Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
1.
Curr Biol ; 34(9): R452-R472, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714177

RESUMEN

Forest restoration is being scaled up globally, carrying major expectations of environmental and societal benefits. Current discussions on ensuring the effectiveness of forest restoration are predominantly focused on the land under restoration per se. But this focus neglects the critical issue that land use and its drivers at larger spatial scales have strong implications for forest restoration outcomes, through the influence of landscape context and, importantly, potential off-site impacts of forest restoration that must be accounted for in measuring its effectiveness. To ensure intended restoration outcomes, it is crucial to integrate forest restoration into land-use planning at spatial scales large enough to account for - and address - these larger-scale influences, including the protection of existing native ecosystems. In this review, we highlight this thus-far neglected issue in conceptualizing forest restoration for the delivery of multiple desirable benefits regarding biodiversity and ecosystem services. We first make the case for the need to integrate forest restoration into large-scale land-use planning, by reviewing current evidence on the landscape-level influences and off-site impacts pertaining to forest restoration. We then discuss how science can guide the integration of forest restoration into large-scale land-use planning, by laying out key features of methodological frameworks required, reviewing the extent to which existing frameworks carry these features, and identifying methodological innovations needed to bridge the potential shortfall. Finally, we critically review the status of existing methods and data to identify future research efforts needed to advance these methodological innovations and, more broadly, the effective integration of forest restoration design into large-scale land-use planning.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Biodiversidad , Ecosistema , Restauración y Remediación Ambiental/métodos
3.
Nature ; 629(8011): 370-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600390

RESUMEN

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias
4.
Sci Total Environ ; 927: 172350, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608907

RESUMEN

Extensive deforestation has been a major reason for the loss of forest connectivity, impeding species range shifts under current climate change. Over the past decades, the Chinese government launched a series of afforestation and reforestation projects to increase forest cover, yet whether the new forests can compensate for the loss of connectivity due to deforestation-and where future tree planting would be most effective-remains largely unknown. Here, we evaluate changes in climate connectivity across China's forests between 2015 and 2019. We find that China's large-scale tree planting alleviated the negative impacts of forest loss on climate connectivity, improving the extent and probability of climate connectivity by 0-0.2 °C and 0-0.03, respectively. The improvements were particularly obvious for species with short dispersal distances (i.e., 3 km and 10 km). Nevertheless, only ~55 % of the trees planted in this period could serve as stepping stones for species movement. This indicates that focusing solely on the quantitative target of forest coverage without considering the connectivity of forests may miss opportunities in tree planting to facilitate climate-induced range shifts. More attention should be paid to the spatial arrangement of tree plantations and their potential as stepping stones. We then identify priority areas for future tree planting to create effective stepping stones. Our study highlights the potential of large-scale tree planting to facilitate range shifts. Future tree-planting efforts should incorporate the need for species range shifts to achieve more biodiversity conservation benefits under climate change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Árboles , China , Conservación de los Recursos Naturales/métodos , Árboles/crecimiento & desarrollo , Agricultura Forestal/métodos
5.
Environ Int ; 186: 108611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603812

RESUMEN

Research has shown that forest management can improve the post-drought growth and resilience of Qinghai spruce in the eastern Qilian Mountains, located on the northeastern Tibetan Plateau. However, the impact of such management on the tree-associated phyllosphere microbiome is not yet fully understood. This study provides new evidence of positive forest management effects on the phyllosphere microbiome after extreme drought, from the perspectives of community diversity, structure, network inference, keystone species, and assembly processes. In managed Qinghai spruce forest, the α-diversity of the phyllosphere bacterial communities increased, whereas the ß-diversity decreased. In addition, the phyllosphere bacterial community became more stable and resistant, yet less complex, following forest management. Keystone species inferred from a bacterial network also changed under forest management. Furthermore, forest management mediated changes in community assembly processes, intensifying the influence of determinacy, while diminishing that of stochasticity. These findings support the hypothesis that management can re-assemble the phyllosphere bacterial community, enhance community stability, and ultimately improve tree growth. Overall, the study highlights the importance of forest management on the phyllosphere microbiome and furnishes new insights into forest conservation from the perspective of managing microbial processes and effects.


Asunto(s)
Bacterias , Bosques , Microbiota , Bacterias/clasificación , Agricultura Forestal/métodos , Árboles/microbiología , Picea/microbiología , Biodiversidad , Sequías , Conservación de los Recursos Naturales/métodos
6.
Sci Total Environ ; 927: 172076, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575021

RESUMEN

Forests play a crucial role in mitigating climate change through carbon storage and sequestration, though environmental change drivers and management scenarios are likely to influence these contributions across multiple spatial and temporal scales. In this study, we employed three tree growth models-the Richard, Hossfeld, and Korf models-that account for the biological characteristics of trees, alongside national forest inventory (NFI) datasets from 1994 to 2018, to evaluate the carbon sink potential of existing forests and afforested regions in China from 2020 to 2100, assuming multiple afforestation and forest management scenarios. Our results indicate that the Richard, Hossfeld, and Korf models provided a good fit for 26 types of vegetation biomass in both natural and planted Chinese forests. These models estimate that in 2020, carbon stocks in existing Chinese forests are 7.62 ± 0.05 Pg C, equivalent to an average of 44.32 ± 0.32 Mg C/ ha. Our predictions then indicate this total forest carbon stock is expected to increase to 15.51 ± 0.99 Pg C (or 72.26 ± 4.6 Mg C/ha) in 2060, and further to 19.59 ± 1.36 Pg C (or 91.31 ± 6.33 Mg C/ha) in 2100. We also show that plantation management measures, namely tree species replacement, would increase carbon sinks to 0.09 Pg C/ year (contributing 38.9 %) in 2030 and 0.06 Pg C/ year (contributing 32.4 %) in 2060. Afforestation using tree species with strong carbon sink capacity in existing plantations would further significantly increase carbon sinks from 0.02 Pg C/year (contributing 10.3 %) in 2030 to 0.06 Pg C/year (contributing 28.2 %) in 2060. Our results quantify the role plantation management plays in providing a strong increase in forest carbon sequestration at national scales, pointing to afforestation with native tree species with high carbon sequestration as key in achieving China's 2060 carbon neutrality target.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Bosques , Árboles , China , Agricultura Forestal/métodos , Carbono/análisis , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Biomasa
7.
J Vis Exp ; (206)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647320

RESUMEN

Fuel treatments and other forest restoration thinning practices aim to reduce wildfire risk while building forest resilience to drought, insects, and diseases and increasing aboveground carbon (C) sequestration. However, fuel treatments generate large amounts of unmerchantable woody biomass residues that are often burned in open piles, releasing significant quantities of greenhouse gases and particulates, and potentially damaging the soil beneath the pile. Air curtain burners offer a solution to mitigate these issues, helping to reduce smoke and particulates from burning operations, more fully burn biomass residues compared to pile burning, and eliminate the direct and intense fire contact that can harm soil beneath the slash pile. In an air curtain burner, burning takes place in a controlled environment. Smoke is contained and recirculated by the air curtain, and therefore burning can be conducted under a variety of climatic conditions (e.g., wind, rain, snow), lengthening the burning season for disposal of slash material. The mobile pyrolysis unit that continuously creates biochar was specifically designed to dispose of residual woody biomass at log landings, green wood at landfills, or salvaged logged materials and create biochar in the process. This high-carbon biochar output can be used to enhance soil resilience by improving its chemical, physical, and biological properties and has potential applications in remediating contaminated soils, including those at abandoned mine sites. Here, we describe the general use of this equipment, appropriate siting, loading methods, quenching requirements, and lessons learned about operating this new technology.


Asunto(s)
Carbón Orgánico , Madera , Madera/química , Carbón Orgánico/química , Pirólisis , Agricultura Forestal/métodos
8.
Environ Monit Assess ; 196(5): 470, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658409

RESUMEN

Recent studies suggest that arthropod diversity in German forests is declining. Currently, different national programs are being developed to monitor arthropod trends and to unravel the effects of forest management on biodiversity in forests. To establish effective long-term monitoring programs, a set of drivers of arthropod diversity and composition as well as suitable species groups have to be identified. To aid in answering these questions, we investigated arthropod data collected in four Hessian forest reserves (FR) in the 1990s. To fully utilize this data set, we combined it with results from a retrospective structural sampling design applied at the original trap locations in central European beech (Fagus sylvatica) forests. As expected, the importance of the different forest structural, vegetation, and site attributes differed largely between the investigated arthropod groups: beetles, spiders, Aculeata, and true bugs. Measures related to light availability and temperature such as canopy cover or potential radiation were important to all groups affecting either richness, composition, or both. Spiders and true bugs were affected by the broadest range of explanatory variables, which makes them a good choice for monitoring general trends. For targeted monitoring focused on forestry-related effects on biodiversity, rove and ground beetles seem more suitable. Both groups were driven by a narrower, more management-related set of variables. Most importantly, our study approach shows that it is possible to utilize older biodiversity survey data. Although, in our case, there are strong restrictions due to the long time between species and structural attribute sampling.


Asunto(s)
Artrópodos , Biodiversidad , Monitoreo del Ambiente , Fagus , Bosques , Animales , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos
9.
Nature ; 628(8008): 563-568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600379

RESUMEN

More than a quarter of the world's tropical forests are exploited for timber1. Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes2,3. Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species.


Asunto(s)
Certificación , Agricultura Forestal , Bosques , Mamíferos , Animales , África Occidental , Biodiversidad , Peso Corporal , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Elefantes , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/normas , Gorilla gorilla , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/fisiología , Fotograbar , Roedores , Masculino , Femenino
10.
Ying Yong Sheng Tai Xue Bao ; 35(2): 321-329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523088

RESUMEN

Accurate and efficient extraction of tree parameters from plantations lay foundation for estimating individual wood volume and stand stocking. In this study, we proposed a method of extracting high-precision tree parameters based on airborne LiDAR data. The main process included data pre-processing, ground filtering, individual tree segmentation, and parameter extraction. We collected high-density airborne point cloud data from the large-diameter timber of Fokienia hodginsii plantation in Guanzhuang State Forestry Farm, Shaxian County, Fujian Province, and pre-processed the point cloud data by denoising, resampling and normalization. The vegetation point clouds and ground point clouds were separated by the Cloth Simulation Filter (CSF). The former data were interpolated using the Delaunay triangulation mesh method to generate a digital surface model (DSM), while the latter data were interpolated using the Inverse Distance Weighted to generate a digital elevation model (DEM). After that, we obtained the canopy height model (CHM) through the difference operation between the two, and analyzed the CHM with varying resolutions by the watershed algorithm on the accuracy of individual tree segmentation and parameter extraction. We used the point cloud distance clustering algorithm to segment the normalized vegetation point cloud into individual trees, and analyzed the effects of different distance thresholds on the accuracy of indivi-dual tree segmentation and parameter extraction. The results showed that the watershed algorithm for extracting tree height of 0.3 m resolution CHM had highest comprehensive evaluation index of 91.1% for individual tree segmentation and superior accuracy with R2 of 0.967 and RMSE of 0.890 m. When the spacing threshold of the point cloud segmentation algorithm was the average crown diameter, the highest comprehensive evaluation index of 91.3% for individual tree segmentation, the extraction accuracy of the crown diameter was superior, with R2 of 0.937 and RMSE of 0.418 m. Tree height, crown diameter, tree density, and spatial distribution of trees were estimated. There were 5994 F. hodginsii, with an average tree height of 16.63 m and crown diameter of 3.98 m. Trees with height of 15-20 m were the most numerous (a total of 2661), followed by those between 10-15 m. This method of forest parameter extraction was useful for monitoring and managing plantations.


Asunto(s)
Bosques , Madera , Simulación por Computador , Algoritmos , Agricultura Forestal/métodos
11.
Environ Int ; 186: 108593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531235

RESUMEN

Climate change is a pressing global challenge with profound implications for human health. Forest-based climate change mitigation strategies, such as afforestation, reforestation, and sustainable forest management, offer promising solutions to mitigate climate change and simultaneously yield substantial co-benefits for human health. The objective of this scoping review was to examine research trends related to the interdisciplinary nexus between forests as carbon sinks and human health co-benefits. We developed a conceptual framework model, supporting the inclusion of exposure pathways, such as recreational opportunities or aesthetic experiences, in the co-benefit context. We used a scoping review methodology to identify the proportion of European research on forest-based mitigation strategies that acknowledge the interconnection between mitigation strategies and human impacts. We also aimed to assess whether synergies and trade-offs between forest-based carbon sink capacity and human co-benefits has been analysed and quantified. From the initial 4,062 records retrieved, 349 reports analysed European forest management principles and factors related to climate change mitigation capacity. Of those, 97 studies acknowledged human co-benefits and 13 studies quantified the impacts on exposure pathways or health co-benefits and were included for full review. Our analysis demonstrates that there is potential for synergies related to optimising carbon sink capacity together with human co-benefits, but there is currently a lack of holistic research approaches assessing these interrelationships. We suggest enhanced interdisciplinary efforts, using for example multideterminant modelling approaches, to advance evidence and understanding of the forest and health nexus in the context of climate change mitigation.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Humanos , Europa (Continente) , Conservación de los Recursos Naturales/métodos , Secuestro de Carbono , Agricultura Forestal/métodos
13.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339515

RESUMEN

Smart forestry, an innovative approach leveraging artificial intelligence (AI), aims to enhance forest management while minimizing the environmental impact. The efficacy of AI in this domain is contingent upon the availability of extensive, high-quality data, underscoring the pivotal role of sensor-based data acquisition in the digital transformation of forestry. However, the complexity and challenging conditions of forest environments often impede data collection efforts. Achieving the full potential of smart forestry necessitates a comprehensive integration of sensor technologies throughout the process chain, ensuring the production of standardized, high-quality data essential for AI applications. This paper highlights the symbiotic relationship between human expertise and the digital transformation in forestry, particularly under challenging conditions. We emphasize the human-in-the-loop approach, which allows experts to directly influence data generation, enhancing adaptability and effectiveness in diverse scenarios. A critical aspect of this integration is the deployment of autonomous robotic systems in forests, functioning both as data collectors and processing hubs. These systems are instrumental in facilitating sensor integration and generating substantial volumes of quality data. We present our universal sensor platform, detailing our experiences and the critical importance of the initial phase in digital transformation-the generation of comprehensive, high-quality data. The selection of appropriate sensors is a key factor in this process, and our findings underscore its significance in advancing smart forestry.


Asunto(s)
Inteligencia Artificial , Agricultura Forestal , Humanos , Agricultura Forestal/métodos , Conservación de los Recursos Naturales/métodos , Bosques , Tecnología
14.
PLoS One ; 19(2): e0297439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306349

RESUMEN

The impacts of the Anthropocene on climate and biodiversity pose societal and ecological problems that may only be solved by ecosystem restoration. Local to regional actions are required, which need to consider the prevailing present and future conditions of a certain landscape extent. Modeling approaches can be of help to support management efforts and to provide advice to policy making. We present stage one of the LaForeT-PLUC-BE model (Landscape Forestry in the Tropics-PCRaster Land Use Change-Biogeographic & Economic model; in short: LPB) and its thematic expansion module RAP (Restoration Areas Potentials). LPB-RAP is a high-resolution pixel-based scenario tool that relies on a range of explicit land use types (LUTs) to describe various forest types and the environment. It simulates and analyzes future landscape configurations under consideration of climate, population and land use change long-term. Simulated Land Use Land Cover Change (LULCC) builds on dynamic, probabilistic modeling incorporating climatic and anthropogenic determinants as well as restriction parameters to depict a sub-national regional smallholder-dominated forest landscape. The model delivers results for contrasting scenario settings by simulating without and with potential Forest and Landscape Restoration (FLR) measures. FLR potentials are depicted by up to five RAP-LUTs. The model builds on user-defined scenario inputs, such as the Shared Socioeconomic Pathways (SSP) and Representative Concentration Pathways (RCP). Model application is here exemplified for the SSP2-RCP4.5 scenario in the time frame 2018-2100 on the hectare scale in annual resolution using Esmeraldas province, Ecuador, as a case study area. The LPB-RAP model is a novel, heuristic Spatial Decision Support System (SDSS) tool for smallholder-dominated forest landscapes, supporting near-time top-down planning measures with long-term bottom-up modeling. Its application should be followed up by FLR on-site investigations and stakeholder participation across all involved scales.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Bosques , Biodiversidad , Agricultura Forestal/métodos
15.
Environ Sci Pollut Res Int ; 31(1): 1195-1211, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038919

RESUMEN

Human disturbance stands as a prominent factor influencing the ecological environment within natural protected areas. Presently, the issue of balancing human activities and ecological preservation has emerged as a critical concern in the construction of China's natural protected area system. Functional zoning serves as the cornerstone of natural protected area management and represents a pivotal tool in achieving this equilibrium. This study endeavors to introduce a set of functional zoning methods for natural protected areas based on human disturbance assessments. Utilizing Dalingshan Forest Park in Dongguan city which is known for its significant human disturbances as a case study, field surveys were conducted to identify various types of small-scale and understory-hidden human disturbances, such as residential areas, roads, tourist areas, forestry areas, and energy facilities. Subsequently, a microcosmic human disturbance model tailored to forested areas was developed using the analytic hierarchy process. By integrating the findings of macrocosmic human disturbance assessments conducted concurrently by the research group, a functional zoning plan for Dalingshan Forest Park was proposed. The results show that ecological conservation zones within the park should be established in three specific areas, primarily in regions with low-level microcosmic human disturbance (levels 1 and 2) and terrain fluctuations ≥110 m. In contrast, the rational use zone is notably influenced by tourist infrastructure and road networks, predominantly located in regions with high human activity, such as popular tourist destinations and areas with road classifications and vehicular traffic. The microcosmic human disturbance assessment method proposed in this study enhances the rationality and accuracy of natural protected area functional zoning. It provides a more scientifically grounded research approach for similar studies concerning natural protected area functional zoning and contributes valuable insights for the further advancement of China's efforts in the integration and optimization of natural protected areas.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Humanos , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Actividades Humanas , China , Ecosistema
16.
J Environ Manage ; 350: 119593, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016237

RESUMEN

The Amazon has a range of species with high potential for sustainable timber harvesting, but for them to be utilized globally, the merchantable wood volume must be accurately quantified. However, since the 1950s, inadequate methods for estimating merchantable timber volumes have been employed in the Amazon, and Brazilian Government agencies still require some of them. The natural variability of the Amazon Forest provides an abundance of species of different sizes and shapes, conferring several peculiarities, which makes it necessary to use up-to-date and precise methods for timber quantification in Amazon Forest management. Given the employment of insufficient estimation methods for wood volume, this study scrutinizes the disparities between the actual harvested merchantable wood volume and the volume estimated by the forest inventory during the harvesting phase across five distinct public forest areas operating under sustainable forest management concessions. We used mixed-effect models to evaluate the relationships between inventory and harvested volume for genera and forest regions. We performed an equivalence test to assess the similarity between the volumes obtained during the pre-and post-harvest phases. We calculated root mean square error and percentage bias for merchantable volume as accuracy metrics. There was a strong tendency for the 100% forest inventory to overestimate merchantable wood volume, regardless of genus and managed area. There was a significant discrepancy between the volumes inventoried and harvested in different regions intended for sustainable forest management, in which only 22% of the groups evaluated were equivalent. The methods currently practiced by forest companies for determining pre-harvest merchantable volume are inaccurate enough to support sustainable forest management in the Amazon. They may even facilitate the region's illegal timber extraction and organized crime.


Asunto(s)
Árboles , Madera , Agricultura Forestal/métodos , Brasil , Conservación de los Recursos Naturales/métodos , Bosques
17.
Nature ; 626(7998): 327-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109939

RESUMEN

The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.


Asunto(s)
Agricultura Forestal , Efecto Invernadero , Gases de Efecto Invernadero , Industrias , Internacionalidad , Papel , Desarrollo Sostenible , Madera , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/aislamiento & purificación , Industrias/legislación & jurisprudencia , Industrias/estadística & datos numéricos , Metano/análisis , Metano/aislamiento & purificación , Reciclaje/estadística & datos numéricos , Reciclaje/tendencias , Países Desarrollados , Países en Desarrollo , Bosques , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Desarrollo Sostenible/tendencias , Clima Tropical
19.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
20.
J Environ Manage ; 344: 118486, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413725

RESUMEN

Fires are an important aspect of environmental ecology; however, they are also one of the most widespread destructive forces impacting natural ecosystems as well as property, human health, water and other resources. Urban sprawl is driving the construction of new homes and facilities into fire-vulnerable areas. This growth, combined with a warmer climate, is likely to make the consequences of wildfires more severe. To reduce wildfires and associated risks, a variety of hazard reduction practices are implemented, such as prescribed burning (PB) and mechanical fuel load reduction (MFLR). PB can reduce forest fuel load; however, it has adverse effects on air quality and human health, and should not be applied close to residential areas due to risks of fire escape. On the other hand, MFLR releases less greenhouse gasses and does not impose risks to residential areas. However, it is more expensive to implement. We suggest that environmental, economic and social costs of various mitigation tools should be taken into account when choosing the most appropriate fire mitigation approach and propose a conceptual framework, which can do it. We show that applying GIS methods and life cycle assessment we can produce a more reasonable comparison that can, for example, include the benefits that can be generated by using collected biomass for bioenergy or in timber industries. This framework can assist decision makers to find the optimal combinations of hazard reduction practices for various specific conditions and locations.


Asunto(s)
Ecosistema , Incendios , Humanos , Conservación de los Recursos Naturales/métodos , Bosques , Biomasa , Agricultura Forestal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA