Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.661
Filtrar
1.
Behav Brain Res ; 475: 115219, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39209120

RESUMEN

Our previous in vitro studies showed that excitotoxicity evoked by glutamate analogue kainate (KA) significantly decreased the number of rat spinal neurons and triggered high release of glutamate leading to locomotor network block. Our current objective was to assess the role of CREB as a predictive marker of damage following chemically-induced spinal cord injury by using in vivo and in vitro models. Thus, in vivo excitotoxicity in Balb/c adult mice was induced by KA intraspinal injection, while in vitro spinal cord excitotoxicity was produced by bath-applied KA. KA application evoked significant neuronal loss, deterioration in hindlimb motor coordination and thermal allodynia. In addition, immunohistochemical analysis showed that KA application resulted in decreased number of CREB positive nuclei in the ventral horn and in dorsal layers III-IV. Our data suggests that excitotoxic-induced neuronal loss may be potentially predicted by altered CREB nuclear translocation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Ácido Kaínico , Ratones Endogámicos BALB C , Nocicepción , Médula Espinal , Animales , Ácido Kaínico/farmacología , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Nocicepción/efectos de los fármacos , Masculino , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/toxicidad , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/inducido químicamente , Locomoción/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
2.
Pharmacol Biochem Behav ; 242: 173826, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025335

RESUMEN

mGlu2/3 Receptors (LY354740) in Anxiety mGlu2/3 receptors when activated decrease glutamate excitation on limbic synapses involved in anxiety. The orally active agonist compound LY354740 (or prodrug LY544344) was active in animal and human models of stress/anxiety. Later clinical studies showed efficacy in generalized anxiety in patients, validating this mechanism clinically. However, the compound was terminated due to rodent seizures in long-term toxicology studies.


Asunto(s)
Ansiedad , Receptores de Glutamato Metabotrópico , Receptores de Glutamato Metabotrópico/agonistas , Humanos , Animales , Ansiedad/tratamiento farmacológico , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/uso terapéutico , Profármacos/farmacología , Compuestos Bicíclicos con Puentes
3.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39079743

RESUMEN

Brain activity implies the orchestrated functioning of interconnected brain regions. Typical in vitro models aim to mimic the brain using single human pluripotent stem cell-derived neuronal networks. However, the field is constantly evolving to model brain functions more accurately through the use of new paradigms, e.g., brain-on-a-chip models with compartmentalized structures and integrated sensors. These methods create novel data requiring more complex analysis approaches. The previously introduced circular tripartite network concept models the connectivity between spatially diverse neuronal structures. The model consists of a microfluidic device allowing axonal connectivity between separated neuronal networks with an embedded microelectrode array to record both local and global electrophysiological activity patterns in the closed circuitry. The existing tools are suboptimal for the analysis of the data produced with this model. Here, we introduce advanced tools for synchronization and functional connectivity assessment. We used our custom-designed analysis to assess the interrelations between the kainic acid (KA)-exposed proximal compartment and its nonexposed distal neighbors before and after KA. Novel multilevel circuitry bursting patterns were detected and analyzed in parallel with the inter- and intracompartmental functional connectivity. The effect of KA on the proximal compartment was captured, and the spread of this effect to the nonexposed distal compartments was revealed. KA induced divergent changes in bursting behaviors, which may be explained by distinct baseline activity and varied intra- and intercompartmental connectivity strengths. The circular tripartite network concept combined with our developed analysis advances importantly both face and construct validity in modeling human epilepsy in vitro.


