Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 40(48): 9293-9305, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087477

RESUMEN

Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether ß-hydroxybutyrate (ßOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in aralar-knock-out (KO) neurons and mice. We report that ßOHB efficiently recovers aralar-KO neurons from deficits in basal-stimulated and glutamate-stimulated respiration, effects requiring ßOHB entry into the neuron, and protects from glutamate excitotoxicity. Aralar-deficient mice were fed a KD to investigate its therapeutic potential early in development, but this approach was unfeasible. Therefore, aralar-KO pups were treated without distinction of gender with daily intraperitoneal injections of ßOHB during 5 d. This treatment resulted in a recovery of striatal markers of the dopaminergic system including dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio, and vesicular monoamine transporter 2 (VMAT2) protein. Regarding postnatal myelination, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) myelin proteins were markedly increased in the cortices of ßOHB-treated aralar-KO mice. Although brain Asp and NAA levels did not change by ßOHB administration, a 4-d ßOHB treatment to aralar-KO, but not to control, neurons led to a substantial increase in Asp (3-fold) and NAA (4-fold) levels. These results suggest that the lack of increase in brain Asp and NAA is possibly because of its active utilization by the aralar-KO brain and the likely involvement of neuronal NAA in postnatal myelination in these mice. The effectiveness of ßOHB as a therapeutic treatment in AGC1 deficiency deserves further investigation.SIGNIFICANCE STATEMENTAralar deficiency induces a fatal phenotype in humans and mice and is associated with impaired neurodevelopment, epilepsy, and hypomyelination. In neurons, highly expressing aralar, its deficiency causes a metabolic blockade hampering mitochondrial energetics and respiration. Here, we find that ßOHB, the main metabolic product in KD, recovers defective mitochondrial respiration bypassing the metabolic failure in aralar-deficient neurons. ßOHB oxidation in mitochondria boosts the synthesis of cytosolic aspartate (Asp) and NAA, which is impeded by aralar deficiency, presumably through citrate-malate shuttle. In aralar-knock-out (KO) mice, ßOHB recovers from the drastic drop in specific dopaminergic and myelin markers. The ßOHB-induced myelin synthesis occurring together with the marked increment in neuronal NAA synthesis supports the role of NAA as a lipid precursor during postnatal myelination.


Asunto(s)
Ácido 3-Hidroxibutírico/fisiología , Agrecanos/fisiología , Encéfalo/fisiología , Dieta Cetogénica , Vías Nerviosas/fisiología , Neuronas/fisiología , Ácido 3-Hidroxibutírico/administración & dosificación , Ácido 3-Hidroxibutírico/farmacología , Agrecanos/genética , Aminoácidos/metabolismo , Animales , Dopamina/fisiología , Femenino , Ácido Glutámico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/fisiología , Consumo de Oxígeno/fisiología , Respiración/efectos de los fármacos , Proteínas de Transporte Vesicular de Monoaminas/fisiología
2.
Biomolecules ; 10(9)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867198

RESUMEN

This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.


Asunto(s)
Agrecanos/fisiología , Neurogénesis/fisiología , Soporte de Peso , Agrecanos/química , Agrecanos/uso terapéutico , Animales , Biodiversidad , Antígenos CD57/fisiología , Cartílago/embriología , Desarrollo Embrionario/fisiología , Glicosaminoglicanos/química , Glicosaminoglicanos/fisiología , Corazón/embriología , Corazón/fisiología , Humanos , Cresta Neural/fisiología , Relación Estructura-Actividad
3.
PLoS One ; 14(6): e0218399, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31206541

RESUMEN

Aggrecan is an integral component of the extracellular matrix in cartilaginous tissues, including the growth plate. Heterozygous defects in the aggrecan gene have been identified as a cause of autosomal dominant short stature, bone age acceleration, and premature growth cessation. The mechanisms accounting for this phenotype remain unknown. We used ATDC5 cells, an established model of chondrogenesis, to evaluate the effects of aggrecan deficiency. ATDC5 aggrecan knockdown cell lines (AggKD) were generated using lentiviral shRNA transduction particles. Cells were stimulated with insulin/transferrin/selenium for up to 21 days to induce chondrogenesis. Control ATDC5 cells showed induction of Col2a1 starting at day 8 and induction of Col10a1 starting at day 12. AggKD cells had significantly reduced expression of Col2a1 and Col10a1 (p<0.0001) with only minimal increases in expression over time, indicating that chondrogenesis was markedly impaired. The induction of Col2a1 and Col10a1 was not rescued by culturing of AggKD cells in wells pre-conditioned with ATDC5 extracellular matrix or in co-culture with wild-type ATDC5 cells. We interpret our studies as indicating that aggrecan has an integral role in chondrogenesis that may be mediated through intracellular mechanisms.


Asunto(s)
Agrecanos/fisiología , Diferenciación Celular , Condrocitos/citología , Células Madre/citología , Agrecanos/deficiencia , Agrecanos/genética , Animales , Línea Celular , Condrogénesis/efectos de los fármacos , Colágeno Tipo II/genética , Colágeno Tipo X/genética , Técnicas de Silenciamiento del Gen , Ratones , Activación Transcripcional
4.
J Neurosci ; 39(11): 2011-2024, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30647150

RESUMEN

Fidgetin is a microtubule-severing protein that pares back the labile domains of microtubules in the axon. Experimental depletion of fidgetin results in elongation of the labile domains of microtubules and faster axonal growth. To test whether fidgetin knockdown assists axonal regeneration, we plated dissociated adult rat DRGs transduced using AAV5-shRNA-fidgetin on a laminin substrate with spots of aggrecan, a growth-inhibitory chondroitin sulfate proteoglycan. This cell culture assay mimics the glial scar formed after CNS injury. Aggrecan is more concentrated at the edge of the spot, such that axons growing from within the spot toward the edge encounter a concentration gradient that causes growth cones to become dystrophic and axons to retract or curve back on themselves. Fidgetin knockdown resulted in faster-growing axons on both laminin and aggrecan and enhanced crossing of axons from laminin onto aggrecan. Strikingly, axons from within the spot grew more avidly against the inhibitory aggrecan concentration gradient to cross onto laminin, without retracting or curving back. We also tested whether depleting fidgetin improves axonal regeneration in vivo after a dorsal root crush in adult female rats. Whereas control DRG neurons failed to extend axons across the dorsal root entry zone after injury, DRG neurons in which fidgetin was knocked down displayed enhanced regeneration of axons across the dorsal root entry zone into the spinal cord. Collectively, these results establish fidgetin as a novel therapeutic target to augment nerve regeneration and provide a workflow template by which microtubule-related targets can be compared in the future.SIGNIFICANCE STATEMENT Here we establish a workflow template from cell culture to animals in which microtubule-based treatments can be tested and compared with one another for their effectiveness in augmenting regeneration of injured axons relevant to spinal cord injury. The present work uses a viral transduction approach to knock down fidgetin from rat neurons, which coaxes nerve regeneration by elevating microtubule mass in their axons. Unlike previous strategies using microtubule-stabilizing drugs, fidgetin knockdown adds microtubule mass that is labile (rather than stable), thereby better recapitulating the growth status of a developing axon.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Axones/fisiología , Ganglios Espinales/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Regeneración Nerviosa/fisiología , Proteínas Nucleares/fisiología , ATPasas Asociadas con Actividades Celulares Diversas/genética , Agrecanos/fisiología , Animales , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Neuroglía/fisiología , Proteínas Nucleares/genética , Ratas Sprague-Dawley
5.
BMB Rep ; 52(2): 145-150, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30638179

RESUMEN

Endothelial dysfunction-induced lipid retention is an early feature of atherosclerotic lesion formation. Apoptosis of vascular smooth muscle cells (VSMCs) is one of the major modulating factors of atherogenesis, which accelerates atherosclerosis progression by causing plaque destabilization and rupture. However, the mechanism underlying VSMC apoptosis mediated by endothelial dysfunction in relation to atherosclerosis remains elusive. In this study, we reveal differential expression of several genes related to lipid retention and apoptosis, in conjunction with atherosclerosis, by utilizing a genetic mouse model of endothelial nitric oxide synthase (eNOS) deficiency manifesting endothelial dysfunction. Moreover, eNOS deficiency led to the enhanced susceptibility against pro-apoptotic insult in VSMCs. In particular, the expression of aggrecan, a major proteoglycan, was elevated in aortic tissue of eNOS deficient mice compared to wild type mice, and administration of aggrecan induced apoptosis in VSMCs. This suggests that eNOS deficiency may elevate aggrecan expression, which promotes apoptosis in VSMC, thereby contributing to atherosclerosis progression. These results may facilitate the development of novel approaches for improving the diagnosis or treatment of atherosclerosis. [BMB Reports 2019; 52(2): 145-150].


