Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.364
Filtrar
1.
Pharmacol Res Perspect ; 12(3): e1201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38775298

RESUMEN

The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 µg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.


Asunto(s)
Abietanos , Trombosis , Emisiones de Vehículos , Animales , Abietanos/farmacología , Ratones , Masculino , Emisiones de Vehículos/toxicidad , Trombosis/prevención & control , Trombosis/tratamiento farmacológico , Trombosis/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Lesiones del Sistema Vascular/tratamiento farmacológico , Antioxidantes/farmacología , Material Particulado/toxicidad , Material Particulado/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Contaminantes Atmosféricos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos
2.
Thromb Res ; 238: 185-196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729030

RESUMEN

BACKGROUND: Plaque erosion, a type of coronary atherothrombosis, involves superficial injury to smooth muscle cell (SMC)-rich plaques. Elevated levels of coagulation factor VIII (FVIII) correlate with an increased ischemic heart disease risk. FVIII may contribute to thrombus formation on eroded plaques. AIMS: We aimed to elucidate the role of elevated FVIII in arterial thrombus formation within SMC-rich neointima in rabbits. METHODS AND RESULTS: We assessed the effect of recombinant human FVIII (rFVIII) on blood coagulation in vitro and platelet aggregation ex vivo. An SMC-rich neointima was induced through balloon injury to the unilateral femoral artery. Three weeks after the first balloon injury, superficial erosive injury and thrombus formation were initiated with a second balloon injury of the bilateral femoral arteries 45 min after the administration of rFVIII (100 IU/kg) or saline. The thrombus area and contents were histologically measured 15 min after the second balloon injury. rFVIII administration reduced the activated partial thromboplastin time and augmented botrocetin-induced, but not collagen- or adenosine 5'-diphosphate-induced, platelet aggregation. While rFVIII did not influence platelet-thrombus formation in normal intima, it increased thrombus formation on SMC-rich neointima post-superficial erosive injury. Enhanced immunopositivity for glycoprotein IIb/IIIa and fibrin was observed in rFVIII-administered SMC-rich neointima. Neutrophil count in the arterial thrombus on the SMC-rich neointima correlated positively with thrombus size in the control group, unlike the rFVIII group. CONCLUSIONS: Increased FVIII contributes to thrombus propagation within erosive SMC-rich neointima, highlighting FVIII's potential role in plaque erosion-related atherothrombosis.


Asunto(s)
Factor VIII , Miocitos del Músculo Liso , Neointima , Trombosis , Conejos , Animales , Neointima/patología , Neointima/sangre , Trombosis/sangre , Trombosis/patología , Masculino , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Túnica Íntima/patología , Túnica Íntima/efectos de los fármacos , Humanos , Agregación Plaquetaria/efectos de los fármacos , Arteria Femoral/patología , Arteria Femoral/lesiones
3.
Biomed Khim ; 70(2): 99-108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38711409

RESUMEN

Platelet functional activity was assessed in healthy volunteers (HV, n=92), patients with stable angina pectoris (SA, n=42) and acute coronary syndrome (ACS, n=73), treated with acetylsalicylic acid (ASA) + clopidogrel and ASA + ticagrelor, respectively. In all HV and patients we have compared parameters of platelet aggregation (maximum light transmission and velocity, Tmax and Vmax) and parameters, characterizing exposure of platelet activation markers, evaluated by flow cytometry. HV platelets were activated by 10 µM, 1 µM TRAP, and 20 µM, 5 µM, 2.5 µM ADP; patient platelets were activated by 10 µM TRAP and by 20 µM and 5 µM ADP. Strong and significant correlations between the aggregation and flow cytometry parameters (the r correlation coefficient from 0.4 up to >0.6) most frequently were registered in HV platelet during activation by 1 µM TRAP and in SA patients during platelet activation by 20 µM and 5 µM ADP. However, in many other cases these correlations were rather weak (r < 0.3) and sometimes statistically insignificant. In HV the differences in PAC-1 binding parameters between platelets activated by 10 µM TRAP (the strongest agonist) and all ADP concentrations were negligible (≤ 10%), while CD62P binding (at all ADP concentrations) and LTA parameters for (5 µM and 2.5 µM ADP) were significantly lower (by 40-60%). Antiplatelet therapy in patients decreased all parameters as compared to HV, but to varying extents. For 10 µM TRAP the MFI index for PAC-1 binding (40-50% decrease) and for both ADP concentrations the Tmax values (60-85% decrease) appeared to be the most sensitive in comparison with the other parameters that decreased to a lesser extent. The data obtained indicate a possibility of inconsistency between different LTA and flow cytometry parameters in assessing platelet activity and efficacy of antiplatelet drugs.


Asunto(s)
Síndrome Coronario Agudo , Aspirina , Plaquetas , Clopidogrel , Citometría de Flujo , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Masculino , Aspirina/farmacología , Aspirina/uso terapéutico , Femenino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Persona de Mediana Edad , Clopidogrel/farmacología , Anciano , Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/sangre , Adulto , Ticagrelor/farmacología , Ticagrelor/uso terapéutico , Pruebas de Función Plaquetaria/métodos , Activación Plaquetaria/efectos de los fármacos , Angina Estable/tratamiento farmacológico , Angina Estable/sangre , Adenosina Difosfato/farmacología
4.
Cell Biochem Funct ; 42(4): e4039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38751189

RESUMEN

Platelet hyperreactivity contributes to the pathogenesis of COVID-19, which is associated with a hypercoagulability state and thrombosis disorder. It has been demonstrated that Vitamin D deficiency is associated with the severity of COVID-19 infection. Vitamin D supplement is widely used as a dietary supplement due to its safety and health benefits. In this study, we investigated the direct effects and underlying mechanisms of 1,25(OH)2D3 on platelet hyperreactivity induced by SRAS-CoV-2 spike protein via Western blot and platelet functional studies in vitro. Firstly, we found that 1,25(OH)2D3 attenuated platelet aggregation and Src-mediated signaling. We further observed that 1,25(OH)2D3 attenuated spike protein-potentiated platelet aggregation in vitro. Mechanistically, 1,25(OH)2D3 attenuated spike protein upregulated-integrin αIIbß3 outside-in signaling such as platelet spreading and the phosphorylation of ß3, c-Src and Syk. Moreover, using PP2, the Src family kinase inhibitor to abolish spike protein-stimulated platelet aggregation and integrin αIIbß3 outside-in signaling, the combination of PP2 and 1,25(OH)2D3 did not show additive inhibitory effects on spike protein-potentiated platelet aggregation and the phosphorylation of ß3, c-Src and Syk. Thus, our data suggest that 1,25(OH)2D3 attenuates platelet aggregation potentiated by spike protein via downregulating integrin αIIbß3 outside-in signaling.


Asunto(s)
Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/metabolismo , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Calcitriol/farmacología , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Quinasa Syk/metabolismo , Quinasa Syk/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636580

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Asunto(s)
Plaquetas , Antígenos CD36 , Medicamentos Herbarios Chinos , Daño por Reperfusión Miocárdica , Activación Plaquetaria , Agregación Plaquetaria , Ratas Sprague-Dawley , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Transducción de Señal/efectos de los fármacos , Masculino , Activación Plaquetaria/efectos de los fármacos , Antígenos CD36/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Ratas , Simulación del Acoplamiento Molecular
6.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643717

RESUMEN

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.


Asunto(s)
Apolipoproteínas A , Plaquetas , Agregación Plaquetaria , Trombosis , Humanos , Trombosis/genética , Trombosis/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Polimorfismo Genético , Apoproteína(a)/genética , Apoproteína(a)/metabolismo , Apoproteína(a)/química , Selectina-P/genética , Selectina-P/metabolismo
7.
Int J Biol Macromol ; 268(Pt 1): 131742, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653430

RESUMEN

Thrombosis is the main cause of catastrophic events including ischemic stroke, myocardial infarction and pulmonary embolism. Acetylsalicylic acid (ASA) therapy offers a desirable approach to antithrombosis through a reduction of platelet reactivity. However, major bleeding complications, severe off-target side effects, and resistance or nonresponse to ASA greatly attenuate its clinical outcomes. Herein, we report a cationic fibrinogen-mimicking nanoparticle, denoted as ASA-RGD-CS@TPP, to achieve activated-platelet-targeted delivery and efficient release of ASA for safer and more effective antithrombotic therapy. This biomimetic antithrombotic system was prepared by one-pot ionic gelation between cationic arginine-glycine-aspartic acid (RGD)-grafted chitosan (RGD-CS) and anionic tripolyphosphate (TPP). The platform exhibited selective binding to activated platelets, leading to efficient release of ASA and subsequent attenuation of platelet functions, including the remarkable inhibition of platelet aggregation through a potent blockage of cyclooxygenase-1 (COX-1). After intravenous administration, ASA-RGD-CS@TPP displayed significantly prolonged circulation time and successful prevention of thrombosis in a mouse model. ASA-RGD-CS@TPP was demonstrated to significantly enhance antithrombotic therapy while showing minimal coagulation and hemorrhagic risks and excellent biocompatibility in vivo as compared to free ASA. This platform provides a simple, safe, effective and targeted strategy for the development of antithrombotic nanomedicines.


Asunto(s)
Plaquetas , Quitosano , Fibrinógeno , Fibrinolíticos , Nanopartículas , Quitosano/química , Animales , Nanopartículas/química , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Ratones , Fibrinógeno/química , Fibrinógeno/metabolismo , Fibrinolíticos/farmacología , Fibrinolíticos/química , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Liberación de Fármacos , Activación Plaquetaria/efectos de los fármacos , Aspirina/farmacología , Aspirina/química , Agregación Plaquetaria/efectos de los fármacos , Humanos , Cationes/química , Masculino
8.
Thromb Res ; 237: 100-107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579511

RESUMEN

BACKGROUND: Reduced effect of antiplatelet therapy has been reported in patients with ST-segment elevation myocardial infarction (STEMI). Multiple factors may concur to explain this, including increased amount of highly reactive immature platelets. OBJECTIVES: To investigate the association between immature platelets and reactivity determined with multicolour flow cytometry using the SYTO-13 dye in STEMI patients. METHODS: We conducted an observational study of 59 patients with acute STEMI. Blood samples were obtained within 24 h after admission and after loading doses of dual antiplatelet therapy. For comparison, samples were obtained from 50 healthy individuals. Immature platelets and platelet reactivity were investigated using multicolour flow cytometry including the SYTO-13 dye that binds to platelet RNA and thus provides a method for subdividing platelets into immature and mature platelets. Additionally, we assessed platelet aggregation, serum-thromboxane B2 levels and standard immature platelet markers. RESULTS: Immature platelets were more reactive than mature platelets in both STEMI patients and healthy individuals (p-values < 0.05). STEMI patients had lower platelet aggregation and thromboxane B2 levels than healthy individuals. We found a positive association between automatically determined immature platelet markers and CD63 expression on activated platelets (Spearman's rho: 0.27 to 0.58, p-values < 0.05). CONCLUSIONS: Our study shows that immature platelets identified with a multicolour flow cytometric method using the SYTO-13 dye are more reactive than mature platelets in patients with acute STEMI and in healthy individuals. The presence of immature platelets may be important for the overall platelet reactivity, which may have implications for the effect of antiplatelet therapy.


Asunto(s)
Plaquetas , Citometría de Flujo , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/sangre , Plaquetas/metabolismo , Citometría de Flujo/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos
9.
Thromb Res ; 238: 60-66, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676967

RESUMEN

INTRODUCTION: Use of anabolic-androgenic steroids (AAS) is associated with adverse cardiovascular (CV) effects, including potential prothrombotic effects. This study aimed to assess platelet activation and aggregation, coagulation, and fibrinolysis, in long-term AAS users compared to non-using strength-trained athletes. MATERIALS AND METHODS: Thirty-seven strength-trained men using AAS were compared to seventeen non-using professional strength-trained athletes at similar age (median 33 years). AAS use was verified by blood and urine analyses. Platelet Function Analyzer 100 (PFA-100) and whole blood impedance aggregometry with thrombin, arachidonic acid, and ADP as agonists, were performed to evaluate platelet aggregation. ELISA methods were used for markers of platelet activation. Fibrinogen, D-dimer, the coagulation inhibitors protein S and C activity, and antithrombin were measured by routine. Fibrinolysis was evaluated by Plasminogen Activator Inhibitor-1 (PAI-1) activity. RESULTS: There were no significant differences in platelet aggregation between the two groups. Von Willebrand factor was lower among the AAS users (p < 0.01), and P-Selectin was slightly higher (p = 0.05), whereas CD40 Ligand, ß-thromboglobulin, and thrombospondin did not differ significantly. No differences were found in the assessed coagulation inhibitors. Higher D-dimer levels (p < 0.01) and lower PAI-1 activity (p < 0.01) were found among the AAS users. CONCLUSIONS: The investigated long-term users of AAS did not exhibit elevated platelet activity compared to strength-trained non-using athletes. However, AAS use was associated with higher D-dimer levels and lower PAI-1 activity. These findings suggest that any prothrombotic effect of long-term AAS use may predominantly involve other aspects of the hemostatic system than blood platelets.


Asunto(s)
Atletas , Coagulación Sanguínea , Fibrinólisis , Activación Plaquetaria , Humanos , Masculino , Fibrinólisis/efectos de los fármacos , Coagulación Sanguínea/efectos de los fármacos , Adulto , Activación Plaquetaria/efectos de los fármacos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Entrenamiento de Fuerza , Anabolizantes/farmacología , Andrógenos
10.
Thromb Res ; 238: 41-51, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669962

RESUMEN

BACKGROUND AND PURPOSE: Hypolipidemia and platelet activation play key roles in atherosclerotic diseases. Pirinixic acid (WY-14643) was originally developed as a lipid-lowering drug. Here we focused on its antiplatelet and antithrombotic abilities and the underlying mechanism. EXPERIMENTAL APPROACH: The effects of WY-14643 on platelet aggregation was measured using a lumi-aggregometer. Clot retraction and spreading on fibrinogen were also assayed. PPARα-/- platelets were used to identify the target of WY-14643. The interaction between WY-14643 and glycoprotein Ibα (GPIbα) was detected using cellular thermal shift assay (CETSA), surface plasmon resonance (SPR) spectroscopy and molecular docking. GPIbα downstream signaling was examined by Western blot. The antithrombotic effect was investigated using mouse mesenteric arteriole thrombosis model. Mouse tail bleeding model was used to study its effect on bleeding side effects. KEY RESULTS: WY-14643 concentration-dependently inhibits human washed platelet aggregation, clot retraction, and spreading. Significantly, WY-14643 inhibits thrombin-induced activation of human washed platelets with an IC50 of 7.026 µM. The antiplatelet effect of WY-14643 is mainly dependent of GPIbα. CESTA, SPR and molecular docking results indicate that WY-14643 directly interacts with GPIbα and acts as a GPIbα antagonist. WY-14643 also inhibits phosphorylation of PLCγ2, Akt, p38, and Erk1/2 induced by thrombin. Noteworthily, 20 mg/kg oral administration of WY-14643 inhibits FeCl3-induced thrombosis of mesenteric arteries in mice similarly to clopidogrel without increasing bleeding. CONCLUSION AND IMPLICATIONS: WY-14643 is not only a PPARα agonist with lipid-lowering effect, but also an antiplatelet agent as a GPIbα antagonist. It may have more significant therapeutic advantages than current antiplatelet agents for the treatment of atherosclerotic thrombosis, which have lipid-lowering effects without bleeding side effects.


Asunto(s)
Fibrinolíticos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria , Pirimidinas , Animales , Ratones , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Humanos , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Agregación Plaquetaria/efectos de los fármacos , Trombosis/tratamiento farmacológico , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL
11.
Redox Biol ; 72: 103142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581860

RESUMEN

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Asunto(s)
Plaquetas , Hidroquinonas , Potencial de la Membrana Mitocondrial , Mitocondrias , Compuestos Organofosforados , Inhibidores de Agregación Plaquetaria , Especies Reactivas de Oxígeno , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Hidroquinonas/farmacología , Hidroquinonas/química , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos
12.
Biochemistry (Mosc) ; 89(3): 417-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648762

RESUMEN

Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.


Asunto(s)
Apoptosis , Plaquetas , Curcumina , MAP Quinasa Quinasa Quinasa 5 , Estrés Oxidativo , Curcumina/farmacología , Curcumina/análogos & derivados , Curcumina/química , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Humanos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Activación Plaquetaria/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos
13.
J Stroke Cerebrovasc Dis ; 33(6): 107684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518890

RESUMEN

OBJECTIVE: Clopidogrel resistance may lead to the recurrence of cerebrovascular diseases. We aimed to identify potential factors associated with clopidogrel resistance and evaluate the clinical outcomes of the patients. MATERIALS AND METHODS: In this retrospective study, patients with ischemic cerebrovascular disease treated with clopidogrel were included and classified into 2 groups according to the adenosine diphosphate (ADP)-induced platelet aggregation. Patients with the ADP inhibition rate of <30 % were included in clopidogrel resistance group, otherwise were included in clopidogrel sensitive group. CYP2C19 genotype and other clinical data were analyzed to identify factors and clinical features in the multivariate analysis. The outcomes were vascular events in 6 months. RESULTS: In total, 139 patients were enrolled with 81 (58.27 %) in clopidogrel sensitive group and 58 (41.73 %) in clopidogrel resistance group. Female and CYP2C19 *2*3 carrying were risk factors for clopidogrel resistance, and female was an independent risk factor (OR 2.481, 95 % CI 1.066-5.771, P=0.035). The clopidogrel resistance group showed a higher use rate of argatroban (P=0.030) and a lower arachidonic acid-induced inhibition of platelet aggregation (P=0.036). Clopidogrel resistance was related to the progressing stroke (HR 3.521, 95 % CI 1.352-9.170, P=0.010), but had no influence on the bleeding events (P>0.05). CONCLUSIONS: The risk of clopidogrel resistance increased significantly in female patients. Patients with clopidogrel resistance may have an increased incidence of stroke progression in the acute phase.


Asunto(s)
Clopidogrel , Citocromo P-450 CYP2C19 , Resistencia a Medicamentos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Humanos , Clopidogrel/uso terapéutico , Clopidogrel/efectos adversos , Femenino , Estudios Retrospectivos , Masculino , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Anciano , Persona de Mediana Edad , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Factores de Riesgo , Resultado del Tratamiento , Agregación Plaquetaria/efectos de los fármacos , Variantes Farmacogenómicas , Factores de Tiempo , Pruebas de Función Plaquetaria , Medición de Riesgo , Factores Sexuales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/diagnóstico , Recurrencia , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/diagnóstico
14.
Chem Biodivers ; 21(5): e202400302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454878

RESUMEN

This study isolated pure compounds from Canna edulis aerial parts and assessed their antiplatelet and anticoagulant potential. Structural elucidation resulted in the identification of two new compounds: caneduloside A (1) and caneduloside B (2), and eleven known compounds: 6'-acetyl-3,6,2'-tri-p-coumaroyl sucrose (3), 6'-acetyl-3,6,2'-triferuloyl sucrose (4), tiliroside (5), afzelin (6), quercitrin (7), 2-hydroxycinnamaldehyde (8), cinnamic acid (9), 3,4-dimethoxycinnamic acid (10), dehydrovomifoliol (11), 4-hydroxy-3,5-dimethoxybenzaldehyde (12), and (S)-(-)-rosmarinic acid (13). Compounds 3, 4, 6-9, 13 were previously reported for antithrombotic properties. Hence, antithrombotic tests were conducted for 1, 2, 5, 10-12. All tested compounds demonstrated a dose-dependent antiaggregatory effect, and 10 and 12 were the most potent for both ADP and collagen activators. Additionally, 10 and 12 showed anticoagulant effects, with prolonged prothrombin time and activated partial thromboplastin time. The new compound 1 displayed antiplatelet and anticoagulant activity, while 2 mildly inhibited platelet aggregation. C. edulis is a potential source for developing antithrombotic agents.


