Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135748

RESUMEN

N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Quinasas p21 Activadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Toxinas Marinas , Ratones , N-Metilaspartato , Proyección Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxocinas , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
2.
Pestic Biochem Physiol ; 186: 105171, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973763

RESUMEN

We explored the potential of two sodium channel activators, veratrine and aconitine, as both insecticides and synergists of natural pyrethrins (NP) on Aedes aegypti adults and larvae. Aconitine was more toxic than veratrine, with an LD50 of 157 ng/mg compared to 376 ng/mg, on the pyrethroid-susceptible Orlando strain, but only aconitine showed significant resistance in the pyrethroid-resistant Puerto Rico strain (RR = 14.6 in topical application and 8.8 in larval bioassay). When applied in mixtures with piperonyl butoxide (PBO) and NP, large synergism values were obtained on the Orlando strain. Aconitine + PBO mixture synergized NP 21.8-fold via topical adult application and 10.2-fold in larval bioassays, whereas veratrine + PBO synergized NP 5.3-fold via topical application and 30.5-fold in larval bioassays. Less synergism of NP was observed on the resistant Puerto Rico strain, with acontine + PBO synergizing NP only 4.1-fold in topical application (8-fold in larval bioassays) and veratrine + PBO synergizing NP 9.5-fold in topical application (13.3-fold in larval bioassays). When alkaloids were applied directly to the mosquito larval nervous system, veratrine was nearly equipotent on both strains, while aconitine was less active on pyrethroid-resistant nerve preparations (no block at 10 µM compared to block at 1 µM on the susceptible strain). The nerve blocking effect of NP was significantly synergized by both compounds on the pyrethroid-susceptible strain by about 10-fold, however only veratrine synergized NP block on the pyrethroid-resistant strain, also showing 10-fold synergism). These results highlight the potential of site II sodium channel activators as insecticides and their ability to synergize pyrethroids, which may extend the commercial lifetime of these chemistries so essential to public health vector control.


Asunto(s)
Insecticidas , Piretrinas , Agonistas de los Canales de Sodio , Aconitina/farmacología , Aedes/efectos de los fármacos , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , Agonistas de los Canales de Sodio/farmacología , Veratrina/farmacología
3.
Neuropharmacology ; 197: 108745, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375627

RESUMEN

The voltage-sensitive sodium channel NaV1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases. To identify novel regulatory kinases we screened a library of activated kinases and we found that AKT1 was able to directly phosphorylate NaV1.1. In vitro kinase assays revealed that the phosphorylation site was located in the C-terminal part of the large intracellular loop connecting domains I and II of NaV1.1, a region that is known to be targeted by other kinases like PKA and PKC. Electrophysiological recordings revealed that activated AKT1 strongly reduced peak Na+ currents and displaced the inactivation curve to more negative potentials in HEK-293 cell stably expressing NaV1.1. These alterations in current amplitude and steady-state inactivation were mimicked by SC79, a specific activator of AKT1, and largely reverted by triciribine, a selective inhibitor. Neurons expressing endogenous NaV1.1 in primary cultures were identified by expressing a fluorescent protein under the NaV1.1 promoter. There, we also observed a strong decrease in the current amplitude after addition of SC79, but small effects on the inactivation parameters. Altogether, we propose a novel mechanism that might regulate the excitability of neural networks in response to AKT1, a kinase that plays a pivotal role under physiological and pathological conditions, including epileptogenesis.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Fenómenos Electrofisiológicos , Epilepsias Mioclónicas/genética , Células HEK293 , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Red Nerviosa/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ribonucleósidos/farmacología , Agonistas de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/farmacología
4.
J Cereb Blood Flow Metab ; 41(11): 2897-2906, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34013806

RESUMEN

Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/efectos de los fármacos , Endotelio/efectos de los fármacos , Hipotermia Inducida/efectos adversos , Canales Catiónicos TRPM/efectos de los fármacos , Animales , Animales Recién Nacidos , Arteriolas/efectos de los fármacos , Arteriolas/fisiopatología , Temperatura Corporal/fisiología , Bradiquinina/análisis , Circulación Cerebrovascular/fisiología , Endotelio/fisiopatología , Femenino , Ácido Glutámico/análisis , Cabeza , Hipercapnia/fisiopatología , Hipotermia Inducida/métodos , Masculino , Nitroprusiato/metabolismo , Nitroprusiato/farmacología , Pirimidinonas/farmacología , Recalentamiento/efectos adversos , Agonistas de los Canales de Sodio/farmacología , Porcinos , Canales Catiónicos TRPM/inmunología , Canales Catiónicos TRPM/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/metabolismo , Vasodilatadores/farmacología
5.
Eur J Pharmacol ; 901: 174090, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831414

RESUMEN

The mineralocorticoid hormone aldosterone stimulates sodium reabsorption in the collecting ducts by increasing the activity of the epithelial sodium channel (ENaC). Being a rate-liming channel the loss of function mutations caused Pseudohypoaldosteronism 1 (PHA1). Despite elevated plasma aldosterone in PHA 1 patients the modulation of PHA 1 causing ENaC mutants with hormone has never been studied. After recording control ENaC current in PHA1 causing ENaC stop codon mutants we demonstrated the activation of aldosterone in the whole cell as well as single channel patch clamp assays. Single channel recoding experiments demonstrated that aldosterone can increase the open probability of all analyzed PHA 1 stop codon mutants and WT. Additionally, we demonstrated by western blot experiments that aldosterone can increase the expression of WT and PHA 1 stop codon mutants. Extensive whole cell patch clamp experiments demonstrated that C-terminal γ ENaC domain is necessary for aldosterone to activate whole cell current in HEK-293 cells. This novel finding of γ ENaC C-terminus dependent activation of whole cell current by aldosterone could alter our understanding of ENaC-mediated sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN).


Asunto(s)
Aldosterona/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Agonistas de los Canales de Sodio/farmacología , Codón de Terminación/efectos de los fármacos , Células HEK293 , Humanos , Túbulos Renales Distales/efectos de los fármacos , Mutación , Nefronas/efectos de los fármacos , Técnicas de Placa-Clamp
6.
Molecules ; 27(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35011282

RESUMEN

The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.


Asunto(s)
Perfilación de la Expresión Génica , Canales de Sodio/genética , Venenos de Araña/genética , Arañas/genética , Transcriptoma , Animales , Biología Computacional , Bases de Datos Genéticas , Femenino , Ontología de Genes , Proteoma , Proteómica/métodos , Agonistas de los Canales de Sodio , Canales de Sodio/metabolismo
7.
Toxicon ; 182: 13-20, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32353571

RESUMEN

Scorpion venom is a rich source of bioactive compounds that affect neuronal excitability by modulating the activities of various channels/receptors. In the current study, guided by a Ca2+ mobilization assay, we purified a new neuroactive peptide designated as BmK NSP (Buthus martensii Karsch neurite-stimulating peptide, MW: 7064.30 Da). The primary structure of BmK NSP was determined by Edman degradation. BmK NSP concentration-dependently elevated intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 4.18 µM in primary cultured spinal cord neurons (SCNs). Depletion of extracellular Ca2+ abolished BmK NSP-triggered Ca2+ response. Moreover, we demonstrated that BmK NSP-induced Ca2+ response was partially suppressed by the inhibitors of L-type Ca2+ channels, Na+-Ca2+ exchangers and NMDA receptors and was abolished by voltage-gated sodium channel (VGSC) blocker, tetrodotoxin. Whole-cell patch clamp recording demonstrated that BmK NSP delayed VGSC inactivation (EC50 = 1.10 µM) in SCNs. BmK NSP enhanced neurite outgrowth in a non-monotonic manner that peaked at ~30 nM in SCNs. BmK NSP-promoted neurite outgrowth was suppressed by the inhibitors of L-type Ca2+ channels, NMDA receptors, and VGSCs. Considered together, these data demonstrate that BmK NSP is a new α-scorpion toxin that enhances neurite outgrowth through main routes of Ca2+ influx. Modulation of VGSC activity by α-scorpion toxin might represent a novel strategy to regulate the neurogenesis in SCNs.


Asunto(s)
Proyección Neuronal , Venenos de Escorpión/toxicidad , Escorpiones , Agonistas de los Canales de Sodio , Animales , Células Cultivadas , Neuronas , Péptidos , Receptores de N-Metil-D-Aspartato , Médula Espinal
8.
Biochem Biophys Res Commun ; 527(1): 71-75, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446393

RESUMEN

Acid-sensing ion channels (ASICs) have been implicated in many physiological and patho-physiological processes like synaptic plasticity, inflammation, pain perception, stroke-induced brain damage and, drug-seeking behaviour. Although ASICs have been shown to be modulated by gasotransmitters like nitric oxide (NO), their regulation by hydrogen sulfide (H2S) is not known. Here, we present strong evidence that H2S potentiates ASICs-mediated currents. Low pH-induced current in Chinese hamster ovary (CHO) cells, expressing homomeric either ASIC1a, ASIC2a or ASIC3, increased significantly by an H2S donor NaHS. The effect was reversed by washing the cells with NaHS-free external solution of pH 7.4. MTSES, a membrane impermeable cysteine thiol-modifier failed to abrogate the effect of NaHS on ASIC1a, suggesting that the target cysteine residues are not in the extracellular region of the channel. The effect of NaHS is not mediated through NO, as the basal NO level in cells did not change following NaHS application. This previously unknown mechanism of ASICs-modulation by H2S adds a new dimension to the ASICs in health and disease.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Células CHO , Cricetulus , Concentración de Iones de Hidrógeno , Óxido Nítrico/metabolismo , Técnicas de Placa-Clamp , Agonistas de los Canales de Sodio/farmacología
9.
Biochem Pharmacol ; 181: 113991, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32335140

RESUMEN

Dravet syndrome (DS) is a catastrophic epileptic encephalopathy characterised by childhood-onset polymorphic seizures, multiple neuropsychiatric comorbidities, and increased risk of sudden death. Heterozygous loss-of-function mutations in one allele of SCN1A, the gene encoding the voltage-gated sodium channel 1.1 (NaV1.1), lead to DS. NaV1.1 is primarily found in the axon initial segment of fast-spiking GABAergic inhibitory interneurons in the brain, and the principle mechanism proposed to underlie seizure genesis in DS is loss of inhibitory input due to dysfunctional firing of GABAergic interneurons. We hypothesised that DS symptoms could be ameliorated by a drug that activates the reduced population of functional NaV1.1 channels in DS interneurons. We recently identified two homologous disulfide-rich spider-venom peptides (Hm1a and Hm1b) that selectively potentiate NaV1.1, and showed that selective activation of NaV1.1 by Hm1a restores the function of inhibitory interneurons in a mouse model of DS. Here we produced recombinant Hm1b (rHm1b) using an E. coli periplasmic expression system, and examined its selectivity against a panel of human NaV subtypes using whole-cell patch-clamp recordings. rHm1b is a potent and highly selective agonist of NaV1.1 and NaV1.3 (EC50 ~12 nM for both). rHm1b is a gating modifier that shifts the voltage dependence of channel activation and inactivation to hyperpolarised and depolarised potentials respectively, presumably by interacting with the channel's voltage-sensor domains. Like Hm1a, the structure of rHm1b determined by using NMR revealed a classical inhibitor cystine knot (ICK) motif. However, we show that rHm1b is an order of magnitude more stable than Hm1a in human cerebrospinal fluid. Overall, our data suggest that rHm1b is an exciting lead for a precision therapeutic targeted against DS.


Asunto(s)
Epilepsias Mioclónicas/tratamiento farmacológico , Interneuronas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Péptidos/farmacología , Agonistas de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/metabolismo , Células HEK293 , Humanos , Interneuronas/metabolismo , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Homología de Secuencia de Aminoácido , Agonistas de los Canales de Sodio/química , Venenos de Araña/metabolismo
10.
Acta Pharmacol Sin ; 41(8): 1049-1057, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32107467

RESUMEN

Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1-100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration-response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Endotelina-1/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Agonistas de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Células CHO , Cricetulus , Ganglios Espinales/citología , Hiperalgesia/inducido químicamente , Masculino , Ratas Sprague-Dawley , Receptor de Endotelina A/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Biomolecules ; 9(9)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443477

RESUMEN

Acid-sensing ion channel (ASIC) channels belong to the family of ligand-gated ion channels known as acid-sensing (proton-gated) ion channels. Only a few activators of ASICs are known. These are exogenous and endogenous molecules that cause a persistent, slowly desensitized current, different from an acid-induced current. Here we describe a novel endogenous agonist of ASICs-peptide nocistatin produced by neuronal cells and neutrophils as a part of prepronociceptin precursor protein. The rat nocistatin evoked currents in X. laevis oocytes expressing rat ASIC1a, ASIC1b, ASIC2a, and ASIC3 that were very similar in kinetic parameters to the proton-gated response. Detailed characterization of nocistatin action on rASIC1a revealed a proton-like dose-dependence of activation, which was accompanied by a dose-dependent decrease in the sensitivity of the channel to the protons. The toxin mambalgin-2, antagonist of ASIC1a, inhibited nocistatin-induced current, therefore the close similarity of mechanisms for ASIC1a activation by peptide and protons could be suggested. Thus, nocistatin is the first endogenous direct agonist of ASICs. This data could give a key to understanding ASICs activation regulation in the nervous system and also could be used to develop new drugs to treat pathological processes associated with ASICs activation, such as neurodegeneration, inflammation, and pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Neuropéptidos/farmacología , Péptidos Opioides/farmacología , Agonistas de los Canales de Sodio/farmacología , Secuencia de Aminoácidos , Animales , Neuropéptidos/química , Péptidos Opioides/química , Ratas , Agonistas de los Canales de Sodio/química
12.
Toxicon ; 168: 147-157, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31330191

RESUMEN

Voltage gated ion channels have become a subject of investigation as possible pharmaceutical targets. Research has linked the activity of ion channels directly to anti-inflammatory pathways, energy homeostasis, cancer proliferation and painful diabetic neuropathy. Sea anemones secrete a diverse array of bioactive compounds including potassium and sodium channel toxins. A putative novel sodium channel agonist (molecular mass of 4619.7 Da) with a predicted sequence: CLCNSDGPSV RGNTLSGILW LAGCPSGWHN CKKHKPTIGW CCK was isolated from Bunodosoma capense using a modified stimulation technique to induce the secretion of the neurotoxin rich mucus confirmed by an Artemia nauplii bio-assay. The peptide purification combined size-exclusion and reverse-phase high performance liquid chromatography. A thallium-based ion flux assay confirmed the presence of a sodium channel agonist/inhibitor and purity was determined using a modified tricine SDS-PAGE system. The peptide isolated indicated the presence of multiple disulfide bonds in a tight ß-defensin cystine conformation. An IC50 value of 26 nM was determined for total channel inhibition on MCF-7 cells. The unique putative sodium channel agonist initiating with a cystine bond indicates a divergent evolution to those previously isolated from Bunodosoma species.


Asunto(s)
Anémonas de Mar/química , Agonistas de los Canales de Sodio/química , Secuencia de Aminoácidos , Animales , Artemia , Humanos , Células MCF-7 , Toxinas Marinas , Neurotoxinas/química , Péptidos/química , Sudáfrica
13.
J Gen Physiol ; 151(2): 186-199, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30587506

RESUMEN

Batrachotoxin (BTX), an alkaloid from skin secretions of dendrobatid frogs, causes paralysis and death by facilitating activation and inhibiting deactivation of eukaryotic voltage-gated sodium (Nav) channels, which underlie action potentials in nerve, muscle, and heart. A full understanding of the mechanism by which BTX modifies eukaryotic Nav gating awaits determination of high-resolution structures of functional toxin-channel complexes. Here, we investigate the action of BTX on the homotetrameric prokaryotic Nav channels NaChBac and NavSp1. By combining mutational analysis and whole-cell patch clamp with molecular and kinetic modeling, we show that BTX hinders deactivation and facilitates activation in a use-dependent fashion. Our molecular model shows the horseshoe-shaped BTX molecule bound within the open pore, forming hydrophobic H-bonds and cation-π contacts with the pore-lining helices, leaving space for partially dehydrated sodium ions to permeate through the hydrophilic inner surface of the horseshoe. We infer that bulky BTX, bound at the level of the gating-hinge residues, prevents the S6 rearrangements that are necessary for closure of the activation gate. Our results reveal general similarities to, and differences from, BTX actions on eukaryotic Nav channels, whose major subunit is a single polypeptide formed by four concatenated, homologous, nonidentical domains that form a pseudosymmetric pore. Our determination of the mechanism by which BTX activates homotetrameric voltage-gated channels reveals further similarities between eukaryotic and prokaryotic Nav channels and emphasizes the tractability of bacterial Nav channels as models of voltage-dependent ion channel gating. The results contribute toward a deeper, atomic-level understanding of use-dependent natural and synthetic Nav channel agonists and antagonists, despite their overlapping binding motifs on the channel proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Batracotoxinas/farmacología , Agonistas de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Bacillus , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/química , Línea Celular , Humanos , Activación del Canal Iónico , Rhodobacteraceae , Canales de Sodio/química
14.
Sci Rep ; 8(1): 18000, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30573735

RESUMEN

Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on five homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identified no new modulator of ASICs. In summary, our screen confirmed some known peptide modulators of ASICs but identified no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known.


Asunto(s)
Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Dinorfinas/farmacología , Neuropéptidos/farmacología , Oligopéptidos/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Femenino , Neuropéptidos/química , Neuropéptidos/aislamiento & purificación , Neuropéptidos/metabolismo , Agonistas de los Canales de Sodio/aislamiento & purificación , Agonistas de los Canales de Sodio/farmacología , Xenopus laevis
15.
Bioorg Med Chem ; 26(12): 3158-3165, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29699911

RESUMEN

A series of new 6-styryl-naphthalene-2-amidrazone derivatives were synthesized and evaluated as potential ASIC1a inhibitors. Among them, compound 5e showed the most activity to inhibit [Ca2+]i. elevation in acid-induced articular chondrocytes. Together with the important role of ASIC1a in the pathogenesis of tissue acidification diseases including rheumatoid arthritis, these results might provide a meaningful hint or inspiration in developing drugs targeting at tissue acidification diseases.


Asunto(s)
Ácidos Carboxílicos/química , Diseño de Fármacos , Agonistas de los Canales de Sodio/síntesis química , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Calcio/metabolismo , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Naftalenos/química , Ratas , Agonistas de los Canales de Sodio/química , Agonistas de los Canales de Sodio/farmacología , Relación Estructura-Actividad
16.
Biochem Pharmacol ; 151: 79-88, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29477572

RESUMEN

GMQ (2-guanidine-4-methylquinazoline or N-(4-methyl-2-quinazolinyl)-guanidine hydrochloride), an agonist of acid-sensing ion channel type 3, has been increasingly used for in vivo studies of alternations in nociceptic behavior. In this study, we tried to investigate whether GMQ has any possible effect on other types of ion channels. Addition of GMQ to pituitary GH3 cells raised the amplitude of Ca2+-activated K+ currents (IK(Ca)), which was reversed by verruculogen or PF1022A, but not by TRAM-39. Under inside-out current recordings, addition of GMQ into bath enhanced the probability of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 0.95 µM. The activation curve of BKCa channels during exposure to GMQ shifted to a lower depolarized potential, with no change in the gating charge of the curve; however, there was a reduction of free energy for channel activation in its presence. As cells were exposed to GMQ, the amplitude of ion currents were suppressed, including delayed rectifying K+ current, voltage-gated Na+ and L-type Ca2+ currents. In Rolf B1.T olfactory sensory neuron, addition of GMQ was able to induce inward current and to suppress peak INa. Taken together, findings from these results indicated that in addition to the activation of ASIC3 channels, this compound might directly produce additional actions on various types of ion channels. Caution should be taken in the interpretation of in vivo experimental results when GMQ or other structurally similar compounds are used as targets to characterize the potential functions of ASIC3 channels.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Guanidinas/farmacología , Activación del Canal Iónico/efectos de los fármacos , Neuronas Receptoras Olfatorias/efectos de los fármacos , Hipófisis/efectos de los fármacos , Quinazolinas/farmacología , Agonistas de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Línea Celular Tumoral , Transporte Iónico , Neuronas Receptoras Olfatorias/metabolismo , Técnicas de Placa-Clamp , Hipófisis/metabolismo , Ratas
17.
Life Sci ; 196: 48-55, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29307525

RESUMEN

AIMS: The sperm plasma membrane contains specific ion channels and transporters that initiate changes in Ca2+, Na+, K+ and H+ ions in the sperm cytoplasm. Ion channels are key regulators of the sperm membrane potential, cytoplasmic Ca2+ and intracellular pH (pHi), which leads to regulate motility, capacitation, acrosome reaction and other physiological processes crucial for successful fertilization. Expression of epithelial sodium channels (ENaC) and voltage-gated sodium channels (Nav) in human spermatozoa has been reported, but the role of Na+ fluxes sodium channels in the regulation of sperm cell function remains poorly understood. In this context, we aimed to analyze the physiological role of Nav channels in human sperm. MAIN METHODS: Motility and hyperactivation analysis was conducted by CASA analysis. Flow cytometry and spectrophotometry approaches were carried out to measure Capacitation, Acrosome reaction, immunohistochemistry for Tyr-residues phosporylation, [Ca2+]i levels and membrane potential. KEY FINDINGS: Functional studies showed that veratridine, a voltage-gated sodium channel activator, increased sperm progressive motility without producing hyperactivation while the Nav antagonist lidocaine did induce hyperactivated motility. Veratridine increased protein tyrosine phosphorylation, an event occurring during capacitation, and its effects were inhibited in the presence of lidocaine and tetrodotoxin. Veratridine had no effect on the acrosome reaction by itself, but was able to block the progesterone-induced acrosome reaction. Moreover, veratridine caused a membrane depolarization and modified the effect of progesterone on [Ca2+]i and sperm membrane potential. SIGNIFICANCE: Our results suggest that veratridine-sensitive Nav channels are involved on human sperm fertility acquisition regulating motility, capacitation and the progesterone-induced acrosome reaction in human sperm.


Asunto(s)
Fertilización/efectos de los fármacos , Agonistas de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Veratridina/farmacología , Reacción Acrosómica/efectos de los fármacos , Adolescente , Adulto , Femenino , Humanos , Inmunohistoquímica , Técnicas In Vitro , Lidocaína/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Progesterona/antagonistas & inhibidores , Progesterona/farmacología , Receptores Androgénicos/efectos de los fármacos , Semen/efectos de los fármacos , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Adulto Joven
18.
Theriogenology ; 108: 207-216, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29248843

RESUMEN

In our previous study, we have reported the molecular presence of Nav 1.8 in bull spermatozoa and its potential involvement in regulation of sperm functions. With the selective blocking of Nav 1.8 using A-803467, alterations in sperm functions were observed, therefore, we envisaged of investigating the involvement of Nav in regulating sperm function and the mechanism(s) involved in it using veratridine, a selective opener of Nav channels. Forty ejaculates were collected from four Hariana bulls and semen samples were pooled in view of the non-significant variations between the different ejaculates. Treatment of sperm cells with veratridine (6, 8, and 10 µM) resulted in concentration- and time-dependent increase in forward progressive sperm motility and it persisted up to 6 h. However, hyperactive motility was induced by veratridine at higher concentrations (8 and 10 µM) and after 2 h of incubation, which was confirmed by subjective assessment followed by chlortetracycline staining showing the increased B-pattern spermatozoa, and thereby suggesting the involvement of Nav in regulation of capacitation in spermatozoa. To substantiate the functional study observations especially veratridine-induced capacitation, immunoblotting and indirect immune fluorescence assays were performed for detection of the tyrosine-phosphorylated proteins. The immune blot study revealed the presence of five tyrosine phosphorylated proteins, namely-p17, p30, p54, p90 and p100. The p17 protein showed the highest band intensity compared to other protein bands indicating its potential involvement in the process of capacitation. Immunolocalization study revealed positive immunoreactivity for tyrosine phosphorylated proteins in the middle piece, post acrosomal region (high fluorescence) and tail of the spermatozoa (low fluorescence). From the results of present study, it is evident that activation of NaV by veratridine, especially at higher concentrations, induced capacitation which is evidently mediated through phosphorylation of the tyrosine containing proteins localized in the post acrosomal regions, middle piece and tail of the spermatozoa. However, further studies will help in unraveling the involvement of Nav and other ion channels regulating different physiological functions of sperm.


Asunto(s)
Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Bovinos , Inmunohistoquímica , Masculino , Potencial de la Membrana Mitocondrial , Fosforilación , Agonistas de los Canales de Sodio/farmacología , Motilidad Espermática/efectos de los fármacos , Espermatozoides/química , Espermatozoides/metabolismo , Veratridina/farmacología
19.
J Pharmacol Sci ; 133(3): 184-186, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28259560

RESUMEN

Acid-sensing ion channels (ASICs) are proton-sensitive sodium channels that open in response to lowered extracellular pH and are expressed in the central and peripheral nervous systems. The ASIC3 subtype is found primarily in the periphery where the channel mediates pain signals caused by ischemia and inflammation. Here, we provide identify 4-chlorophenylguanidine (4-CPG) as an ASIC3 positive allosteric modulator and newest member of the growing group of guanidine modulators of ASICs. Furthermore, the 4-CPG reversed the effects of ASIC3 desensitization. The molecule 4-CPG offers a novel chemical backbone for the design of new ASIC3 ligands to study ASIC3 in vivo.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Guanidina/análogos & derivados , Agonistas de los Canales de Sodio/farmacología , Animales , Células CHO , Cricetulus , Guanidina/farmacología , Concentración de Iones de Hidrógeno
20.
Nat Commun ; 8: 14205, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205548

RESUMEN

Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4-S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate.


Asunto(s)
Agonistas de los Canales de Sodio/química , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/fisiología , Secuencia de Aminoácidos , Electrofisiología , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/fisiología , Cinética , Modelos Moleculares , Mutación , Células Procariotas/química , Células Procariotas/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/genética , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...