Asunto(s)
Aterosclerosis/fisiopatología , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/fisiología , Agrecanos/genética , Agrecanos/fisiología , Animales , Apoptosis/fisiología , Aterosclerosis/metabolismo , Proliferación Celular , Células Cultivadas , Células Endoteliales/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/fisiopatología , Óxido Nítrico Sintasa de Tipo III/deficiencia , Placa Aterosclerótica , Transducción de Señal
6.
Cartilage ; 10(2): 157-172, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-28933195

RESUMEN

OBJECTIVE: Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN: Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS: It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION: The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.


Asunto(s)
Cartílago Articular/citología , Condrocitos/fisiología , Cartílago Hialino/citología , Osteoartritis/fisiopatología , Estimulación Física/métodos , Agrecanos/fisiología , Animales , Cartílago Articular/fisiopatología , Proliferación Celular/fisiología , Colágeno Tipo II/fisiología , Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/métodos , Matriz Extracelular/fisiología , Glicosaminoglicanos/fisiología , Humanos , Cartílago Hialino/fisiopatología , Ingeniería de Tejidos/métodos
8.
Mol Vis ; 22: 1198-1212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27746674

RESUMEN

PURPOSE: To characterize the vision phenotype of mice lacking Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier mutated in global cerebral hypomyelination (OMIM 612949). METHODS: We tested overnight dark-adapted control and aralar-deficient mice for the standard full electroretinogram (ERG) response. The metabolic stress of dark-adaptation was reduced by 5 min illumination after which the ERG response was monitored in darkness. We used the electrical response to two identical saturating light flashes (paired-flash stimulation) to isolate the inner retina and photoreceptor responses. Retinal morphology was examined with hematoxylin and eosin staining, immunohistochemistry of antibodies against retinal cells, and 4',6-diamidino-2-phenylindole (DAPI) labeling. RESULTS: Aralar plays a pivotal role in retina metabolism as aralar provides de novo synthesis pathway for glutamine, protects glutamate from oxidation, and is required for efficient glucose oxidative metabolism. Aralar-deficient mice are not blind as their retinas have light-evoked activity. However, we report an approximate 50% decrease in the ERG amplitude response in the light-evoked activity of dark-adapted retinas from aralar-deficient mice, in spite of normal retina histology. The defective response is partly reversed by exposure to a brief illumination period, which lowers the metabolic stress of dark-adaptation. The metabolic stress and ERG alteration takes place primarily in photoreceptors, but the response to two flashes applied in fast succession also revealed an alteration in synaptic transmission consistent with an imbalance of glutamate and an energy deficit in the inner retina neurons. CONCLUSIONS: We propose that compromised glucose oxidation and altered glutamine and glutamate metabolism in the absence of aralar are responsible for the phenotype reported.


Asunto(s)
Agrecanos/fisiología , Glucosa/metabolismo , Glutamina/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Retina/metabolismo , Trastornos de la Visión/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/deficiencia , Antiportadores/metabolismo , Adaptación a la Oscuridad , Electrorretinografía , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Estimulación Luminosa , Trastornos Psicomotores/metabolismo , Retina/fisiopatología , Células Bipolares de la Retina/fisiología , Transmisión Sináptica , Trastornos de la Visión/fisiopatología
9.
Neurochem Int ; 88: 38-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25889949

RESUMEN

Brain energetic requirements are elevated due to the high cost of impulse transmission and information storage, and are met mainly by glucose oxidation. The energy needs are closely matched by metabolic regulation, which requires the close cooperation of neurons and astrocytes and involves highly regulated fluxes of metabolites between cells. The metabolism in each type of cell is determined in part by its proteomic profile, which has been regarded as complementary. This review will consider the cellular distribution of the mitochondrial aspartate-glutamate carrier, aralar/AGC1/SLC25A12, and its role in the synergic metabolism between neurons and astrocytes.


Asunto(s)
Agrecanos/fisiología , Metabolismo Energético/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Humanos
10.
Cell Rep ; 5(3): 573-81, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24183669

RESUMEN

Neural circuit formation demands precise timing of innervation by different classes of axons. However, the mechanisms underlying such activity remain largely unknown. In the dorsal lateral geniculate nucleus (dLGN), axons from the retina and visual cortex innervate thalamic relay neurons in a highly coordinated manner, with those from the cortex arriving well after those from retina. The differential timing of retino- and corticogeniculate innervation is not a coincidence but is orchestrated by retinal inputs. Here, we identified a chondroitin sulfate proteoglycan (CSPG) that regulates the timing of corticogeniculate innervation. Aggrecan, a repulsive CSPG, is enriched in neonatal dLGN and inhibits cortical axons from prematurely entering the dLGN. Postnatal loss of aggrecan from dLGN coincides with upregulation of aggrecanase expression in the dLGN and corticogeniculate innervation and, it is important to note, is regulated by retinal inputs. Taken together, these studies reveal a molecular mechanism through which one class of axons coordinates the temporal targeting of another class of axons.


Asunto(s)
Agrecanos/fisiología , Cuerpos Geniculados/fisiología , Corteza Visual/fisiología , Animales , Axones/fisiología , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Retina/fisiología , Regulación hacia Arriba , Corteza Visual/citología , Vías Visuales/fisiología
11.
Arthritis Rheum ; 65(10): 2634-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23839921

RESUMEN

OBJECTIVE: Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. METHODS: Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. RESULTS: Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. CONCLUSION: Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/deficiencia , Degeneración del Disco Intervertebral/fisiopatología , Disco Intervertebral/embriología , Disco Intervertebral/fisiopatología , Notocorda/embriología , Notocorda/fisiopatología , Agrecanos/fisiología , Envejecimiento/fisiología , Animales , Colágeno Tipo I/fisiología , Colágeno Tipo II/fisiología , Factor de Crecimiento del Tejido Conjuntivo/genética , Modelos Animales de Enfermedad , Desarrollo Embrionario/fisiología , Femenino , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Notocorda/patología
13.
Ann Biomed Eng ; 37(7): 1368-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19415495

RESUMEN

This study investigated the role of matrix metalloproteases and aggrecanases during dynamic compression-induced aggrecan catabolism in chondrocyte-seeded self-assembling peptide hydrogel. One- to two-week-old bovine chondrocytes were encapsulated into peptide hydrogel and cultured for 14 days prior to the application of an alternate day loading protocol. Dynamic compression-induced aggrecan catabolism was explored by evaluating GAG loss to the culture medium, zymography for matrix metalloproteases (MMPs), gene expression of MMPs and ADAMTS proteases, and Western blot analysis for aggrecan fragments. The application of loading over 4 days increased GAG loss to the medium three- to four-fold relative to free-swelling controls. Zymogram analysis detected increased concentrations of latent MMP-9 and MMP-3 in the culture medium relative to free-swelling culture. Real-time PCR showed expression levels of MMPs and ADAMTS proteases in loaded samples that ranged from 2.5- to 95-fold higher than free-swelling culture. Aggrecan fragment analysis did not detect small (50-80 kDa) molecular weight fragments in free-swelling culture; however, dynamic compression samples contained 60-80 kDa fragments that were detected by both anti-G1 and NITEGE probes, demonstrating ADAMTS but not MMP degradation. These data suggest that partially mature cartilage tissue engineering constructs may be susceptible to catabolic degradation.


Asunto(s)
Agrecanos/fisiología , Condrocitos/citología , Condrocitos/fisiología , Glicosaminoglicanos/fisiología , Mecanotransducción Celular/fisiología , Péptidos/química , Ingeniería de Tejidos/métodos , Animales , Bovinos , Células Cultivadas , Fuerza Compresiva/fisiología , Hidrogeles/química , Metabolismo
14.
Dev Biol ; 329(2): 242-57, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19268444

RESUMEN

Chick and mouse embryos with heritable deficiencies of aggrecan exhibit severe dwarfism and premature death, demonstrating the essential involvement of aggrecan in development. The aggrecan-deficient nanomelic (nm) chick mutant E12 fully formed growth plate (GP) is devoid of matrix and exhibits markedly altered cytoarchitecture, proliferative capacity, and degree of cell death. While differentiation of chondroblasts to pre-hypertrophic chondrocytes (IHH expression) is normal up to E6, the extended periosteum expression pattern of PTCH (a downstream effector of IHH) indicates altered propagation of IHH signaling, as well as accelerated down-regulation of FGFR3 expression, decreased BrdU incorporation and higher levels of ERK phosphorylation, all indicating early effects on FGF signaling. By E7 reduced IHH expression and premature expression of COL10A1 foreshadow the acceleration of hypertrophy observed at E12. By E8, exacerbated co-expression of IHH and COL10A1 lead to delayed separation and establishment of the two GPs in each element. By E9, increased numbers of cells express P-SMAD1/5/8, indicating altered BMP signaling. These results indicate that the IHH, FGF and BMP signaling pathways are altered from the very beginning of GP formation in the absence of aggrecan, thereby inducing premature hypertrophic chondrocyte maturation, leading to the nanomelic long bone growth disorder.


Asunto(s)
Agrecanos/fisiología , Placa de Crecimiento/embriología , Morfogénesis , Animales , Secuencia de Bases , Embrión de Pollo , Cartilla de ADN , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Fosforilación , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
15.
Osteoarthritis Cartilage ; 17(5): 669-76, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19010694

RESUMEN

OBJECTIVE: Understanding the mechanical functions of specific cartilage molecules such as aggrecan is important for understanding both healthy cartilage and disease progression. Cartilage is primarily composed of chondrocytes and an extracellular matrix consisting of multiple biopolymers, ions, and water. Aggrecan is one matrix biopolymer which consists of a core protein and multiple anionic glycosaminoglycans. Previous research has demonstrated that the stiffness of extracted aggrecan decreases under increased solution cation concentration, and the purpose of this study was to determine whether changes in solution ion concentration resulted in changes in tissue-level viscoelastic properties. METHODS: Middle-zone explants of bovine calf patellofemoral cartilage were harvested and cultured overnight before mechanical testing. Repeated stress-relaxation and cyclical loading tests were performed after equilibration in solutions of 0.15 M and 1 M NaCl and 0.075 M and 0.5 M CaCl(2). A stretched exponential model was fit to the stress-relaxation data. Storage and loss moduli were determined from the cyclical loading data. RESULTS: Changes in ionic strength and species affected both stress-relaxation and cyclical loading of cartilage. Stress-relaxation was faster under higher ionic strength. CaCl(2) concentration increases resulted in decreased peak stress, while NaCl increases resulted in decreased equilibrium stress. Storage and loss moduli were affected differently by NaCl and CaCl(2). CONCLUSIONS: These results show that cartilage stress-relaxation proceeds faster under higher concentrations of solution cations, consistent with the theory of polymer dynamics. These data demonstrate the complexity of cartilage mechanical properties and suggest that aggrecan stiffness may be important in tissue-level cartilage viscoelastic properties.


Asunto(s)
Agrecanos/fisiología , Biopolímeros/fisiología , Cartílago Articular/fisiopatología , Fuerza Compresiva/fisiología , Elasticidad/fisiología , Animales , Fenómenos Biomecánicos , Bovinos , Estrés Mecánico , Viscosidad
16.
Neuroscience ; 151(2): 489-504, 2008 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-18055126

RESUMEN

The extracellular matrix is known to be involved in neuronal communication and the regulation of plastic changes, and also considered to protect neurons and synapses against damage. The goal of this study was to investigate how major extracellular matrix components (aggrecan, link protein, hyaluronan) constitute the pathways of the nigral system in the human basal ganglia circuit affected by neurodegeneration in Parkinson's disease. Here we show that aggrecan- and link protein-related components form clear regional distribution patterns, whereas hyaluronan is widely distributed in gray and white matter. Two predominant phenotypes of the aggrecan-based matrix can be discriminated: (1) perineuronal nets (PNs) and (2) axonal coats (ACs) encapsulating preterminal fibers and synaptic boutons. Clearly contoured PNs are associated with GABAergic projection neurons in the external and internal division of the globus pallidus, the lateral and reticular part of the substantia nigra, as well as subpopulations of striatal and thalamic inhibitory interneurons. Dopaminergic nigral neurons are devoid of PNs but are contacted to a different extent by matrix-coated boutons forming subnucleus-specific patterns. A very dense network of ACs is characteristic especially of the posterior lateral cell groups of the compact substantia nigra (nigrosome 1). In the subthalamic nucleus and the lateral thalamic nuclei numerous AC-associated axons were attached to principal neurons devoid of PNs. We conclude from the region-specific patterns that the aggrecan-based extracellular matrix is adapted to the fast processing of sensorimotor activities which are the therapeutic target of surgery and deep brain stimulation in the treatment of advanced stages of Parkinson's disease.


Asunto(s)
Agrecanos/fisiología , Ganglios Basales/fisiología , Matriz Extracelular/fisiología , Red Nerviosa/fisiología , Anciano , Anciano de 80 o más Años , Autopsia , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Microscopía Confocal , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Fijación del Tejido
18.
J Neurosci ; 27(20): 5405-13, 2007 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-17507562

RESUMEN

An important role for the neural extracellular matrix in modulating cortical activity-dependent synaptic plasticity has been established by a number of recent studies. However, identification of the critical molecular components of the neural matrix that mediate these processes is far from complete. Of particular interest is the perineuronal net (PN), an extracellular matrix component found surrounding the cell body and proximal neurites of a subset of neurons. Because of the apposition of the PN to synapses and expression of this structure coincident with the close of the critical period, it has been hypothesized that nets could play uniquely important roles in synapse stabilization and maturation. Interestingly, previous work has also shown that expression of PNs is dependent on appropriate sensory stimulation in the visual system. Here, we investigated whether PNs in the mouse barrel cortex are expressed in an activity-dependent manner by manipulating sensory input through whisker trimming. Importantly, this manipulation did not lead to a global loss of PNs but instead led to a specific decrease in PNs, detected with the antibody Cat-315, in layer IV of the barrel cortex. In addition, we identified a key activity-regulated component of PNs is the proteoglycan aggrecan. We also demonstrate that these Cat-315-positive neurons virtually all also express parvalbumin. Together, these data are in support of an important role for aggrecan in the activity-dependent formation of PNs on parvalbumin-expressing cells and suggest a role for expression of these nets in regulating the close of the critical period.


Asunto(s)
Agrecanos/biosíntesis , Corteza Cerebral/metabolismo , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Privación Sensorial/fisiología , Agrecanos/genética , Agrecanos/fisiología , Animales , Animales Recién Nacidos , Corteza Cerebral/crecimiento & desarrollo , Ratones , Plasticidad Neuronal/fisiología , Vibrisas/crecimiento & desarrollo , Vibrisas/metabolismo
19.
Osteoarthritis Cartilage ; 15(4): 431-41, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17097317

RESUMEN

OBJECTIVE: Interleukin-1beta (IL-1beta) stimulates collagenase-1 (Matrix Metalloproteinase-1 (MMP-1)) expression in articular chondrocytes, leading to cleavage of type II collagen and irreversible cartilage degradation. The nuclear factor-kappa B (NF-kappaB) pathway is potently activated in IL-1beta-stimulated cells and has been implicated as an intermediate in MMP-1 gene expression. However, the roles of individual NF-kappaB family members during IL-1beta-induced MMP-1 gene expression have not been defined. RESULTS: To address the relationship between the NF-kappaB pathway and MMP-1 gene activation in chondrocytes, primary cultured human articular chondrocyte cultures (HAC) and SW-1353 cells were stimulated with IL-1beta over a 24-h time course and MMP-1, NF-kappaB1, NF-kappaB2 and RelA gene expression was assayed. IL-1beta-induced MMP-1 expression was comparable in HAC and SW-1353 cells both temporally and quantitatively. MMP-1 gene expression was mirrored by increases in NF-kappaB gene expression, and inhibition of NF-kappaB nuclear translocation with dominant-negative IkappaBalpha reduced IL-1beta-dependent MMP-1 gene expression. IL-1beta activated the NF-kappaB pathway in chondrocytes, both through phosphorylation and transient degradation of IkappaBalpha, as well as through sustained phosphorylation of RelA. Small inhibitory RNAs (siRNA) specific for RelA resulted in significant reduction of MMP-1 mRNA, whereas siRNA for NF-kappaB1 and NF-kappaB2 augmented IL-1beta-induced MMP-1 expression. CONCLUSIONS: Our data demonstrate that IL-1beta activation of the NF-kappaB pathway is required for IL-1beta induction of MMP-1 in chondrocytes and that RelA can work independently of NF-kappaB1 or NF-kappaB2 to activate this gene expression program.


Asunto(s)
Artritis/genética , Condrocitos/fisiología , Regulación de la Expresión Génica/genética , Interleucina-1beta/farmacología , Metaloproteinasa 1 de la Matriz/genética , Factor de Transcripción ReIA/genética , Agrecanos/fisiología , Técnicas de Cultivo de Célula/métodos , Colágeno Tipo II/fisiología , Humanos , Interleucina-1beta/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...