Asunto(s)
Anticoagulantes , Componentes Aéreos de las Plantas , Inhibidores de Agregación Plaquetaria , Sacarosa , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Sacarosa/química , Sacarosa/farmacología , Sacarosa/metabolismo , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Humanos , Ésteres/química , Ésteres/farmacología , Ésteres/aislamiento & purificación , Agregación Plaquetaria/efectos de los fármacos , Myristicaceae/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Animales
16.
Phytomedicine ; 128: 155420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547619

RESUMEN

BACKGROUND: Within the pro-metastatic hemato-microenvironment, interaction between platelets and tumor cells provides essential support for tumor cells by inducing Epithelial-Mesenchymal Transition (EMT), which greatly increases the stemness of colon cancer cells. Pharmacologically, although platelet deactivation has proved to be benefit against metastasis, its wide application is severely restricted due to the bleeding risk. Spatholobi Caulis, a traditional Chinese herb with circulatory promotion and blood stasis removal activity, has been proved to be clinically effective in malignant medication, leaving its mechanistic relevance to tumor-platelet interaction largely unknown. METHODS: Firstly, MC38-Luc cells were injected into tail-vein in C57BL/6 mice to establish hematogenous metastasis model and the anti-metastasis effects of SEA were evaluated by using a small-animal imaging system. Then, we evaluated the anti-tumor-platelet interaction efficacy of SEA using a tumor-specific induced platelet aggregation model. Platelet aggregation was specifically induced by tumor cells in vitro. Furthermore, to clarify the anti-metastatic effects of SEA is mainly attributed to its blockage on tumor-platelet interaction, after co-culture with tumor cells and platelets (with or without SEA), MC38-Luc cells were injected into the tail-vein and finally count the total of photons quantitatively. Besides, to clarify the blocking pattern of SEA within the tumor-platelet complex, the dependence of SEA on different fractions from activated platelets was tested. Lastly, molecular docking screening were performed to screen potential effective compounds and we used ß-catenin blockers to verify the pathways involved in SEA blocking tumor-platelet interaction. RESULTS: Our study showed that SEA was effective in blocking tumor-platelet specific interaction: (1) Through CCK-8 and LDH assays, SEA showed no cytotoxic effects on tumor cells and platelets. On this basis, by the tail vein injection model, the photon counts in the SEA group was significantly lower than model group, indicating that SEA effectively reduced metastasis. (2) In the "tumor-platelet" co-culture model, SEA effectively inhibited the progression of EMT and cancer stemness signatures of MC38 cells in the model group. (3) In mechanism study, by using the specific inhibitors for galectin-3 (GB1107) andWNT (IWR) respectively, we proved that SEA inhibits the activation of the galectin-3-mediated ß-catenin activation. CONCLUSION: By highlighting the pro-metastatic effects of galectin-3-mediated tumor-platelet adhesion, our study provided indicative evidence for Spatholobi Caulis as the representative candidate for anti-metastatic therapy.


Asunto(s)
Neoplasias del Colon , Ratones Endogámicos C57BL , Microambiente Tumoral , Animales , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Plaquetas/efectos de los fármacos , Ratones , Agregación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Extractos Vegetales/farmacología , Metástasis de la Neoplasia
17.
Eur Heart J ; 45(17): 1553-1567, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38486376

RESUMEN

BACKGROUND AND AIMS: The ecto-nucleoside triphosphate diphosphohydrolases of the CD39 family degrade ATP and ADP into AMP, which is converted into adenosine by the extracellular CD73/ecto-5-nucleotidase. This pathway has been explored in antithrombotic treatments but little in myocardial protection. We have investigated whether the administration of solCD39L3 (AZD3366) confers additional cardioprotection to that of ticagrelor alone in a pre-clinical model of myocardial infarction (MI). METHODS: Ticagrelor-treated pigs underwent balloon-induced MI (90 min) and, before reperfusion, received intravenously either vehicle, 1 mg/kg AZD3366 or 3 mg/kg AZD3366. All animals received ticagrelor twice daily for 42 days. A non-treated MI group was run as a control. Serial cardiac magnetic resonance (baseline, Day 3 and Day 42 post-MI), light transmittance aggregometry, bleeding time, and histological and molecular analyses were performed. RESULTS: Ticagrelor reduced oedema formation and infarct size at Day 3 post-MI vs. controls. A 3 mg/kg AZD3366 provided an additional 45% reduction in oedema and infarct size compared with ticagrelor and a 70% reduction vs. controls (P < .05). At Day 42, infarct size declined in all ticagrelor-administered pigs, particularly in 3 mg/kg AZD3366-treated pigs (P < .05). Left ventricular ejection fraction was diminished at Day 3 in placebo pigs and worsened at Day 42, whereas it remained unaltered in ticagrelor ± AZD3366-administered animals. Pigs administered with 3 mg/kg AZD3366 displayed higher left ventricular ejection fraction upon dobutamine stress at Day 3 and minimal dysfunctional segmental contraction at Day 42 (χ2P < .05 vs. all). Cardiac and systemic molecular readouts supported these benefits. Interestingly, AZD3366 abolished ADP-induced light transmittance aggregometry without affecting bleeding time. CONCLUSIONS: Infusion of AZD3366 on top of ticagrelor leads to enhanced cardioprotection compared with ticagrelor alone.


