Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiologyopen ; 10(6): e1229, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34964294

RESUMEN

The filamentous fungus Magnaporthe oryzae has the potential to be developed as an alternative platform organism for the heterologous production of industrially important enzymes. M. oryzae is easy to handle, fast-growing and unlike yeast, posttranslational modifications like N-glycosylations are similar to the human organism. Here, we established M. oryzae as a host for the expression of the unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO). Note, UPOs are attractive biocatalysts for selective oxyfunctionalization of non-activated carbon-hydrogen bonds. To improve and simplify the isolation of AaeUPO in M. oryzae, we fused a Magnaporthe signal peptide for protein secretion and set it under control of the strong EF1α-promoter. The success of the heterologous production of full-length AaeUPO in M. oryzae and the secretion of the functional enzyme was confirmed by a peroxygenase-specific enzyme assay. These results offer the possibility to establish the filamentous ascomycete M. oryzae as a broad applicable alternative expression system.


Asunto(s)
Agrocybe/enzimología , Magnaporthe/genética , Oxigenasas de Función Mixta/biosíntesis , Agrocybe/genética , Factor 1 Eucariótico de Iniciación/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Magnaporthe/metabolismo , Oxigenasas de Función Mixta/genética , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/biosíntesis
2.
Biotechnol Bioeng ; 118(8): 3002-3014, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964174

RESUMEN

Fungal unspecific peroxygenases (UPOs) are efficient biocatalysts that insert oxygen atoms into nonactivated C-H bonds with high selectivity. Many oxyfunctionalization reactions catalyzed by UPOs are favored in organic solvents, a milieu in which their enzymatic activity is drastically reduced. Using as departure point the UPO secretion mutant from Agrocybe aegerita (PaDa-I variant), in the current study we have improved its activity in organic solvents by directed evolution. Mutant libraries constructed by random mutagenesis and in vivo DNA shuffling were screened in the presence of increasing concentrations of organic solvents that differed both in regard to their chemical nature and polarity. In addition, a palette of neutral mutations generated by genetic drift that improved activity in organic solvents was evaluated by site directed recombination in vivo. The final UPO variant of this evolutionary campaign carried nine mutations that enhanced its activity in the presence of 30% acetonitrile (vol/vol) up to 23-fold over PaDa-I parental type, and it was also active and stable in aqueous acetone, methanol and dimethyl sulfoxide mixtures. These mutations, which are located at the surface of the protein and in the heme channel, seemingly helped to protect UPO from harmful effects of cosolvents by modifying interactions with surrounding residues and influencing critical loops.


Asunto(s)
Agrocybe , Evolución Molecular Dirigida , Proteínas Fúngicas , Oxigenasas de Función Mixta , Mutación Missense , Solventes/química , Acetona/química , Acetonitrilos/química , Agrocybe/enzimología , Agrocybe/genética , Dimetilsulfóxido/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Metanol/química , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética
3.
Angew Chem Int Ed Engl ; 60(13): 6965-6969, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33529432

RESUMEN

Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).


Asunto(s)
Acetofenonas/química , Alcohol Deshidrogenasa/química , Derivados del Benceno/química , Oxigenasas de Función Mixta/química , Nitrilos/química , Alcohol Feniletílico/química , Acetofenonas/metabolismo , Agrocybe/enzimología , Alcohol Deshidrogenasa/metabolismo , Derivados del Benceno/metabolismo , Catálisis , Luz , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Nitrilos/metabolismo , Oxidación-Reducción , Alcohol Feniletílico/metabolismo , Procesos Fotoquímicos , Rhodococcus/enzimología , Estereoisomerismo
4.
Int J Biol Macromol ; 168: 631-639, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33227332

RESUMEN

A novel fibrinolytic enzyme, ACase was isolated from fruiting bodies of a mushroom, Agrocybe aegerita. ACase was purified by using ammonium sulfate precipitation, gel filtration, ion exchange and hydrophobic chromatographies to 237.12 fold with a specific activity of 1716.77 U/mg. ACase was found to be a heterodimer with molecular mass of 31.4 and 21.2 kDa by SDS-PAGE and appeared as a single band on Native-PAGE and fibrin-zymogram. The N-terminal sequence of the two subunits of ACase was AIVTQTNAPWGL (subunit 1) and SNADGNGHGTHV (subunit 2). ACase had maximal activity at 47 °C and pH 7.6. It's activity was improved by Cu2+, Na+, Fe3+, Zn2+, Ba2+, K+ and Mn2+, but inhibited by Fe2+, Mg2+ and Ca2+. PMSF, SBTI, aprotinine and Lys inhibited the enzyme activity, which suggested that ACase was a serine protease. ACase could degrade all three chains (α, ß and γ) of fibrinogen. Moreover, the enzyme acted as both, a plasmin-like fibrinolytic enzyme and a plasminogen activator. It could hydrolyze human thrombin slightly, which indicated that the ACase could inhibit the activity of thrombin and acted as an anticoagulant to prevent thrombosis. Based on these results, ACase might act as a therapeutic agent for treating thrombosis, or as a functional food. Further investigation of the enzyme is underway.


Asunto(s)
Agrocybe/enzimología , Anticoagulantes/farmacología , Fibrinolíticos/farmacología , Serina Proteasas/farmacología , Secuencia de Aminoácidos , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Fenómenos Químicos , Cromatografía por Intercambio Iónico , Fibrinógeno/metabolismo , Fibrinolíticos/química , Fibrinolíticos/aislamiento & purificación , Cuerpos Fructíferos de los Hongos/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G/metabolismo , Peso Molecular , Multimerización de Proteína , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Albúmina Sérica Humana/metabolismo , Trombina/metabolismo
5.
Biotechnol Bioeng ; 118(1): 7-16, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844401

RESUMEN

Unspecific peroxygenases have attracted interest due to their ability to catalyze the oxygenation of various types of C-H bonds using only hydrogen peroxide as a cosubstrate. Due to the instability of these enzymes at even low hydrogen peroxide concentrations, careful fed-batch addition of the cosubstrate or ideally in situ production is required. While various approaches for hydrogen peroxide addition have been qualitatively assessed, only limited kinetic data concerning enzyme inactivation and peroxide accumulation has been reported so far. To obtain quantitative insights into the kinetics of such a process, a detailed data set for a peroxygenase-catalyzed benzylic hydroxylation coupled with electrochemical hydrogen peroxide production is presented. Based on this data set, we set out to model such an electroenzymatic process. For this, initial velocity data for the benzylic hydroxylation is collected and an extended Ping-Pong-Bi-Bi type rate equation is established, which sufficiently describes the enzyme kinetic. Moreover, we propose an empirical inactivation term based on the collected data set. Finally, we show that the full model does not only describe the process with sufficient accuracy, but can also be used predictively to control hydrogen peroxide feeding rates To limit the concentration of this critical cosubstrate in the system.


Asunto(s)
Agrocybe/enzimología , Técnicas Electroquímicas , Proteínas Fúngicas/química , Oxigenasas de Función Mixta/química , Modelos Químicos , Catálisis
6.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785123

RESUMEN

Unspecific peroxygenases (UPOs) are fungal heme-thiolate enzymes able to catalyze a wide range of oxidation reactions, such as peroxidase-like, catalase-like, haloperoxidase-like, and, most interestingly, cytochrome P450-like. One of the most outstanding properties of these enzymes is the ability to catalyze the oxidation a wide range of organic substrates (both aromatic and aliphatic) through cytochrome P450-like reactions (the so-called peroxygenase activity), which involves the insertion of an oxygen atom from hydrogen peroxide. To catalyze this reaction, the substrate must access a channel connecting the bulk solution to the heme group. The composition, shape, and flexibility of this channel surely modulate the catalytic ability of the enzymes in this family. In order to gain an understanding of the role of the residues comprising the channel, mutants derived from PaDa-I, a laboratory-evolved UPO variant from Agrocybe aegerita, were obtained. The two phenylalanine residues at the surface of the channel, which regulate the traffic towards the heme active site, were mutated by less bulky residues (alanine and leucine). The mutants were experimentally characterized, and computational studies (i.e., molecular dynamics (MD)) were performed. The results suggest that these residues are necessary to reduce the flexibility of the region and maintain the topography of the channel.


Asunto(s)
Agrocybe/enzimología , Dominio Catalítico , Oxigenasas de Función Mixta/química , Fenilalanina/química , Saccharomyces cerevisiae/metabolismo , Biocatálisis , Hemo/química , Peróxido de Hidrógeno/química , Oxigenasas de Función Mixta/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida/métodos , Mutación , Saccharomyces cerevisiae/genética
7.
ACS Chem Biol ; 15(5): 1268-1277, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32233445

RESUMEN

Terpenoids constitute a structurally diverse group of natural products with wide applications in the pharmaceutical, nutritional, flavor and fragrance industries. Fungi are known to produce a large variety of terpenoids, yet fungal terpene synthases remain largely unexploited. Here, we report the sesquiterpene network and gene clusters of the black poplar mushroom Agrocybe aegerita. Among 11 putative sesquiterpene synthases (STSs) identified in its genome, nine are functional, including two novel synthases producing viridiflorol and viridiflorene. On this basis, an additional 1133 STS homologues from higher fungi have been curated and used for a sequence similarity network to probe isofunctional STS groups. With the focus on two STS groups, one producing viridiflorene/viridiflorol and one Δ6-protoilludene, the isofunctionality was probed and verified. Three new Δ6-protoilludene synthases and two new viridflorene/viridiflorol synthases from five different fungi were correctly predicted. The study herein serves as a fundamental predictive framework for the discovery of fungal STSs and biosynthesis of novel terpenoids. Furthermore, it becomes clear that fungal STS function differs between the phyla Ascomycota and Basidiomycota with the latter phylum being more dominant in the overall number and variability. This study aims to encourage the scientific community to further work on fungal STS and the products, biological functions, and potential applications of this vast source of natural products.


Asunto(s)
Agrocybe/enzimología , Transferasas Alquil y Aril/metabolismo , Productos Biológicos/química , Sesquiterpenos/química , Agrocybe/genética , Agrocybe/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Secuencia de Bases , Basidiomycota/enzimología , Basidiomycota/genética , Basidiomycota/metabolismo , Productos Biológicos/metabolismo , Vías Biosintéticas , Clonación Molecular , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Estructura Molecular , Familia de Multigenes , Homología de Secuencia de Ácido Nucleico , Sesquiterpenos/metabolismo
8.
Chempluschem ; 85(1): 254-257, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31951316

RESUMEN

A bienzymatic cascade for selective sulfoxidation is presented. The evolved recombinant peroxygenase from Agrocybe aegeritra catalyses the enantioselective sulfoxidation of thioanisole whereas the choline oxidase from Arthrobacter nicotianae provides the H2 O2 necessary via reductive activation of ambient oxygen. The reactions are performed in choline chloride-based deep eutectic solvents serving as co-solvent and stoichiometric reductant at the same time. Very promising product concentrations (up to 15 mM enantiopure sulfoxide) and catalyst performances (turnover numbers of 150,000 and 2100 for the peroxygenase and oxidase, respectively) have been achieved.


Asunto(s)
Agrocybe/enzimología , Oxidorreductasas de Alcohol/metabolismo , Productos Biológicos/química , Micrococcaceae/enzimología , Oxigenasas de Función Mixta/metabolismo , Safrol/análogos & derivados , Sulfuros/química , Agrocybe/química , Biocatálisis , Colina/química , Hidrógeno/química , Peróxido de Hidrógeno/química , Micrococcaceae/química , Oxidación-Reducción , Oxígeno/química , Procesos Fotoquímicos , Safrol/química , Solventes/química , Estereoisomerismo
9.
Int J Biol Macromol ; 154: 1490-1495, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733256

RESUMEN

Nanoparticles have been successfully used for immobilization of different enzymes. The enzyme immobilized by nanomaterials has promising application in the biotechnological industry. The ß-glucosidase is very important in industrial field. The immobilization of ß-glucosidase by nanomaterials increases its activity and reusability. In this work, the ß-glucosidase was extracted from fruiting bodies of Agrocybe aegirit and was purified by anion exchange. The ß-glucosidase was immobilized by SiO2 nanoparticles (nano-SiO2) crosslink with glutaraldehyde (GA). On the other hand, the ß-glucosidase firstly immobilized by process adsorption and then crosslink with genipin (GP) which was produced by the hydrolysis of geniposide by ß-glucosidase. Then we compared the properties of both immobilized GA-crosslinked ß-glucosidase and GP-crosslinked ß-glucosidase, their immobilization yields were 83.34% and 96.29% respectively. The GA-crosslinked ß-glucosidase and free ß-glucosidase revealed optimal pH at 6.0. The optimal pH of GP-crosslinked ß-glucosidase was ranging between 4.5 and 7.5. The GA-crosslinked ß-glucosidase and GP-crosslinked ß-glucosidase revealed the optimal temperature at 50 °C, 70 °C respectively. For the free ß-glucosidase, the optimal temperature was 55 °C. Furthermore, the GA-crosslinked ß-glucosidase and GP-crosslinked ß-glucosidase were characterized by scanning electron microscope (SEM). The geniposide consumption in the reaction system of GA-crosslinked ß-glucosidase was analyzed by high performance liquid chromatography (HPLC).


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glutaral/química , Agrocybe/enzimología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Nanoestructuras/química , Dióxido de Silicio/química , Propiedades de Superficie , Temperatura , beta-Glucosidasa
10.
PLoS One ; 14(6): e0218625, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31216342

RESUMEN

Oxylipins are metabolites with a variety of biological functions. However, the biosynthetic pathway is widely unknown. It is considered that the first step is the oxygenation of polyunsaturated fatty acids like linoleic acid. Therefore, a lipoxygenase (LOX) from the edible basidiomycete Agrocybe aegerita was investigated. The AaeLOX4 was heterologously expressed in E. coli and purified via affinity chromatography and gel filtration. Biochemical properties and kinetic parameters of the purified AaeLOX4 were determined with linoleic acid and linolenic acid as substrates. The obtained Km, vmax and kcat values for linoleic acid were 295.5 µM, 16.5 µM · min-1 · mg-1 and 103.9 s-1, respectively. For linolenic acid Km, vmax and kcat values of 634.2 µM, 19.5 µM · min-1 · mg-1 and 18.3 s-1 were calculated. Maximum activities were observed at pH 7.5 and 25 °C. The main product of linoleic acid conversion was identified with normal-phase HPLC. This analysis revealed an explicit production of 13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD). The experimental regio specificity is underpinned by the amino acid residues W384, F450, R594 and V635 considered relevant for regio specificity in LOX. In conclusion, HPLC-analysis and alignments revealed that AaeLOX4 is a 13-LOX.


Asunto(s)
Agrocybe/enzimología , Proteínas Fúngicas/metabolismo , Lipooxigenasas/metabolismo , Agrocybe/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Proteínas Fúngicas/química , Cinética , Ácido Linoleico/metabolismo , Lipooxigenasas/química , Especificidad por Sustrato
11.
Int J Biol Macromol ; 136: 625-631, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220501

RESUMEN

Ribotoxins are fungal proteins that serve as weapons against parasites and insects. They are strongly toxic due to their ability to enter host cells and inactivate ribosomes. Ageritin is the prototype of a new ribotoxin-like protein family present in basidiomycetes. We demonstrate that this enzyme has peculiar binding and enzymatic features. Different from other ribotoxins, its ribonucleolytic activity requires the presence of divalent cations, with a maximum activation in the presence of zinc ions, for which Ageritin exhibits the strongest affinity of binding. We modeled the catalytic metal binding site of Ageritin, made of the putative triad Asp68, Asp70 and His77. This report highlights that Ageritin has the structure and function of an RNase but a Mg2+/Zn2+-dependent mechanism of action, a new finding for ribotoxins. As a zinc-dependent toxin, Ageritin can be classified among the arsenal of zinc-binding proteins involved in fungal virulence.


Asunto(s)
Agrocybe/enzimología , Ribonucleasas/química , Ribonucleasas/metabolismo , Zinc/metabolismo , Dominio Catalítico , Colicinas/metabolismo , Modelos Moleculares , Unión Proteica
12.
Z Naturforsch C J Biosci ; 74(3-4): 101-104, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30379645

RESUMEN

There is an increasing interest in the application of peroxygenases in biocatalysis, because of their ability to catalyse the oxyfunctionalisation reaction in a stereoselective fashion and with high catalytic efficiencies, while using hydrogen peroxide or organic peroxides as oxidant. However, enzymes belonging to this class exhibit a very low stability in the presence of peroxides. With the aim of bypassing this fast and irreversible inactivation, we study the use of a gradual supply of hydrogen peroxide to maintain its concentration at stoichiometric levels. In this contribution, we report a multienzymatic cascade for in situ generation of hydrogen peroxide. In the first step, in the presence of NAD+ cofactor, formate dehydrogenase from Candida boidinii (FDH) catalysed the oxidation of formate yielding CO2. Reduced NADH was reoxidised by the reduction of the flavin mononucleotide cofactor bound to an old yellow enzyme homologue from Bacillus subtilis (YqjM), which subsequently reacts with molecular oxygen yielding hydrogen peroxide. Finally, this system was coupled to the hydroxylation of ethylbenzene reaction catalysed by an evolved peroxygenase from Agrocybe aegerita (rAaeUPO). Additionally, we studied the influence of different reaction parameters on the performance of the cascade with the aim of improving the turnover of the hydroxylation reaction.


Asunto(s)
Proteínas Bacterianas/química , FMN Reductasa/química , Formiato Deshidrogenasas/química , Proteínas Fúngicas/química , Peróxido de Hidrógeno/síntesis química , Oxigenasas de Función Mixta/química , Agrocybe/química , Agrocybe/enzimología , Bacillus subtilis/química , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Derivados del Benceno/química , Derivados del Benceno/metabolismo , Biocatálisis , Candida/química , Candida/enzimología , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Coenzimas/química , Coenzimas/metabolismo , FMN Reductasa/metabolismo , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiatos/química , Formiatos/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/metabolismo , Hidroxilación , Cinética , Oxigenasas de Función Mixta/metabolismo , NAD/química , NAD/metabolismo , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Estereoisomerismo
13.
ACS Chem Biol ; 13(12): 3259-3268, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30376293

RESUMEN

Because of their minimal requirements, substrate promiscuity and product selectivity, fungal peroxygenases are now considered to be the jewel in the crown of C-H oxyfunctionalization biocatalysts. In this work, the crystal structure of the first laboratory-evolved peroxygenase expressed by yeast was determined at a resolution of 1.5 Å. Notable differences were detected between the evolved and native peroxygenase from Agrocybe aegerita, including the presence of a full N-terminus and a broader heme access channel due to the mutations that accumulated through directed evolution. Further mutagenesis and soaking experiments with a palette of peroxygenative and peroxidative substrates suggested dynamic trafficking through the heme channel as the main driving force for the exceptional substrate promiscuity of peroxygenase. Accordingly, this study provides the first structural evidence at an atomic level regarding the mode of substrate binding for this versatile biocatalyst, which is discussed within a biological and chemical context.


Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Agrocybe/enzimología , Dominio Catalítico/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligandos , Oxigenasas de Función Mixta/genética , Mutagénesis Sitio-Dirigida , Mutación , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Pichia/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Especificidad por Sustrato/genética
14.
BMC Genomics ; 19(1): 48, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334897

RESUMEN

BACKGROUND: Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. RESULTS: Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. CONCLUSIONS: The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.


Asunto(s)
Agrocybe/genética , Cuerpos Fructíferos de los Hongos/genética , Genoma Fúngico , Agrocybe/citología , Agrocybe/enzimología , Secuencia de Aminoácidos , Biopolímeros/metabolismo , Secuencia Conservada , Cuerpos Fructíferos de los Hongos/citología , Genes Fúngicos , Genómica , Oxidorreductasas/genética
15.
Chemistry ; 23(67): 16985-16989, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29083064

RESUMEN

A recently discovered peroxygenase from the fungus Marasmius rotula (MroUPO) is able to catalyze the progressive one-carbon shortening of medium and long-chain mono- and dicarboxylic acids by itself alone, in the presence of H2 O2 . The mechanism, analyzed using H218 O2 , starts with an α-oxidation catalyzed by MroUPO generating an α-hydroxy acid, which is further oxidized by the enzyme to a reactive α-keto intermediate whose decarboxylation yields the one-carbon shorter fatty acid. Compared with the previously characterized peroxygenase of Agrocybe aegerita, a wider heme access channel, enabling fatty acid positioning with the carboxylic end near the heme cofactor (as seen in one of the crystal structures available) could be at the origin of the unique ability of MroUPO shortening carboxylic acid chains.


Asunto(s)
Ácidos Grasos/química , Proteínas Fúngicas/química , Oxigenasas de Función Mixta/química , Agrocybe/enzimología , Catálisis , Descarboxilación , Hemo/química , Hidrógeno/química , Cinética , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Termodinámica
16.
Protein Eng Des Sel ; 30(3): 189-196, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28044007

RESUMEN

Unspecific peroxygenase (UPO) is a heme-thiolate peroxidase capable of performing with high-selectivity C-H oxyfunctionalizations of great interest in organic synthesis through its peroxygenative activity. However, the convergence of such activity with an unwanted peroxidative activity encumbers practical applications. In this study, we have modified the peroxygenative:peroxidative activity ratio (P:p ratio) of UPO from Agrocybe aegerita by structure-guided evolution. Several flexible loops (Glu1-Pro35, Gly103-Asp131, Ser226-Gly243, Gln254-Thr276 and Ty293-Arg327) were selected on the basis on their B-factors and ΔΔG values. The full ensemble of segments (43% of UPO sequence) was subjected to focused evolution by the Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) method in Saccharomyces cerevisiae. Five independent mutant libraries were screened in terms of P:p ratio and thermostability. We identified several variants that harbored substitutions at positions 120 and 320 with a strong enhancement in the P:p ratio albeit at the cost of stability. The most thermostable mutant of this process (S226G with an increased T50 of 2°C) was subjected to further combinatorial saturation mutagenesis on Thr120 and Thr320 yielding a collection of variants with modified P:p ratio and recovered stability. Our results seem to indicate the coexistence of several oxidation sites for peroxidative and peroxygenative activities in UPO.


Asunto(s)
Agrocybe , Evolución Molecular Dirigida , Proteínas Fúngicas , Oxigenasas de Función Mixta , Agrocybe/enzimología , Agrocybe/genética , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Dominios Proteicos , Estructura Secundaria de Proteína
17.
Chembiochem ; 17(4): 341-9, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26677801

RESUMEN

There is an increasing interest in enzymes that catalyze the hydroxylation of naphthalene under mild conditions and with minimal requirements. To address this challenge, an extracellular fungal aromatic peroxygenase with mono(per)oxygenase activity was engineered to convert naphthalene selectively into 1-naphthol. Mutant libraries constructed by random mutagenesis and DNA recombination were screened for peroxygenase activity on naphthalene together with quenching of the undesired peroxidative activity on 1-naphthol (one-electron oxidation). The resulting double mutant (G241D-R257K) obtained from this process was characterized biochemically and computationally. The conformational changes produced by directed evolution improved the substrate's catalytic position. Powered exclusively by catalytic concentrations of H2 O2 , this soluble and stable biocatalyst has a total turnover number of 50 000, with high regioselectivity (97 %) and reduced peroxidative activity.


Asunto(s)
Agrocybe/enzimología , Evolución Molecular Dirigida , Oxigenasas de Función Mixta/metabolismo , Naftalenos/metabolismo , Naftoles/metabolismo , Ingeniería de Proteínas , Agrocybe/genética , Agrocybe/metabolismo , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Mutación Puntual
18.
Sci Rep ; 5: 16056, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26525192

RESUMEN

Ubiquitination is a post-translational modification that is involved in myriad cellar regulation and disease pathways. The ubiquitin-conjugating enzyme (E2) is an important player in the ubiquitin transfer pathway. Although many E2 structures are available, not all E2 families have known structures, and three-dimensional structures from fungal organisms other than yeast are lacking. We report here the crystal structure of UbcA1, which is a novel ubiquitin-conjugating enzyme identified from the edible and medicinal mushroom Agrocybe aegerita and displays potential antitumor properties. The protein belongs to the Ube2w family and shows similar biochemical characteristics to human Ube2w, including monomer-dimer equilibrium in solution, α-NH2 ubiquitin-transfer activity and a mechanism to recognize backbone atoms of intrinsically disordered N-termini in substrates. Its structure displays a unique C-terminal conformation with an orientation of helix α3 that is completely different from the reported E2 structures but similar to a recently reported NMR ensemble of Ube2w. A mutagenesis study on this novel enzyme revealed that an intact C-terminus is significant for protein dimerization and enzymatic activity. As the first crystallized full-length protein of this family, UbcA1 may supersede the truncated X-ray structure of Ube2w (PDB entry 2A7L) as the representative structure of the Ube2w family.


Asunto(s)
Agrocybe/enzimología , Proteínas Fúngicas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Enlace de Hidrógeno , Datos de Secuencia Molecular , Mutagénesis , Péptidos/análisis , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación , Ultracentrifugación
19.
Enzyme Microb Technol ; 73-74: 29-33, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002501

RESUMEN

Unspecific peroxygenase (UPO) is a highly efficient biocatalyst with a peroxide dependent monooxygenase activity and many biotechnological applications, but the absence of suitable heterologous expression systems has precluded its use in different industrial settings. Recently, the UPO from Agrocybe aegerita was evolved for secretion and activity in Saccharomyces cerevisiae [8]. In the current work, we describe a tandem-yeast expression system for UPO engineering and large scale production. By harnessing the directed evolution process in S. cerevisiae, the beneficial mutations for secretion enabled Pichia pastoris to express the evolved UPO under the control of the methanol inducible alcohol oxidase 1 promoter. Whilst secretion levels were found similar for both yeasts in flask fermentation (∼8mg/L), the recombinant UPO from P. pastoris showed a 27-fold enhanced production in fed-batch fermentation (217mg/L). The P. pastoris UPO variant maintained similar biochemical properties of the S. cerevisiae counterpart in terms of catalytic constants, pH activity profiles and thermostability. Thus, this tandem-yeast expression system ensures the engineering of UPOs to use them in future industrial applications as well as large scale production.


Asunto(s)
Agrocybe/enzimología , Evolución Molecular Dirigida/métodos , Proteínas Fúngicas/biosíntesis , Oxigenasas de Función Mixta/biosíntesis , Pichia/metabolismo , Ingeniería de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Agrocybe/genética , Oxidorreductasas de Alcohol/genética , Fermentación , Proteínas Fúngicas/genética , Genes Fúngicos , Oxigenasas de Función Mixta/genética , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
20.
Proc Natl Acad Sci U S A ; 112(12): 3686-91, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25759437

RESUMEN

A kinetic and spectroscopic characterization of the ferryl intermediate (APO-II) from APO, the heme-thiolate peroxygenase from Agrocybe aegerita, is described. APO-II was generated by reaction of the ferric enzyme with metachloroperoxybenzoic acid in the presence of nitroxyl radicals and detected with the use of rapid-mixing stopped-flow UV-visible (UV-vis) spectroscopy. The nitroxyl radicals served as selective reductants of APO-I, reacting only slowly with APO-II. APO-II displayed a split Soret UV-vis spectrum (370 nm and 428 nm) characteristic of thiolate ligation. Rapid-mixing, pH-jump spectrophotometry revealed a basic pKa of 10.0 for the Fe(IV)-O-H of APO-II, indicating that APO-II is protonated under typical turnover conditions. Kinetic characterization showed that APO-II is unusually reactive toward a panel of benzylic C-H and phenolic substrates, with second-order rate constants for C-H and O-H bond scission in the range of 10-10(7) M(-1)⋅s(-1). Our results demonstrate the important role of the axial cysteine ligand in increasing the proton affinity of the ferryl oxygen of APO intermediates, thus providing additional driving force for C-H and O-H bond scission.


Asunto(s)
Agrocybe/enzimología , Hemo/química , Oxigenasas de Función Mixta/química , Compuestos de Sulfhidrilo/química , Carbono/química , Hidrógeno/química , Concentración de Iones de Hidrógeno , Nitrógeno/química , Oxidación-Reducción , Oxígeno/química , Fenol/química , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...