Asunto(s)
Ácido Kaínico , Red Nerviosa , Ácido Kaínico/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Modelos Neurológicos , Animales , Agonistas de Aminoácidos Excitadores/farmacología , Humanos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Dispositivos Laboratorio en un Chip
4.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804501

RESUMEN

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Asunto(s)
Hipocampo , Ácido Kaínico , Ratones Transgénicos , Plasticidad Neuronal , Animales , Ratones , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Convulsiones/fisiopatología , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Epilepsia/fisiopatología , Epilepsia/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Agonistas de Aminoácidos Excitadores/farmacología
5.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563661

RESUMEN

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Receptores de Glutamato Metabotrópico , Animales , Masculino , Ratas , Aminoácidos/farmacología , Antiparkinsonianos/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Agonistas de Aminoácidos Excitadores/farmacología , Levodopa/farmacología , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
6.
Physiol Behav ; 280: 114564, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657747

RESUMEN

Although salivation is essential during eating behavior, little is known about the brainstem centers that directly control the salivary glands. With regard to the inferior salivatory nucleus (ISN), the site of origin of the parasympathetic preganglionic cell bodies that innervate the parotid glands, previous anatomical studies have located it within the rostrodorsal medullary reticular formation. However, to date there is no functional data that shows the secretory nature of the somas grouped in this region. To activate only the somas and rule out the activation of the efferent fibers from and the afferent fibers to the ISN, in exp. 1, NMDA neurotoxin was administered to the rostrodorsal medullary region and the secretion of saliva was recorded during the following hour. Results showed an increased secretion of parotid saliva but a total absence of submandibular-sublingual secretion. In exp. 2, results showed that the hypersecretion of parotid saliva after NMDA microinjection was completely blocked by the administration of atropine (a cholinergic blocker) but not after administration of dihydroergotamine plus propranolol (α and ß-adrenergic blockers, respectively). These findings suggest that the somata of the rostrodorsal medulla are secretory in nature, controlling parotid secretion via a cholinergic pathway. The data thus functionally supports the idea that these cells constitute the ISN.


Asunto(s)
N-Metilaspartato , Glándula Parótida , Receptores de N-Metil-D-Aspartato , Salivación , Animales , Masculino , Ratas , Antagonistas Adrenérgicos beta/farmacología , Atropina/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Microinyecciones , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Glándula Parótida/metabolismo , Glándula Parótida/efectos de los fármacos , Propranolol/farmacología , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Saliva/metabolismo , Salivación/efectos de los fármacos , Salivación/fisiología , Sialorrea
7.
Pharmacol Biochem Behav ; 240: 173772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653345

RESUMEN

The limbic system, particularly the NAc, shows a high concentration of metabotropic glutamate receptors (mGluRs). Recent evidence suggests the significant involvement of mGluRs in mental disorders, including substance abuse and addiction. The objective of this study was to examine the involvement of mGlu8 receptors in the NAc in the mechanisms underlying the extinction and reinstatement of conditioned place preference (CPP) induced by morphine. Male Wistar rats underwent surgical implantation of bilateral cannulas in the NAc and were assessed in a CPP protocol. In study 1 at the same time as the extinction phase, the rats were given varying doses of S-3,4-DCPG (0.03, 0.3, and 3 µg/0.5 µl). In study 2, rats that had undergone CPP extinction were given S-3,4-DCPG (0.03, 0.3, and 3 µg/0.5 µl) five minutes prior to receiving a subthreshold dose of morphine (1 mg/kg) in order to reactivate the previously extinguished morphine response. The findings demonstrated that administering S-3,4-DCPG directly into the accumbens nucleus resulted in a decrease in the duration of the CPP extinction phase. Moreover, dose-dependent administration of S-3,4-DCPG into the NAc inhibited CPP reinstatement. The observations imply that microinjection of S-3,4-DCPG as a potent orthosteric agonist with high selectivity for the mGlu8 receptor into the NAc promotes the process of extinction while concurrently exerting inhibitory effects on the reinstatement of morphine-induced CPP. This effect may be associated with the modulation of glutamate engagement within the NAc and the plasticity of reward pathways at the synaptic level.


Asunto(s)
Extinción Psicológica , Morfina , Ratas Wistar , Receptores de Glutamato Metabotrópico , Animales , Masculino , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Ratas , Morfina/farmacología , Extinción Psicológica/efectos de los fármacos , Glicina/farmacología , Glicina/análogos & derivados , Glicina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/administración & dosificación , Condicionamiento Psicológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Benzoatos
8.
J Med Chem ; 67(2): 1314-1326, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38170918

RESUMEN

Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.


Asunto(s)
Sistema Nervioso Central , Receptores de Glutamato Metabotrópico , Ratones , Animales , Sistema Nervioso Central/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ciclopropanos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Glutamatos , Ácidos Carboxílicos
9.
Neurosci Lett ; 820: 137595, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38096972

RESUMEN

The current study was designed to examine the role of glutamate NMDA receptors of the mediodorsal thalamus (MD) in scopolamine-induced memory impairment. Adult male rats were bilaterally cannulated into the MD. According to the results, intraperitoneal (i.p.) administration of scopolamine (1.5 mg/kg) immediately after the training phase (post-training) impaired memory consolidation. Bilateral microinjection of the glutamate NMDA receptors agonist, N-Methyl-D-aspartic acid (NMDA; 0.05 µg/rat), into the MD significantly improved scopolamine-induced memory consolidation impairment. Co-administration of D-AP5, a glutamate NMDA receptor antagonist (0.001-0.005 µg/rat, intra-MD) potentiated the response of an ineffective dose of scopolamine (0.5 mg/kg, i.p.) to impair memory consolidation, mimicking the response of a higher dose of scopolamine. Noteworthy, post-training intra-MD microinjections of the same doses of NMDA or D-AP5 alone had no effect on memory consolidation. Moreover, the blockade of the glutamate NMDA receptors by 0.003 ng/rat of D-AP5 prevented the improving effect of NMDA on scopolamine-induced amnesia. Thus, it can be concluded that the MD glutamatergic system may be involved in scopolamine-induced memory impairment via the NMDA receptor signaling pathway.


Asunto(s)
N-Metilaspartato , Escopolamina , Ratas , Masculino , Animales , Escopolamina/farmacología , N-Metilaspartato/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutámico/metabolismo , Ratas Wistar , Amnesia/inducido químicamente , Trastornos de la Memoria/inducido químicamente , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Tálamo/metabolismo , Reacción de Prevención
10.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686003

RESUMEN

The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.


Asunto(s)
N-Metilaspartato , Nocicepción , Humanos , Núcleo Celular , Agonistas de Aminoácidos Excitadores , Dolor , Receptores de N-Metil-D-Aspartato/genética
11.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629153

RESUMEN

Proton-gated channels of the ASIC family are widely distributed in central neurons, suggesting their role in common neurophysiological functions. They are involved in glutamatergic neurotransmission and synaptic plasticity; however, the exact function of these channels remains unclear. One problem is that acidification of the synaptic cleft due to the acidic content of synaptic vesicles has opposite effects on ionotropic glutamate receptors and ASICs. Thus, the pH values required to activate ASICs strongly inhibit AMPA receptors and almost completely inhibit NMDA receptors. This, in turn, suggests that ASICs can provide compensation for post-synaptic responses in the case of significant acidifications. We tested this hypothesis by patch-clamp recordings of rat brain neuron responses to acidifications and glutamate receptor agonists at different pH values. Hippocampal pyramidal neurons have much lower ASICs than glutamate receptor responses, whereas striatal interneurons show the opposite ratio. Cortical pyramidal neurons and hippocampal interneurons show similar amplitudes in their responses to acidification and glutamate. Consequently, the total response to glutamate agonists at different pH levels remains rather stable up to pH 6.2. Besides these pH effects, the relationship between the responses mediated by glutamate receptors and ASICs depends on the presence of Mg2+ and the membrane voltage. Together, these factors create a complex picture that provides a framework for understanding the role of ASICs in synaptic transmission and synaptic plasticity.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Animales , Ratas , Transmisión Sináptica , Cuerpo Estriado , Agonistas de Aminoácidos Excitadores , Ácido Glutámico
12.
Neuropsychopharmacology ; 48(7): 1052-1059, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36928351

RESUMEN

Several attempts have been made to enhance N-methyl-D-aspartate (NMDA) receptor function in schizophrenia, but they have yielded mixed results. Luvadaxistat, a D-amino acid oxidase (DAAO) inhibitor that increases the glutamate co-agonist D-serine levels, is being developed for the treatment of cognitive impairment associated with schizophrenia. We conducted a biomarker study in patients, assessing several endpoints related to physiological outcomes of NMDA receptor modulation to determine whether luvadaxistat affects neural circuitry biomarkers relevant to NMDA receptor function and schizophrenia. This was a randomized, placebo-controlled, double-blind, two-period crossover phase 2a study assessing luvadaxistat 50 mg and 500 mg for 8 days in 31 patients with schizophrenia. There were no treatment effects of luvadaxistat at either dose in eyeblink conditioning, a cerebellar-dependent learning measure, compared with placebo. We observed a nominally significant improvement in mismatch negativity (MMN) and a statistical trend to improvement for auditory steady-state response at 40 Hz, in both cases with 50 mg, but not with 500 mg, compared with placebo. Although the data should be interpreted cautiously owing to the small sample size, they suggest that luvadaxistat can improve an illness-related circuitry biomarker at doses associated with partial DAAO inhibition. These results are consistent with 50 mg, but not higher doses, showing a signal of efficacy in cognitive endpoints in a larger phase 2, 12-week study conducted in parallel. Thus, MMN responses after a short treatment period may predict cognitive function improvement. MMN and ASSR should be considered as biomarkers in early trials addressing NMDA receptor hypofunction.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato , Cerebelo , Cognición , Inhibidores Enzimáticos , Agonistas de Aminoácidos Excitadores , Serina
13.
Biol Psychiatry ; 94(2): 164-173, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958998

RESUMEN

BACKGROUND: Patients with schizophrenia show reduced NMDA glutamate receptor-dependent auditory plasticity, which is rate limiting for auditory cognitive remediation (AudRem). We evaluate the utility of behavioral and neurophysiological pharmacodynamic target engagement biomarkers, using a d-serine+AudRem combination. METHODS: Forty-five participants with schizophrenia or schizoaffective disorder were randomized to 3 once-weekly AudRem visits + double-blind d-serine (80, 100, or 120 mg/kg) or placebo in 3 dose cohorts of 12 d-serine and 3 placebo-treated participants each. In AudRem, participants indicated which paired tone was higher in pitch. The primary outcome was plasticity improvement, operationalized as change in pitch threshold between AudRem tones [(test tone Hz - reference tone Hz)/reference tone Hz] between the initial plateau pitch threshold (mean of trials 20-30 of treatment visit 1) to pitch threshold at the end of visit(s). Target engagement was assessed by electroencephalography outcomes, including mismatch negativity (pitch primary). RESULTS: There was a significant overall treatment effect for plasticity improvement (p = .014). Plasticity improvement was largest within the 80 and 100 mg/kg groups (p < .001, d > 0.67), while 120 mg/kg and placebo-treated participants showed nonsignificant within-group changes. Plasticity improvement was seen after a single treatment and was sustained on subsequent treatments. Target engagement was demonstrated by significantly larger mismatch negativity (p = .049, d = 1.0) for the 100 mg/kg dose versus placebo. CONCLUSIONS: Our results demonstrate sufficient proof of principle for continued development of both the d-serine+AudRem combination and our target engagement methodology. The ultimate utility is dependent on the results of an ongoing larger, longer study of the combination for clinically relevant outcomes.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Serina , Receptores de N-Metil-D-Aspartato , N-Metilaspartato/farmacología , N-Metilaspartato/uso terapéutico , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/uso terapéutico , Ácido Glutámico/farmacología , Método Doble Ciego , Plasticidad Neuronal , Antipsicóticos/uso terapéutico
14.
Eur J Pharmacol ; 938: 175389, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36435235

RESUMEN

Microglia represent the resident immune system in the brain. They mediate neuroinflammatory processes and have been described as important regulators of homeostasis in the central nervous system (CNS). Among several players and mechanisms contributing to microglial function in inflammation, ATP and glutamate have been shown to be involved in microgliosis. In this study, we focused on receptor subtypes that respond to these neurotransmitters, purinergic ionotropic P2X7 receptor and metabotropic glutamate mGlu5 receptor. We found that both receptors are functionally expressed in a murine microglia cell line, BV2 cells, and we performed patch-clamp experiments to measure purinergic ionotropic P2X7 receptor ion flux in control condition and after metabotropic glutamate mGlu5 receptor activation. The selective purinergic ionotropic P2X7 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP, 100 µM), elicited a robust current that was prevented by the selective purinergic ionotropic P2X7 receptor antagonist A438079 (10 µM). When BV2 cells were acutely stimulated with the selective metabotropic glutamate mGlu5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 200 µM), purinergic ionotropic P2X7 receptor current was increased. This positive modulation was prevented by the selective metabotropic glutamate mGlu5 receptor antagonist 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP, 1 µM). Moreover, nitric oxide synthesis elicited by purinergic ionotropic P2X7 receptor activation was enhanced by metabotropic glutamate mGlu5 receptor co-stimulation. Taken together, our results suggest an important crosstalk between ATP and glutamate in inflammation. Pro-inflammatory effects mediated by purinergic ionotropic P2X7 receptor might be exacerbated by simultaneous exposure of microglia to ATP and glutamate, suggesting new pharmacological targets to modulate neuroinflammation.


Asunto(s)
Microglía , Receptor del Glutamato Metabotropico 5 , Receptores Purinérgicos P2X7 , Animales , Ratones , Adenosina Trifosfato/farmacología , Células Cultivadas , Agonistas de Aminoácidos Excitadores , Ácido Glutámico/metabolismo , Inflamación/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores Purinérgicos P2X7/metabolismo
15.
Pharmacol Biochem Behav ; 221: 173474, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244526

RESUMEN

The serotonergic and glutamatergic neurotransmitter systems have been implicated in the pathophysiology of schizophrenia, and increasing evidence shows that they interact functionally. Of note, the Gq/11-coupled serotonin 5-HT2A (5-HT2A) and the Gi/o-coupled metabotropic glutamate type 2 (mGlu2) receptors have been demonstrated to assemble into a functional heteromeric complex that modulates the function of each individual receptor. For conformation of the heteromeric complex, corresponding transmembrane-4 segment of 5-HT2A and mGlu2 are required. The 5-HT2A/mGlu2 heteromeric complex is necessary for the activation of Gq/11 proteins and for the subsequent increase in the levels of the intracellular messenger Ca2+. Furthermore, signaling via the heteromeric complex is dysregulated in the post-mortem brains of patients with schizophrenia, and could be linked to altered cortical function. From a behavioral perspective, this complex contributes to the hallucinatory and antipsychotic behaviors associated with 5-HT2A and mGlu2/3 agonists, respectively. Synaptic and epigenetic mechanisms have also been found to be significantly associated with the mGlu2/5-HT2A heteromeric complex. This review summarizes the role of crosstalk between mGlu2 and 5-HT2A in the mechanism of antipsychotic effects and introduces recent key advancements on this topic.


Asunto(s)
Antipsicóticos , Receptores de Glutamato Metabotrópico , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Serotonina , Ácido Glutámico/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Agonistas de Aminoácidos Excitadores , Receptor de Serotonina 5-HT2A
16.
Biol Reprod ; 107(4): 916-927, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35746896

RESUMEN

Free amino acids are present in the natural environment of the preimplantation embryo, and their availability can influence early embryo development. Glutamic acid is one of the amino acids with the highest concentrations in female reproductive fluids, and we investigated whether glutamic acid/glutamate can affect preimplantation embryo development by acting through cell membrane receptors. Using reverse transcription-polymerase chain reaction, we detected 15 ionotropic glutamate receptor transcripts and 8 metabotropic glutamate receptor transcripts in mouse ovulated oocytes and/or in vivo developed blastocysts. Using immunohistochemistry, we detected the expression of two α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits, three kainate receptor subunits, and member 5 metabotropic glutamate receptor protein in blastocysts. Extracellular concentrations of glutamic acid starting at 5 mM impaired mouse blastocyst development, and this fact may be of great practical importance since glutamic acid and its salts (mainly monosodium glutamate) are widely used as food additives. Experiments with glutamate receptor agonists (in combination with gene expression analysis) revealed that specific AMPA receptors (formed from glutamate receptor, ionotropic, AMPA3 [GRIA3] and/or glutamate receptor, ionotropic, AMPA4 [GRIA4] subunits), kainate receptors (formed from glutamate receptor, ionotropic, kainate 3 [GRIK3] and glutamate receptor, ionotropic, kainate 4 [GRIK4] or glutamate receptor, ionotropic, kainate 5 [GRIK5] subunits), and member 5 metabotropic glutamate receptor (GRM5) were involved in this effect. The glutamic acid-induced effects were prevented or reduced by pretreatment of blastocysts with AMPA, kainate, and GRM5 receptor antagonists, further confirming the involvement of these receptor types. Our results show that glutamic acid can act as a signaling molecule in preimplantation embryos, exerting its effects through the activation of cell membrane receptors.


Asunto(s)
Receptores de Ácido Kaínico , Receptores de Glutamato Metabotrópico , Animales , Blastocisto/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Aditivos Alimentarios , Glutamatos , Ácido Kaínico/farmacología , Ratones , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sales (Química)/metabolismo , Glutamato de Sodio , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
17.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565989

RESUMEN

The neuroprotective properties of piperine, the major alkaloid extracted from black pepper, have been under investigation, but its mechanism of action in excitotoxicity is still poorly understood. This study aimed to evaluate the protective effects of piperine with a focus on nerve growth factor (NGF) signalling in a kainic acid (KA) rat model of excitotoxicity. Rats were administered intraperitoneally (i.p.) piperine (10 or 50 mg/kg) before KA injection (15 mg/kg, i.p.). Our results show that KA exposure in rats caused seizure behaviour, intrinsic neuronal hyperactivity, glutamate elevation, hippocampal neuronal damage, and cognitive impairment. These KA-induced alterations could be restored to the normal state by piperine treatment. In addition, piperine decreased the expression of the NGF precursor proNGF and NGF-degrading protease matrix metalloproteinase 9, whereas it increased the expression of proNGF processing enzyme matrix metalloproteinase 7, NGF, and NGF-activated receptor TrkA in the hippocampus of KA-treated rats. Furthermore, KA decreased phosphorylation of the protein kinase B (Akt) and glycogen synthase kinase 3ß (GSK3ß) in the hippocampus, and piperine reversed these changes. Our data suggest that piperine protects hippocampal neurons against KA-induced excitotoxicity by upregulating the NGF/TrkA/Akt/GSK3ß signalling pathways.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Alcaloides/metabolismo , Alcaloides/farmacología , Animales , Benzodioxoles , Agonistas de Aminoácidos Excitadores/toxicidad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Ácido Kaínico/toxicidad , Factor de Crecimiento Nervioso/metabolismo , Neuroprotección , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Piperidinas , Alcamidas Poliinsaturadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
18.
Neurochem Int ; 152: 105244, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826530

RESUMEN

Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/farmacología , Ratones Transgénicos , Mitocondrias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Fármacos Neuroprotectores/farmacología
19.
J Med Chem ; 65(1): 734-746, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34918931

RESUMEN

NMDA receptors mediate glutamatergic neurotransmission and are therapeutic targets due to their involvement in a variety of psychiatric and neurological disorders. Here, we describe the design and synthesis of a series of (R)-3-(5-furanyl)carboxamido-2-aminopropanoic acid analogues 8a-s as agonists at the glycine (Gly) binding site in the GluN1 subunit, but not GluN3 subunits, of NMDA receptors. These novel analogues display highly variable potencies and agonist efficacies among the NMDA receptor subtypes (GluN1/2A-D) in a manner dependent on the GluN2 subunit. Notably, compound 8p is identified as a potent partial agonist at GluN1/2C (EC50 = 0.074 µM) with an agonist efficacy of 28% relative to activation by Gly and virtually no agonist activity at GluN1/2A, GluN1/2B, and GluN1/2D. Thus, these novel agonists can modulate the activity of specific NMDA receptor subtypes by replacing the full endogenous agonists Gly or d-serine (d-Ser), thereby providing new opportunities in the development of novel therapeutic agents.


Asunto(s)
Proteínas Portadoras/agonistas , Agonistas de Aminoácidos Excitadores/síntesis química , Agonistas de Aminoácidos Excitadores/farmacología , Glicina/efectos de los fármacos , Proteínas de la Membrana/agonistas , Proteínas del Tejido Nervioso/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Animales , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Xenopus , Xenopus laevis
20.
J Neurophysiol ; 127(1): 56-85, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731070

RESUMEN

Thalamic stroke leads to ataxia if the cerebellum-receiving ventrolateral thalamus (VL) is affected. The compensation mechanisms for this deficit are not well understood, particularly the roles that single neurons and specific neuronal subpopulations outside the thalamus play in recovery. The goal of this study was to clarify neuronal mechanisms of the motor cortex involved in mitigation of ataxia during locomotion when part of the VL is inactivated or lesioned. In freely ambulating cats, we recorded the activity of neurons in layer V of the motor cortex as the cats walked on a flat surface and horizontally placed ladder. We first reversibly inactivated ∼10% of the VL unilaterally using glutamatergic transmission antagonist CNQX and analyzed how the activity of motor cortex reorganized to support successful locomotion. We next lesioned 50%-75% of the VL bilaterally using kainic acid and analyzed how the activity of motor cortex reorganized when locomotion recovered. When a small part of the VL was inactivated, the discharge rates of motor cortex neurons decreased, but otherwise the activity was near normal, and the cats walked fairly well. Individual neurons retained their ability to respond to the demand for accuracy during ladder locomotion; however, most changed their response. When the VL was lesioned, the cat walked normally on the flat surface but was ataxic on the ladder for several days after lesion. When ladder locomotion normalized, neuronal discharge rates on the ladder were normal, and the shoulder-related group was preferentially active during the stride's swing phase.NEW & NOTEWORTHY This is the first analysis of reorganization of the activity of single neurons and subpopulations of neurons related to the shoulder, elbow, or wrist, as well as fast- and slow-conducting pyramidal tract neurons in the motor cortex of animals walking before and after inactivation or lesion in the thalamus. The results offer unique insights into the mechanisms of spontaneous recovery after thalamic stroke, potentially providing guidance for new strategies to alleviate locomotor deficits after stroke.


Asunto(s)
Ataxia/fisiopatología , Corteza Motora/fisiopatología , Plasticidad Neuronal/fisiología , Tractos Piramidales/fisiopatología , Recuperación de la Función/fisiología , Núcleos Talámicos Ventrales/fisiopatología , Caminata/fisiología , Animales , Conducta Animal/fisiología , Gatos , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Núcleos Talámicos Ventrales/efectos de los fármacos , Núcleos Talámicos Ventrales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...