos
6.
Dev Cell ; 59(10): 1231-1232, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772342

RESUMEN

Brown adipocytes are found in several fat depots, however, the origins and contributions of different lineages of adipogenic progenitor cells (APCs) to these depots are unclear. In this issue of Developmental Cell, Shi et al. show that platelet-derived growth factor receptor ß (PDGFRß)-lineage and T-box transcription factor 18 (TBX18)-lineage APCs differentially contribute to brown adipogenesis across these depots.


Asunto(s)
Adipogénesis , Receptores Notch , Células Madre , Adipogénesis/fisiología , Animales , Receptores Notch/metabolismo , Células Madre/metabolismo , Células Madre/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Humanos , Adipocitos Marrones/metabolismo , Adipocitos Marrones/citología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Diferenciación Celular , Linaje de la Célula , Ratones , Transducción de Señal
7.
Am J Physiol Endocrinol Metab ; 327(1): E69-E80, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717361

RESUMEN

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa , Adipocitos , Ratones Noqueados , Animales , Femenino , Masculino , Ratones , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Adipocitos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Diferenciación Celular , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Ratones Endogámicos C57BL , Fenotipo , Termogénesis/genética , Delgadez/metabolismo , Delgadez/genética
8.
Am J Physiol Endocrinol Metab ; 327(1): E13-E26, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717362

RESUMEN

Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes (Ad). This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes than the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming the upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.NEW & NOTEWORTHY Obesity is associated with the development of chronic diseases like metabolic syndrome and type 2 diabetes, and adipose tissue plays a crucial role. In a rat model, our study reveals how an obesogenic environment primes adipocyte precursor cells, leading to epigenetic changes that affect inflammation, adipogenesis, and mitochondrial activity after differentiation. We highlight the importance of histone modifications, especially the trimethylation of histone H3 to lysine 4 (H3K4me3), showing its influence on adipocyte expression profiles.


Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo , Dieta Alta en Grasa , Epigénesis Genética , Histonas , Transcriptoma , Animales , Ratas , Adipocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Histonas/metabolismo , Masculino , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Diferenciación Celular/genética , Células Madre/metabolismo , Obesidad/metabolismo , Obesidad/genética , Reprogramación Celular/fisiología , Células Cultivadas , Ratas Wistar , Ratas Sprague-Dawley
9.
J Endocrinol ; 262(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692289

RESUMEN

CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Ciclo Celular , Receptores de Hialuranos , PPAR gamma , Adipogénesis/genética , Adipogénesis/fisiología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Ratones , Ciclo Celular/genética , Ciclo Celular/fisiología , Humanos , Adipocitos/metabolismo , Eliminación de Gen , Diferenciación Celular/genética , Masculino , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Transducción de Señal/fisiología
10.
STAR Protoc ; 5(2): 103019, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38635394

RESUMEN

In vitro cell culture serves as an efficient system for studying animal cell behavior in a controlled setting. Here, we present a 3D culture model for forming ruminant adipose organoids using stromal vascular fraction cells. We describe steps for forming cell spheroids and growing them on a Matrigel-coated surface. We then detail procedures for inducing organoids to undergo angiogenesis and adipogenesis followed by capillary sprouting. This protocol can be utilized to study the interaction between blood vessels and adipocytes. For complete details on the use and execution of this protocol, please refer to Yu et al.1.


Asunto(s)
Tejido Adiposo , Organoides , Animales , Organoides/citología , Tejido Adiposo/citología , Células del Estroma/citología , Rumiantes , Técnicas de Cultivo de Célula/métodos , Neovascularización Fisiológica/fisiología , Adipogénesis/fisiología , Adipocitos/citología , Células Cultivadas
11.
Poult Sci ; 103(6): 103728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688194

RESUMEN

E2F transcription factor 5 (E2F5) gene is a transcription factor, plays an important role in the development of a variety of cells. E2F5 is expressed in human and mouse adipocytes, but its specific function in adipogenesis is unclear. Krüppel-like factor 7 (KLF7) facilitates proliferation and inhibits differentiation in chicken preadipocytes. Our previous KLF7 chromatin immunoprecipitation-sequencing analysis revealed a KLF7-binding peak in the 3' flanking region of the E2F5, indicating a regulatory role of KLF7 in this region. In the present study, we investigated E2F5 potential role, the overexpression and knockdown analyses revealed that E2F5 inhibited the differentiation and promoted the proliferation of chicken preadipocytes. Moreover, we identified enhancer activity in the 3' flanking region (nucleotides +22661/+22900) of E2F5 and found that KLF7 overexpression increased E2F5 expression and luciferase activity in this region. Deleting the putative KLF7-binding site eliminated the promoting effect of KLF7 overexpression on E2F5 expression. Further, E2F5 reversed the KLF7-induced decrease in preadipocyte differentiation and increase in preadipocyte proliferation. Taken together, our findings demonstrate that KLF7 inhibits differentiation and promotes proliferation in preadipocytes by enhancing E2F5 transcription.


Asunto(s)
Adipocitos , Adipogénesis , Diferenciación Celular , Proliferación Celular , Pollos , Factores de Transcripción de Tipo Kruppel , Animales , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Adipogénesis/fisiología , Pollos/genética , Adipocitos/metabolismo , Adipocitos/fisiología , Factor de Transcripción E2F5/metabolismo , Factor de Transcripción E2F5/genética , Factor de Transcripción E2F5/fisiología , Proteínas Aviares/metabolismo , Proteínas Aviares/genética
12.
Pediatr Obes ; 19(6): e13120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590200

RESUMEN

Maternal obesity is a well-known risk factor for developing premature obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes in the progeny. The development of white adipose tissue is a dynamic process that starts during prenatal life: fat depots laid down in utero are associated with the proportion of fat in children later on. How early this programming takes place is still unknown. However, recent evidence shows that mesenchymal stem cells (MSC), the embryonic adipocyte precursor cells, show signatures of the early setting of an adipogenic committed phenotype when exposed to maternal obesity. This review aims to present current findings on the cellular adaptations of MSCs from the offspring of women with obesity and how the metabolic environment of MSCs could affect the early commitment towards adipocytes. In conclusion, maternal obesity can induce early programming of fetal adipose tissue by conditioning MSCs. These cells have higher expression of adipogenic markers, altered insulin signalling and mitochondrial performance, compared to MSCs of neonates from lean pregnancies. Fetal MSCs imprinting by maternal obesity could help explain the increased risk of childhood obesity and development of further noncommunicable diseases.


Asunto(s)
Células Madre Mesenquimatosas , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Obesidad Materna/metabolismo , Tejido Adiposo , Obesidad Infantil , Adipogénesis/fisiología , Recién Nacido , Adipocitos
13.
Am J Physiol Cell Physiol ; 326(6): C1611-C1624, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646789

RESUMEN

The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.


Asunto(s)
Adipocitos , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas S6 Ribosómicas 70-kDa , Transducción de Señal , Transportador 1 de Sodio-Glucosa , Serina-Treonina Quinasas TOR , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ratones , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Adipocitos/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Masculino , Adipogénesis/fisiología , Ratones Endogámicos C57BL , Remodelación Vascular , Células Cultivadas , Apoptosis , Diferenciación Celular , Glucosa/metabolismo , Glucosa/deficiencia
14.
Sci Data ; 11(1): 290, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472209

RESUMEN

Fat infiltration in skeletal muscle is now recognized as a standard feature of aging and is directly related to the decline in muscle function. However, there is still a limited systematic integration and exploration of the mechanisms underlying the occurrence of myosteatosis in aging across species. Here, we re-analyzed bulk RNA-seq datasets to investigate the association between fat infiltration in skeletal muscle and aging. Our integrated analysis of single-nucleus transcriptomics in aged humans and Laiwu pigs with high intramuscular fat content, identified species-preference subclusters and revealed core gene programs associated with myosteatosis. Furthermore, we found that fibro/adipogenic progenitors (FAPs) had potential capacity of differentiating into PDE4D+/PDE7B+ preadipocytes across species. Additionally, cell-cell communication analysis revealed that FAPs may be associated with other adipogenic potential clusters via the COL4A2 and COL6A3 pathways. Our study elucidates the correlation mechanism between aging and fat infiltration in skeletal muscle, and these consensus signatures in both humans and pigs may contribute to increasing reproducibility and reliability in future studies involving in the field of muscle research.


Asunto(s)
Adipogénesis , Envejecimiento , Músculo Esquelético , Anciano , Animales , Humanos , Adipogénesis/fisiología , Diferenciación Celular , Músculo Esquelético/fisiología , Porcinos , Conjuntos de Datos como Asunto , RNA-Seq , Transcriptoma , Adipocitos , Células Madre
15.
Aesthetic Plast Surg ; 48(13): 2536-2544, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538770

RESUMEN

Type IV collagen is a major component of the extracellular matrix in adipose tissue. It is secreted during the lipogenic differentiation of mesenchymal stem cells, but its direct impact and mechanism on the differentiation of adipose-derived stem cells (ASCs) into lipids are unclear. In this study, ASCs were obtained from human liposuction samples and cultured. Lipogenic induction of ASCs was achieved using lipogenic induction medium. Immunofluorescence analysis revealed differential expression of type IV collagen during the early and late stages of adipogenic induction, displaying a distinct morphological encapsulation of ASCs. Silencing of type IV collagen using siRNA resulted in a significant decrease in adipogenic capacity, as indicated by reduced lipid droplet formation and downregulation of adipogenic-related gene transcription. Conversely, supplementation of the culture medium with synthetic type IV collagen demonstrated enhanced adipogenic induction efficiency, accompanied by upregulation of YAP/TAZ protein expression and its downstream target gene transcription. Furthermore, inhibition of the YAP/TAZ pathway using the inhibitor Blebbistatin attenuated the functionality of type IV collagen, leading to decreased lipid droplet formation and downregulation of adipocyte maturation-related gene expression. These findings highlight the crucial role of type IV collagen in promoting adipogenic differentiation of ASCs and suggest its involvement in the YAP/TAZ-mediated Hippo pathway.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Adipogénesis , Diferenciación Celular , Colágeno Tipo IV , Humanos , Adipogénesis/fisiología , Adipogénesis/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Cultivadas , Tejido Adiposo/citología , Adipocitos , Femenino , Células Madre , Adulto
16.
Life Sci ; 341: 122491, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336275

RESUMEN

The World Health Organization (WHO) defines obesity as an urgency for health and a social emergency. Today around 39 % of people is overweight, of these over 13 % is obese. It is well-consolidated that the adipose cells are deputy to lipid storage under caloric excess; however, despite the classical idea that adipose tissue has exclusively a passive function, now it is known to be deeply involved in the regulation of systemic metabolism in physiological as well as under obesogenic conditions, with consequences on cardiovascular health. Beside two traditional types of adipose cells (white and brown), recently the beige one has been highlighted as the consequence of the healthy remodeling of white adipocytes, confirming their metabolic adaptability. In this direction, pharmacological, nutraceutical and nutrient-based approaches are addressed to positively influence inflammation and metabolism, thus contributing to reduce the obese-associated cardiovascular risk. In this scenario, hydrogen sulfide emerges as a new mediator that may regulate crucial targets involved in the regulation of metabolism. The current evidence demonstrates that hydrogen sulfide may induce peroxisome proliferator activated receptor γ (PPARγ), a crucial mediator of adipogenesis, inhibit the phosphorylation of perlipin-1 (plin-1), a protein implicated in the lipolysis, and finally promote browning process, through the release of irisin from skeletal muscle. The results summarized in this review suggest an important role of hydrogen sulfide in the regulation of metabolism and in the prevention/treatment of obese-associated cardiovascular diseases and propose new insight on the putative mechanisms underlying the release of hydrogen sulfide or its biosynthesis, delineating a further exciting field of application.


Asunto(s)
Sulfuro de Hidrógeno , Metabolismo de los Lípidos , Humanos , Sulfuro de Hidrógeno/metabolismo , Adipogénesis/fisiología , Adipocitos Blancos/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo
17.
Am J Physiol Endocrinol Metab ; 326(5): E709-E722, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416071

RESUMEN

Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.


Asunto(s)
Adipogénesis , Tejido Adiposo , Exosomas , Metabolismo de los Lípidos , Obesidad , Exosomas/metabolismo , Humanos , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Adipogénesis/fisiología , Metabolismo de los Lípidos/fisiología
18.
Mol Metab ; 80: 101870, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184275

RESUMEN

OBJECTIVE: Bone morphogenetic protein (BMP) signaling is intricately involved in adipose tissue development. BMP7 together with BMP4 have been implicated in brown adipocyte differentiation but their roles during development remains poorly specified. Matrix Gla protein (MGP) inhibits BMP4 and BMP7 and is expressed in endothelial and progenitor cells. The objective was to determine the role of MGP in brown adipose tissue (BAT) development. METHODS: The approach included global and cell-specific Mgp gene deletion in combination with RNA analysis, immunostaining, thermogenic activity, and in vitro studies. RESULTS: The results revealed that MGP directs brown adipogenesis at two essential steps. Endothelial-derived MGP limits triggering of white adipogenic differentiation in the perivascular region, whereas MGP derived from adipose cells supports the transition of CD142-expressing progenitor cells to brown adipogenic maturity. Both steps were important to optimize the thermogenic function of BAT. Furthermore, MGP derived from both sources impacted vascular growth. Reduction of MGP in either endothelial or adipose cells expanded the endothelial cell population, suggesting that MGP is a factor in overall plasticity of adipose tissue. CONCLUSION: MGP displays a dual and cell-specific function in BAT, essentially creating a "cellular shuttle" that coordinates brown adipogenic differentiation with vascular growth during development.


Asunto(s)
Adipocitos Marrones , Proteína Gla de la Matriz , Adipocitos Marrones/metabolismo , Diferenciación Celular , Tejido Adiposo Pardo/metabolismo , Adipogénesis/fisiología
19.
Genes (Basel) ; 15(1)2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275607

RESUMEN

Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly capillaries and microvessels. In addition to their functions in maintaining vascular integrity, participating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex nature of this cell population, the identification and characterization of PCs has been challenging. A comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to adipogenesis and functions in different adipose depots under diverse metabolic conditions.


Asunto(s)
Adipogénesis , Pericitos , Adipogénesis/fisiología , Tejido Adiposo , Células Madre/metabolismo , Capilares
20.
Obes Rev ; 25(1): e13647, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37789591

RESUMEN

Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.


Asunto(s)
Resistencia a la Insulina , Hierro , Humanos , Tejido Adiposo , Tejido Adiposo Pardo , Obesidad/genética , Adipogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...