Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Microbiome ; 12(1): 162, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232839

RESUMEN

BACKGROUND: The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial planktonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization. RESULTS: Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environments. The phylum was represented by 179 Picozoa's OTU (pOTUs) placed in five phylogenetic clades. Picozoa community structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude of variations in environmental factors, such as temperature, shaping physiological and ecological traits. CONCLUSIONS: Overall, this work advances our understanding of uncharted protists' evolutionary dynamics and ecological strategies. Our results highlight the importance of understanding the species-level ecology of marine heteroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecological niches. Video Abstract.


Asunto(s)
Eucariontes , Filogenia , Eucariontes/clasificación , Eucariontes/genética , Biodiversidad , Organismos Acuáticos/clasificación , Ecosistema , Agua de Mar/parasitología
2.
J Water Health ; 22(9): 1695-1703, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39340382

RESUMEN

Acanthamoebae spp. are considered the most commonly occurring free-living amoebae (FLA) in the environment. Their high resilience enables them to thrive in different types of environments. Using purposive sampling, 80 surface water samples were collected from identified coastal sites in Mariveles, Bataan, and Lingayen Gulf (40 water samples for each). Nineteen (23.75%) of the 80 water samples yielded positive amoebic growth during the 14-day culture and microscopic examination. The polymerase chain reaction confirmed Acanthamoeba spp. DNA in isolates MB1, A3, A4, A7, C5, and D3 using JDP1 and JDP2 primer sets. Further sequencing revealed that the isolates belonged to Acanthamoeba sp., Acanthamoeba culbertsoni, Acanthamoeba castellani, and Acanthamoeba genotype T4. The sequences were deposited in GenBank and registered under accession numbers PP741651, PP767364, PP741728, PP741729, PP767365, and PP767366, respectively. Potential risk factors such as waste disposal, expansion of human settlements to coastal locations, and soil runoffs in these environments should be controlled to mitigate the proliferation of potentially pathogenic strains of FLAs.


Asunto(s)
Acanthamoeba , Acanthamoeba/aislamiento & purificación , Acanthamoeba/clasificación , Acanthamoeba/genética , Filipinas , Agua de Mar/parasitología , Filogenia
3.
Eur J Protistol ; 95: 126113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39197291

RESUMEN

The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L-1 and 58 ± 8 to 147 ± 18 nanoflagellates mL-1 in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L-1 in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d-1 compared to 0.54 ± 0.03 to 0.79 ± 0.05 d-1 in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d-1 and 4.09 ± 0.11 d-1 to 6.03 ± 0.34 d-1in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system's operation cycle.


Asunto(s)
Acuicultura , Biodiversidad , Cilióforos , Cilióforos/crecimiento & desarrollo , Cilióforos/fisiología , Microscopía , Agua de Mar/parasitología , Agua Dulce/parasitología
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38982749

RESUMEN

Ciliates are a diverse group of protists known for their ability to establish various partnerships and thrive in a wide variety of oxygen-depleted environments. Most anaerobic ciliates harbor methanogens, one of the few known archaea living intracellularly. These methanogens increase the metabolic efficiency of host fermentation via syntrophic use of host end-product in methanogenesis. Despite the ubiquity of these symbioses in anoxic habitats, patterns of symbiont specificity and fidelity are not well known. We surveyed two unrelated, commonly found groups of anaerobic ciliates, the Plagiopylea and Metopida, isolated from anoxic marine sediments. We sequenced host 18S rRNA and symbiont 16S rRNA marker genes as well as the symbiont internal transcribed spacer region from our cultured ciliates to identify hosts and their associated methanogenic symbionts. We found that marine ciliates from both of these co-occurring, divergent groups harbor closely related yet distinct intracellular archaea within the Methanocorpusculum genus. The symbionts appear to be stable at the host species level, but at higher taxonomic levels, there is evidence that symbiont replacements have occurred. Gaining insight into this unique association will deepen our understanding of the complex transmission modes of marine microbial symbionts, and the mutualistic microbial interactions occurring across domains of life.


Asunto(s)
Cilióforos , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Simbiosis , Cilióforos/clasificación , Cilióforos/genética , Cilióforos/fisiología , Anaerobiosis , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , ARN Ribosómico 18S/genética , ADN de Archaea/genética , ADN de Archaea/química , Análisis de Secuencia de ADN , Agua de Mar/microbiología , Agua de Mar/parasitología
5.
Turkiye Parazitol Derg ; 48(2): 82-88, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38958402

RESUMEN

Objective: Giardia and Cryptosporidium are enteric protozoa that can cause a variety of gastrointestinal diseases, especially in vulnerable people like children, the elderly, and those with impaired immune systems. In order to ascertain the microbiological quality of the recreational water from Araromi Beach in Ilaje Local Government Area, Ondo State, Nigeria. This risk assessment is of great significance to human health protection against waterborne diseases. The aim of this study was to determine the microbial quality of recreational water from Araromi Beach in Ilaje Local Government Area, Ondo State, Nigeria. Methods: Microscopic examination of Cryptosporidium and Giardia oocysts were done. Results: Results revealed maximum occurrence of Cryptosporidium parvum (20 oocysts/100 mL) of water sample in the month of April and maximum occurrence of Giardia lamblia (300 cysts/100 mL) of water sample in the month of June. Additionally, according to Kolmogorov-Smirnov tests for normalcy Ho =0.05, Giardia lamblia and Cryptosporidium parvum were not regularly distributed in the water samples collected from the beach throughout the study period. The average likelihood of contracting Giardia lamblia and Cryptosporidium parvum infections after consuming 100 mL of beach water was 0.96 and 0.35, respectively. The risks of infection associated with Cryptosporidium parvum was lower than those associated with Giardia lamblia in water from the beach, but were both above the acceptable risk limit of 10-4. Conclusion: The results of this study indicate that Giardia and Cryptosporidium may represent serious health hazards to people who engage in aquatic activities. Adopting a comprehensive strategy that includes regular inspections, enhanced detection techniques, and the prevention of aquatic environment pollution may provide clean and safe recreational water for all, thereby safeguarding the public's health.


Asunto(s)
Cryptosporidium parvum , Giardia lamblia , Cryptosporidium parvum/aislamiento & purificación , Giardia lamblia/aislamiento & purificación , Nigeria/epidemiología , Humanos , Agua de Mar/parasitología , Medición de Riesgo , Microbiología del Agua , Giardiasis/epidemiología , Giardiasis/parasitología , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Recreación , Oocistos
6.
Rev Argent Microbiol ; 56(3): 221-226, 2024.
Artículo en Español | MEDLINE | ID: mdl-38632019

RESUMEN

Free-living amoebae (FLA) of the genus Acanthamoeba are ubiquitous and amphizoic protozoa that colonize aquatic and terrestrial habitats and can serve as reservoirs for other microorganisms. They are considered econoses that can cause severe and rare pathologies. Due to limited epidemiological data available, the objective of this study was to investigate the presence of Acanthamoeba in coastal wetlands of the southeast of Buenos Aires province and evaluate their association with bacteriological and environmental variables. From February 2021 to July 2022, 22 seawater samples were collected at different points along the coast of the city of Mar del Plata (Buenos Aires, Argentina). Environmental parameters were determined and physicochemical and bacteriological studies, morphological identification, cultures and molecular typification were conducted. Regardless of the environmental and bacteriological variables, the presence of Acanthamoeba spp. was molecularly confirmed in 54.54% of the samples, being the first report of these protozoa in seawater in Argentina.


Asunto(s)
Acanthamoeba , Agua de Mar , Argentina , Agua de Mar/parasitología , Acanthamoeba/aislamiento & purificación , Acanthamoeba/clasificación , Humedales
7.
Braz J Microbiol ; 55(2): 1489-1505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401009

RESUMEN

The Rodrigo de Freitas Lagoon is a highly eutrophic lacustrine system and has one of the longest histories of exploration and anthropic alteration in Brazil. Despite its relevance, limited studies explored the diversity of micro-eukaryotes in the lagoon. Ciliates (Alveolata, Ciliophora) are overlooked in environmental microbiology, especially in tropical and subtropical ecosystems, resulting in limited knowledge about their diversity and functional relevance in South American habitats, particularly in coastal lagoons. To fill this gap, here we investigated the diversity of ciliates in a brackish coastal lagoon in an urban area of Rio de Janeiro, Brazil, applying and comparing the performance of morphological and metabarcoding approaches. The metabarcoding analysis, based on high-throughput sequencing of the hipervariable region V4 of the 18S rRNA genes detected 37 molecular operational taxonomic units (MOTUs) assigned to Ciliophora, representing only about a half (56.9%) of the diversity detected by microscopy, which counted 65 ciliate morphotypes. The most representative classes in both approaches were Spirotrichea and Oligohymenophorea. The metabarcoding analysis revealed that 35.3% of the ciliate MOTUs had less than 97% similarity to available sequences in the NCBI database, indicating that more than one-third of these MOTUs potentially represents still not represented or undescribed ciliate species in current databases. Our findings indicate that metabarcoding techniques can significantly enhance the comprehension of ciliate diversity in tropical environments, but the scarcity of reference sequences of brackish ciliates in molecular databases represents a challenge to the taxonomic assignment of the MOTUs. This study provides new insights into the diversity of ciliates in a threatened coastal lagoon, revealing a vast array of still unknown and rare ciliate taxonomic units in tropical environments.


Asunto(s)
Biodiversidad , Cilióforos , Filogenia , ARN Ribosómico 18S , Brasil , Cilióforos/clasificación , Cilióforos/genética , Cilióforos/aislamiento & purificación , ARN Ribosómico 18S/genética , Código de Barras del ADN Taxonómico , ADN Protozoario/genética , Ecosistema , Agua de Mar/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Dis Aquat Organ ; 152: 1-7, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394135

RESUMEN

Kudoa thyrsites is a myxozoan parasite of marine fish with a global distribution. In British Columbia (BC), Canada, severe infections are associated with an economically significant degradation of fillet quality in farmed Atlantic salmon. Exposures to naturally occurring actinospores at a coastal research laboratory were used to test the hypothesis that the prevalence and severity of K. thyrsites infections acquired by exposure of Atlantic salmon to seawater (SW) of various depths are not different. In Expt 1, fish were exposed to SW from 1, 7 or 13 m below the surface. Following exposure to deeper-sourced SW, the prevalence of K. thyrsites, determined from microscopic examination of muscle histology sections, was greater in all 4 trials and the severity of infection was greater in 2 trials. In Expt 2, infections were compared over time among salmon held in tanks supplied with deep-sourced SW (raw or UV-irradiated) or in a surface net-pen. The infection was observed in 35 of 40 fish sampled between 3 and 6 mo after tank exposure to raw SW. Coincidentally, the parasite was observed in 4 of 40 fish maintained in the net-pen. No consistent association of the parasite infection was observed with temperature; however, reduced salinity and solar radiation were not ruled out as factors which may reduce the risk of infection from surface SW. These findings require verification at commercial aquaculture sites in BC, as they will inform considerations related to farm siting and net-pen configuration.


Asunto(s)
Cnidarios , Enfermedades de los Peces , Myxozoa , Salmo salar , Animales , Prevalencia , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Agua de Mar/parasitología , Colombia Británica/epidemiología
9.
Eur J Protistol ; 86: 125914, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36137332

RESUMEN

It is challenging to study protists with extensive, loosely-associated extracellular structures because of the problems with keeping specimens intact. Here we have tested the suitability of high-speed flow cytometric sorting as a tool for studying such protists using oceanic loricate choanoflagellates as a model. We chose choanoflagellates because their lorica-to-cell volume ratio is > 10 and the voluminous loricae, i.e., the siliceous cell baskets essential for taxonomic identification, only loosely enclose the cells. Besides, owing to low concentrations, choanoflagellates are grossly under-sampled in the oligotrophic ocean. On four research cruises the small heterotrophic protists from samples collected in the photic layer of the South Atlantic and South Pacific oligotrophic (sub)tropical gyres and adjacent mesotrophic waters were flow sorted at sea for electron microscopy ashore. Among the flow-sorted protozoa we were able to select loricate choanoflagellates to assess their species diversity and concentrations. The well-preserved loricae of flow-sorted choanoflagellates made identification of 29 species from 14 genera possible. In the oligotrophic waters, we found neither endemic species nor evident morphological adaptations other than a tendency for lighter silicification of loricae. Common sightings of specimens storing extra costae in preparation for division, indicate choanoflagellates thriving in oligotrophic waters rather than enduring them. Thus, this case study demonstrates that high-speed flow sorting can assist in studying protists with extracellular structures 16-78× bigger than the enclosed cell.


Asunto(s)
Coanoflagelados , Océanos y Mares , Eucariontes , Adaptación Fisiológica , Citometría de Flujo , Agua de Mar/parasitología
10.
Eur J Protistol ; 85: 125912, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36027870

RESUMEN

A strain with the characters of the genus Vannella was isolated from the water layer immediately above the deep-sea sediment collected in the south-western Atlantic Ocean, ca. 4.6 km deep. Small-subunit ribosomal RNA (SSU rRNA) and cytochrome c oxidase (Cox1) gene phylogenetic analyses showed that the new strain branches within the clade of previously isolated unnamed Vannella strains from different marine fish and invertebrate hosts. Although the SSU rRNA gene sequences of these strains show variability within 2% of all nucleotide positions without any regular pattern, the available Cox1 gene sequences from within this clade are identical. Given the morphological homogeneity of the revealed clade, all of its strains can be assigned under the same species name, and the variation of their SSU rRNA is comparable to its intragenomic variation, as shown by molecular cloning of the PCR amplicons. High variability of the SSU rRNA gene sequences within and between independently isolated morphologically identical strains in combination with highly conserved Cox1 gene sequences may be a feature in some clades of Vannella, but is not a general rule for this genus, as SSU rRNA genes conserved between different morphospecies occur in several other clades within Vannella.


Asunto(s)
Amebiasis/veterinaria , Amebozoos/aislamiento & purificación , Enfermedades de los Peces/virología , Peces Planos/parasitología , Amebiasis/virología , Amebozoos/clasificación , Animales , Argentina , Océano Atlántico , Complejo IV de Transporte de Electrones/genética , Peces Planos/genética , Filogenia , ARN Ribosómico/genética , Agua de Mar/parasitología , Análisis de Secuencia de ADN , España , Especificidad de la Especie
11.
Microbiol Spectr ; 10(1): e0079821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019678

RESUMEN

Marine microbiota are critical components of global biogeochemical cycles. However, the biogeographic patterns and ecological processes that structure them remain poorly understood, especially in the oligotrophic ocean. In this study, we used high-throughput sequencing of 16S and 18S rRNA genes to investigate the distribution patterns of bacterial and microeukaryotic communities and their assembly mechanisms in the surface waters of the tropical North Pacific Ocean. The fact that both the bacterial and the microeukaryotic communities showed similar distribution patterns (i.e., similar distance-decay patterns) and were clustered according to their geographic origin (i.e., the western tropical North Pacific and central tropical North Pacific) suggested that there was a significant biogeographic pattern of microbiota in the North Pacific Ocean. Indices of alpha diversity such as species richness, phylogenetic diversity, and the Shannon diversity index also differed significantly between regions. The correlations were generally similar between spatial and environmental variables and the alpha and beta diversities of bacteria and microeukaryotes across the entire region. The relative importance of ecological processes differed between bacteria and microeukaryotes: ecological drift was the principal mechanism that accounted for the structure of bacterial communities; heterogeneous selection, dispersal limitation, and ecological drift collectively explained much of the turnover of the microeukaryote communities. IMPORTANCE Bacteria and microeukaryotes are extremely diverse groups in the ocean, where they regulate elemental cycling and energy flow. Studies of marine microbial ecology have benefited greatly from the rapid progress that has been made in genomic sequencing and theoretical microbial ecology. However, the spatial distribution of marine bacteria and microeukaryotes and the nature of the assembly mechanisms that determine their distribution patterns in oligotrophic marine waters are poorly understood. In this study, we used high-throughput sequencing methods to identify the distribution patterns and ecological processes of bacteria and microeukaryotes in an oligotrophic, tropical ocean. Our study showed that contrasting community assembly mechanisms underlaid similar biogeographic patterns of surface bacterial and microeukaryotic communities in the tropical North Pacific Ocean.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/genética , Ecosistema , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Océano Pacífico , Filogenia , Agua de Mar/parasitología
12.
Toxins (Basel) ; 14(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051037

RESUMEN

Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is also genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally occurs in shellfish samples. So far, three species-P. delicatissima (Cleve) Heiden, P. multistriata (H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle-have been identified as producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA), high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture for DA production in non-toxic strains was thus not confirmed.


Asunto(s)
Diatomeas/química , Pruebas Genéticas , Ácido Kaínico/análogos & derivados , Toxinas Marinas/toxicidad , Agua de Mar/parasitología , Pruebas de Toxicidad , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Ácido Kaínico/toxicidad , Espectrometría de Masas en Tándem
13.
Nat Microbiol ; 6(11): 1357-1366, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697459

RESUMEN

Phytoplankton are key components of the oceanic carbon and sulfur cycles1. During bloom events, some species can emit large amounts of the organosulfur volatile dimethyl sulfide (DMS) into the ocean and consequently the atmosphere, where it can modulate aerosol formation and affect climate2,3. In aquatic environments, DMS plays an important role as a chemical signal mediating diverse trophic interactions. Yet, its role in microbial predator-prey interactions remains elusive with contradicting evidence for its role in either algal chemical defence or in the chemo-attraction of grazers to prey cells4,5. Here we investigated the signalling role of DMS during zooplankton-algae interactions by genetic and biochemical manipulation of the algal DMS-generating enzyme dimethylsulfoniopropionate lyase (DL) in the bloom-forming alga Emiliania huxleyi6. We inhibited DL activity in E. huxleyi cells in vivo using the selective DL-inhibitor 2-bromo-3-(dimethylsulfonio)-propionate7 and overexpressed the DL-encoding gene in the model diatom Thalassiosira pseudonana. We showed that algal DL activity did not serve as an anti-grazing chemical defence but paradoxically enhanced predation by the grazer Oxyrrhis marina and other microzooplankton and mesozooplankton, including ciliates and copepods. Consumption of algal prey with induced DL activity also promoted O. marina growth. Overall, our results demonstrate that DMS-mediated grazing may be ecologically important and prevalent during prey-predator dynamics in aquatic ecosystems. The role of algal DMS revealed here, acting as an eat-me signal for grazers, raises fundamental questions regarding the retention of its biosynthetic enzyme through the evolution of dominant bloom-forming phytoplankton in the ocean.


Asunto(s)
Diatomeas/fisiología , Haptophyta/metabolismo , Fitoplancton/fisiología , Sulfuros/metabolismo , Zooplancton/fisiología , Animales , Ecosistema , Eutrofización , Haptophyta/crecimiento & desarrollo , Agua de Mar/microbiología , Agua de Mar/parasitología
14.
mBio ; 12(5): e0197621, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34579577

RESUMEN

Terpenoids, such as squalene, are valuable compounds for cosmetic and drug industries, the supply of which is often limited by natural sources. Alternative production strategies have been investigated for decades but remain challenging due to low yields. In a recent study, Zhang and coworkers (A. Zhang, K. Mernitz, C. Wu, W. Xiong, et al., mBio 12:e0088121, 2021, https://doi.org/10.1128/mBio.00881-21) report the potential use of marine thraustochytrid metabolic thermodynamics in effective terpene engineering. Through comparative proteomics and metabolomics, as well as thermodynamic modeling, the authors demonstrated sodium-induced changes in thraustochytrid metabolism leading to a twofold increase in squalene accumulation. The differential abundances of the metabolic enzymes and metabolites, as well as higher respiration, indicated the metabolic shift from carbohydrate to lipid oxidation and increased ATP input to the mevalonate pathway and squalene synthesis. This breakthrough provides new important insights into microbial terpene metabolic engineering but above all displays thermodynamics as a valuable tool in metabolic engineering.


Asunto(s)
Escualeno/metabolismo , Estramenopilos/metabolismo , Adenosina Trifosfato/metabolismo , Ingeniería Metabólica , Agua de Mar/parasitología , Sodio/metabolismo , Termodinámica
15.
Toxins (Basel) ; 13(9)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34564638

RESUMEN

Yessotoxins (YTXs) are polycyclic toxic ether compounds produced by phytoplanktonic dinoflagellates which accumulate in filter-feeding organisms. We know that the water temperature in our areas Northwestern Adriatic Sea is optimal for the growth of potentially toxic algae (around 20 °C). In recent years, these temperatures have remained at these levels for longer and longer periods, probably due to global warming, which has led to an excessive increase in toxin levels. The interruption of mussel harvesting caused by algae negatively affects farmers' revenues and the availability of local fish, causing a major economic loss in Italy's main shellfish sector. METHODS: In the nine years considered, 3359 samples were examined: 1715 marine waters, 73 common clams; 732 mussels; 66 oysters; and 773 veracious clams. Bivalve molluscs were examined for the presence of marine biotoxins, including YTXs, while potentially toxic algae, including those producing YTXs, were searched for and counted in marine waters. The method adopted for the quantification of lipophilic toxins involves the use of an LC-MS/MS system. The enumeration of phytoplankton cells was performed according to the Utermhöl method. RESULTS: Between 2012 and 2020, 706 molluscs were tested for YTXs. In total, 246 samples tested positive, i.e., 34.84%. Of the positive samples, 30 exceeded the legal limit. CONCLUSION: In this regard, it is essential to develop and activate, as soon as possible, an "early warning" system that allows a better control of the production areas of live bivalve molluscs, thus allowing an optimal management of the plants in these critical situations.


Asunto(s)
Toxinas Marinas/análisis , Venenos de Moluscos/análisis , Oxocinas/análisis , Agua de Mar/química , Dinoflagelados/química , Italia , Mar Mediterráneo , Agua de Mar/microbiología , Agua de Mar/parasitología
16.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266956

RESUMEN

Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator-prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.


Asunto(s)
Bacterias/aislamiento & purificación , Carbono/metabolismo , Eucariontes/fisiología , Respiraderos Hidrotermales/parasitología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Ciclo del Carbono , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Respiraderos Hidrotermales/microbiología , Océano Pacífico , Filogenia , Agua de Mar/microbiología , Agua de Mar/parasitología
17.
Eur J Protistol ; 80: 125808, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34280731

RESUMEN

Percolomonads are common freshwater, marine and hypersaline tetraflagellated organisms. Current phylogenetic analyses of eukaryotes comprise only two species of this underinvestigated family. Here, we studied the morphology, salinity tolerance and 18S rDNA gene-based phylogeny of seven percolomonad cultures. We describe three new genera and five novel species of Percolomonadida based on phylogenetic distances and morphological characteristics: Barbelia atlantica, B. abyssalis, Lula jakobsenorum, Nakurumonas serrata and Percolomonas doradorae. The new species show features typical for percolomonads, one long flagellum for skidding, three shorter flagella of equal length and a ventral feeding groove. The new species comprise organisms living in marine and athalassic hypersaline waters with salinity ranging from 10 to 150 PSU. Based on these novel taxa, the taxonomy and phylogeny of Percolatea was extended and further resolved.


Asunto(s)
Biodiversidad , Eucariontes/clasificación , Filogenia , Agua de Mar/parasitología , Organismos Acuáticos/clasificación , Organismos Acuáticos/citología , Organismos Acuáticos/genética , Eucariontes/citología , Eucariontes/genética , ARN Ribosómico 18S/genética , Especificidad de la Especie
18.
Microbes Environ ; 36(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34121037

RESUMEN

Diplonemea (diplonemids) is one of the most abundant and species-rich protist groups in marine environments; however, their community structures among local and seasonal samples have not yet been compared. In the present study, we analyzed four diplonemid community structures around the Izu Peninsula, Japan using barcode sequences amplified from environmental DNA. These sequences and the results of statistical analyses indicated that communities at the same site were more similar to each other than those in the same season. Environmental variables were also measured, and their influence on diplonemid community structures was examined. Salinity, electrical conductivity, and temperature, and their correlated variables, appeared to influence the structures of diplonemid communities, which was consistent with previous findings; however, since the results obtained did not reach statistical significance, further studies are required. A comparison of each diplonemid community indicated that some lineages were unique to specific samples, while others were consistently detected in all samples. Members of the latter type are cosmopolitan candidates and may be better adapted to the environments of the studied area. Future studies that focus on the more adaptive members will provide a more detailed understanding of the mechanisms by which diplonemids are widely distributed in marine environments and will facilitate their utilization as indicator organisms to monitor environmental changes.


Asunto(s)
Euglenozoos/clasificación , Euglenozoos/aislamiento & purificación , Euglenozoos/genética , Japón , Filogenia , ARN Ribosómico 18S/genética , Agua de Mar/parasitología
19.
Eur J Protistol ; 80: 125791, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34087546

RESUMEN

The loricate choanoflagellate genera Diaphanoeca Ellis and Crinolina Thomsen encompass a total of ten species. The majority of these are recorded from the warm water regions reported on here. A distinct morphological dichotomy characterizes the genus Diaphanoeca as currently circumscribed. The species distribute themselves within a 'D. grandis subgroup' and a 'D. pedicellata subgroup' distinguished on e.g., the position of the protoplast inside the lorica chamber and the elaboration of the anterior projections. We are, while awaiting in particular further molecular evidence, taking a conservative approach and abstain from dealing with the subgroup issue at the generic level. The examination of material from the warm water regions of the world's oceans has resulted in the description of D. sargassoensis sp.n., D. pseudoundulata sp.n., and D. throndsenii sp.n., and a thorough re-examination of D. undulata. Species of Crinolina share multiple features with in particular the D. grandis species subgroup. It is yet relevant, both in a morphological and molecular perspective, to retain the genus Crinolina which remains unambiguously defined based on the posteriorly open lorica. A high level of agreement is found when contrasting morphological and molecular based phylogenetic schemes.


Asunto(s)
Coanoflagelados/clasificación , Agua de Mar/parasitología , Coanoflagelados/citología , Calor , Océanos y Mares , Especificidad de la Especie
20.
Eur J Protistol ; 79: 125797, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33979712

RESUMEN

During daily monitoring in Yongho Bay off Busan, Korea in 2019, an isolate of the dinoflagellate genus Heterocapsa was established in clonal culture. Light and electron microscopic examination revealed that the isolate was ellipsoid in shape, exhibiting a thecal plate arrangement (Po, cp, X, 5', 3a, 7″, 6c, 5s, 5‴, 2'''') consistent with most other Heterocapsa species. A large, elongated nucleus was positioned on the left side of the cell, a single reticulate chloroplast was located peripherally, and a single, starch-sheathed, spherical pyrenoid was present in the episome or near the cingulum. Morphologically, the isolate most closely resembles H. circularisquama and H. illdefina. Transmission electron microscopic examination of whole mounts revealed that the isolate had two body scale types, one of which was a complex, three-dimensional, fine structure distinct from other Heterocapsa species, whereas the other simpler type was structurally similar to the scales of H. horiguchii. Molecular phylogeny based on rRNA sequences revealed that the isolate was distantly related to morphologically similar species, but formed a sister lineage to H. horiguchii, a species characterized by a similar body scale morphology. Based on morphological, ultrastructural, and molecular data, we proposed it as a new species, Heterocapsa busanensis sp. nov.


Asunto(s)
Dinoflagelados/clasificación , ADN Ribosómico/genética , Dinoflagelados/ultraestructura , Microscopía Electrónica de Transmisión , Filogenia , República de Corea , Agua de Mar/parasitología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...