Asunto(s)
Apirasa , Infarto del Miocardio , Ticagrelor , Ticagrelor/farmacología , Ticagrelor/uso terapéutico , Animales , Infarto del Miocardio/tratamiento farmacológico , Apirasa/metabolismo , Porcinos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Proteínas Recombinantes , Agregación Plaquetaria/efectos de los fármacos , Masculino , Humanos , Modelos Animales de Enfermedad , Adenosina/análogos & derivados , Adenosina/farmacología , Antígenos CD
18.
Chem Biodivers ; 21(5): e202400110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424689

RESUMEN

Drugs with anti-platelet aggregation and neuroprotection are of great significance for the treatment of ischemic stroke. A series of edaravone and 6-phenyl-4,5-dihydropyridazin-3(2H)-one hybrids were designed and synthesized. Among them, 6g showed the most effective cytoprotective effect against oxygen-glucose deprivation/reoxygenation-induced damage in BV2 cells and an excellent inhibitory effect on platelet aggregation induced by adenosine diphosphate and arachidonic acid. Additionally, 6g could prevent thrombosis caused by ferric chloride in rats and pose a lower risk of causing bleeding compared with aspirin. It provides better protection against ischemia/reperfusion injury in rats compared with edaravone and alleviates the oxidative stress related to cerebral ischemia/reperfusion by increasing the GSH and SOD levels and decreasing the MDA concentration. Finally, molecular docking results showed that 6g probably acts on PDE3 A and plays an anti-platelet aggregation effect. Overall, 6g could be a potential candidate compound for the treatment of ischemic stroke.


Asunto(s)
Edaravona , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Animales , Edaravona/farmacología , Edaravona/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratas , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/síntesis química , Agregación Plaquetaria/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Simulación del Acoplamiento Molecular , Masculino , Ratones , Estructura Molecular , Relación Estructura-Actividad , Ratas Sprague-Dawley , Descubrimiento de Drogas , Piridazinas/farmacología , Piridazinas/química , Estrés Oxidativo/efectos de los fármacos
20.
Int J Lab Hematol ; 46(3): 481-487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38323755

RESUMEN

INTRODUCTION: Ethylenediaminetetraacetic acid (EDTA)-dependent platelet aggregation (PA) can cause medical errors. Currently, there is no reliable method for completely solving this problem. This study aims to solve this problem that has plagued clinical practice for many years by using oscillation method. METHODS: Sixty-one EDTA-PA samples were collected, divided, and disaggregated using the oscillation method at various times and speeds. The samples were analyzed using routine blood tests and blood smears. RESULTS: Platelet counts (PLT) were increased significantly after oscillation. PLT in the 3000 rpm for 0.5 min group was significantly higher than that in the 500 rpm for 0.5 min group (p < 0. 01). After 3000 rpm oscillation, the PLT gradually increased with time, while compared with the 10-min group, the PLT in the 13-min group showed no significant differences. The effective disaggregation rates in the EDTA-PA samples using the oscillation method and sodium citrate anticoagulant were 96.72% and 65.57%, respectively. There were no significant changes in white blood cell (WBC) or red blood cell (RBC) counts or morphology after the use of the oscillation method. CONCLUSION: The oscillation method effectively depolymerized EDTA-PA without adverse effects on WBC and RBC. The implementation of this technique promises to resolve the issue of EDTA-PA.


Asunto(s)
Ácido Edético , Agregación Plaquetaria , Humanos , Ácido Edético/farmacología , Ácido Edético/química , Agregación Plaquetaria/efectos de los fármacos , Recuento de Plaquetas , Estudios Cruzados , Femenino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Masculino , Polimerizacion , Adulto , Anticoagulantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA