Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
1.
Microbiome ; 12(1): 143, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090708

RESUMEN

BACKGROUND: Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS: We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS: Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.


Asunto(s)
Bacteriófagos , Sargassum , Agua de Mar , Simbiosis , Sargassum/microbiología , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Agua de Mar/microbiología , Agua de Mar/virología , Genoma Viral , Metagenoma , Bacterias/virología , Bacterias/genética , Bacterias/clasificación , Genómica , Microbiota , Filogenia , Genoma Bacteriano , Synechococcus/virología , Synechococcus/genética
2.
Appl Environ Microbiol ; 90(7): e0036724, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38953371

RESUMEN

Flavobacteriia are the dominant and active bacteria during algal blooms and play an important role in polysaccharide degradation. However, little is known about phages infecting Flavobacteriia, especially during green tide. In this study, a novel virus, vB_TgeS_JQ, infecting Flavobacteriia was isolated from the surface water of the Golden Beach of Qingdao, China. Transmission electron microscopy demonstrated that vB_TgeS_JQ had the morphology of siphovirus. The experiments showed that it was stable from -20°C to 45°C and pH 5 to pH 8, with latent and burst periods both lasting for 20 min. Genomic analysis showed that the phage vB_TgeS_JQ contained a 40,712-bp dsDNA genome with a GC content of 30.70%, encoding 74 open-reading frames. Four putative auxiliary metabolic genes were identified, encoding electron transfer-flavoprotein dehydrogenase, calcineurin-like phosphoesterase, phosphoribosyl-ATP pyrophosphohydrolase, and TOPRIM nucleotidyl hydrolase. The abundance of phage vB_TgeS_JQ was higher during Ulva prolifera (U. prolifera) blooms compared with other marine environments. The phylogenetic and comparative genomic analyses revealed that vB_TgeS_JQ exhibited significant differences from all other phage isolates in the databases and therefore was classified as an undiscovered viral family, named Zblingviridae. In summary, this study expands the knowledge about the genomic, phylogenetic diversity and distribution of flavobacterial phages (flavophages), especially their roles during U. prolifera blooms. IMPORTANCE: The phage vB_TgeS_JQ was the first flavobacterial phage isolated during green tide, representing a new family in Caudoviricetes and named Zblingviridae. The abundance of phage vB_TgeS_JQ was higher during the Ulva prolifera blooms. This study provides insights into the genomic, phylogenetic diversity, and distribution of flavophages, especially their roles during U. prolifera blooms.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , China , Flavobacteriaceae/virología , Flavobacteriaceae/genética , Eutrofización , Agua de Mar/virología , Agua de Mar/microbiología , ADN Viral/genética , Ulva/virología , Siphoviridae/genética , Siphoviridae/clasificación , Siphoviridae/aislamiento & purificación , Siphoviridae/ultraestructura
3.
Viruses ; 16(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38932229

RESUMEN

In mesoscale eddies, the chemical properties and biological composition are different from those in the surrounding water due to their unique physical processes. The mechanism of physical-biological coupling in warm-core eddies is unclear, especially because no studies have examined the effects of environmental factors on bacteria and viruses. The purpose of the present study was to examine the influence of an anticyclonic warm eddy on the relationship between bacterial and viral abundances, as well as viral activity (viral production), at different depths. At the core of the warm eddy, the bacterial abundance (0.48 to 2.82 × 105 cells mL-1) fluctuated less than that outside the eddy (1.12 to 7.03 × 105 cells mL-1). In particular, there was a four-fold higher viral-bacterial abundance ratio (VBR) estimated within the eddy, below the layer of the deep chlorophyll maximum, than outside the eddy. An anticyclonic warm eddy with downwelling at its center may contribute to viruses being transmitted directly into the deep ocean through adsorption on particulate organic matter while sinking. Overall, our findings provide valuable insights into the interaction between bacterial and viral abundances and their ecological mechanisms within a warm eddy.


Asunto(s)
Bacterias , Agua de Mar , Clima Tropical , Virus , Océano Pacífico , Agua de Mar/virología , Agua de Mar/microbiología , Virus/clasificación , Ecosistema , Temperatura , Microbiología del Agua
4.
mSphere ; 9(7): e0045824, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38926906

RESUMEN

Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE: The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Roseobacter , Roseobacter/virología , Roseobacter/genética , Roseobacter/clasificación , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Profagos/genética , Profagos/clasificación , Profagos/aislamiento & purificación , Agua de Mar/microbiología , Agua de Mar/virología , Genómica
5.
Virol J ; 21(1): 135, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858684

RESUMEN

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Asunto(s)
Virus Gigantes , Brasil , Virus Gigantes/aislamiento & purificación , Virus Gigantes/genética , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Filogenia , Reacción en Cadena de la Polimerasa , Acanthamoeba castellanii/virología , Acanthamoeba castellanii/aislamiento & purificación , Microbiología del Suelo , Aguas del Alcantarillado/virología , Análisis de Secuencia de ADN , Agua de Mar/virología , Microbiología del Agua
6.
Microbiome ; 12(1): 94, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790030

RESUMEN

BACKGROUND: Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS: Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS: This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.


Asunto(s)
Bacterias , Bacteriófagos , Aprendizaje Profundo , Metagenoma , Metagenómica , Péptidos , Ribosomas , Péptidos/metabolismo , Péptidos/genética , Bacteriófagos/genética , Metagenómica/métodos , Ribosomas/metabolismo , Ribosomas/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Bacterias/clasificación , Microbiota/genética , Procesamiento Proteico-Postraduccional , Agua de Mar/microbiología , Agua de Mar/virología , Océanos y Mares
7.
Nat Commun ; 15(1): 3715, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698041

RESUMEN

Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.


Asunto(s)
Bacteriófagos , Ribosomas , Ribosomas/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiología , Fitoplancton/virología , Fitoplancton/genética , Fitoplancton/metabolismo , Hibridación Fluorescente in Situ , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Ecosistema , Agua de Mar/microbiología , Agua de Mar/virología , Océanos y Mares
8.
PLoS One ; 19(5): e0302000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709720

RESUMEN

Wastewater surveillance represents an alternative approach to regulating contamination and the early detection of infectious agents and outbreaks of diseases of public health importance. This study evaluated domestic wastewater effects on recreational waters in estuarine and seawater bodies in Guayas and Santa Elena provinces in Ecuador, South America. Fecal indicator bacteria (thermotolerant coliforms) served as key indicators for evaluation. Physical, chemical, and microbiological quality markers following the Ecuadorian environmental quality standard and the discharge of effluents to the water resource were analyzed. Samples were collected from 44 coastal sites and 2 oxidation lagoons during the dry and rainy seasons of 2020 and 2021, respectively. SARS-CoV-2 RNA was detected in samples with higher E. coli concentrations using reverse transcription quantitative PCR to detect the genes N and ORF1ab. All samples analyzed for SARS-CoV-2 showed Ct ˂ 40 for at least one gene. Four samples showed at least 20 genome copies of gene N per reaction. These were at an artisanal fishing port, an estuarine area (Palmar), a recreational bay, and an oxidation lagoon. A moderate correlation was found between SARS-CoV-2 RNA, thermotolerant coliform and E. coli (p-value ≤ 0.0037), and a strong and positive correlation between thermotolerant coliform and E. coli. (p-value ≤ 0.00001), highlighting the utility of these established parameters as a proxy of the virus. Significant differences were found in the concentrations of thermotolerant coliforms between seasons (p-value = 0.016) and sites (p-value = 0.005). The highest levels of coliforms were found in the dry season (63000 MPN/100 mL) in Anconcito and during the rainy season (14000 MPN/100 mL) at Esterillo in Playas County. It is recommended that the decentralized autonomous governments of the surveyed provinces in Ecuador implement urgent corrective actions and establish medium-term mechanisms to minimize a potential contamination route. Additional parameters must be included in the monitoring, such as Enterococcus and intestinal parasites, due to their public health implications. In the oxidation lagoons, maintenance actions must be carried out, including the dissolution of sediments, an increase in water retention times, and in situ treatment of the sludge, to improve the system's performance.


Asunto(s)
COVID-19 , ARN Viral , SARS-CoV-2 , Aguas del Alcantarillado , Calidad del Agua , Ecuador , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , ARN Viral/genética , ARN Viral/aislamiento & purificación , ARN Viral/análisis , COVID-19/epidemiología , COVID-19/virología , Humanos , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/genética , Microbiología del Agua , Monitoreo del Ambiente/métodos , Agua de Mar/virología , Agua de Mar/microbiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Aguas Residuales/virología , Aguas Residuales/microbiología
9.
Nat Commun ; 15(1): 4089, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744831

RESUMEN

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.


Asunto(s)
Bacteriófagos , Metagenoma , Metagenómica , Océanos y Mares , Agua de Mar , Metagenómica/métodos , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/clasificación , Agua de Mar/virología , Agua de Mar/microbiología , Metagenoma/genética , Genoma Viral/genética , Filogenia , Prochlorococcus/virología , Prochlorococcus/genética , Microbiota/genética , Bacterias/genética , Bacterias/virología , Bacterias/clasificación , Bacterias/aislamiento & purificación
10.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38709876

RESUMEN

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Asunto(s)
Bacterias , Kelp , Microbiota , Agua de Mar , Kelp/microbiología , Agua de Mar/microbiología , Agua de Mar/virología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metagenómica , Algas Marinas/microbiología , Algas Marinas/virología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/virología , Células Procariotas/virología , Células Procariotas/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Viroma
11.
Nat Microbiol ; 9(6): 1619-1629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605173

RESUMEN

Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.


Asunto(s)
Virus Gigantes , RNA-Seq , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Virus Gigantes/genética , Virus Gigantes/clasificación , Virus Gigantes/aislamiento & purificación , Agua de Mar/virología , Interacciones Microbiota-Huesped/genética , Filogenia , Organismos Acuáticos/virología , Organismos Acuáticos/genética , Ecosistema , Eutrofización , Análisis de Expresión Génica de una Sola Célula
12.
Proc Natl Acad Sci U S A ; 119(30): e2117748119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862452

RESUMEN

In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.


Asunto(s)
Bacterias , Bacteriófagos , Microbiota , Agua de Mar , Organismos Acuáticos , Bacterias/clasificación , Quitina/metabolismo , Agua de Mar/microbiología , Agua de Mar/virología
13.
Science ; 376(6598): 1202-1208, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679415

RESUMEN

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.


Asunto(s)
Plancton , Virus ARN , Agua de Mar , Viroma , Ciclo del Carbono , Ecosistema , Océanos y Mares , Plancton/clasificación , Plancton/metabolismo , Plancton/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Agua de Mar/virología , Viroma/genética
14.
Microbes Environ ; 37(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-34980753

RESUMEN

Zooplankton and viruses play a key role in marine ecosystems; however, their interactions have not been examined in detail. In the present study, the diversity of viruses associated with zooplankton collected using a plankton net (mesh size: 100| |µm) in the subtropical western North Pacific was investigated by fragmented and primer ligated dsRNA sequencing. We obtained 21 and 168 operational taxonomic units (OTUs) of ssRNA and dsRNA viruses, respectively, containing RNA-dependent RNA polymerase (RdRp). These OTUs presented average amino acid similarities of 43.5 and 44.0% to the RdRp genes of known viruses in ssRNA viruses and dsRNA viruses, respectively. Dominant OTUs mainly belonged to narna-like and picorna-like ssRNA viruses and chryso-like, partiti-like, picobirna-like, reo-like, and toti-like dsRNA viruses. Phylogenetic ana-lyses of the RdRp gene revealed that OTUs were phylogenetically diverse and clustered into distinct clades from known viral groups. The community structure of the same zooplankton sample was investigated using small subunit (SSU) rRNA sequences assembled from the metatranscriptome of single-stranded RNA. More than 90% of the sequence reads were derived from metazoan zooplankton; copepods comprised approximately 70% of the sequence reads. Although this ana-lysis provided no direct evidence of the host species of RNA viruses, these dominant zooplankton are expected to be associated with the RNA viruses detected in the present study. The present results indicate that zooplankton function as a reservoir of diverse RNA viruses and suggest that investigations of zooplankton viruses will provide a more detailed understanding of the role of viruses in marine ecosystems.


Asunto(s)
Virus ARN , Agua de Mar/virología , Zooplancton , Animales , Ecosistema , Océano Pacífico , Filogenia , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
15.
Microbiol Spectr ; 9(2): e0123921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34668749

RESUMEN

Viruses are the most abundant living entities in marine ecosystems, playing critical roles in altering the structure and function of microbial communities and driving ocean biogeochemistry. Phages that infect Roseobacter clade-affiliated (RCA) cluster strains are an important component of marine viral communities. Here, we characterize the genome sequences of two new RCA phages, CRP-9 and CRP-13, which infect RCA strain FZCC0023. Genomic analysis reveals that CRP-9 and CRP-13 represent a novel evolutionary lineage of marine phages. They both have a DNA replication module most similar to those in Cobavirus group phages. In contrast, their morphogenesis and packaging modules are distinct from those in cobaviruses but homologous to those in HMO-2011-type phages. The genomic architecture of CRP-9 and CRP-13 suggests a genomic recombination event between distinct phage groups. Metagenomic data sets were examined for metagenome-assembled viral genomes (MAVGs) with similar recombinant genome architectures. Fifteen CRP-9-type MAVGs were identified from marine viromes. Additionally, 158 MAVGs were identified containing HMO-2011-type morphogenesis and packaging modules with other types of DNA replication genes, providing more evidence that recombination between different phage groups is a major driver of phage evolution. Altogether, this study significantly expands the understanding of diversity and evolution of marine roseophages. Meanwhile, the analysis of these novel RCA phages and MAVGs highlights the critical role of recombination in shaping phage diversity. These phage sequences are valuable resources for inferring the evolutionary connection of distinct phage groups. IMPORTANCE Diversity and evolution of phages that infect the relatively slow-growing but dominant Roseobacter lineages are largely unknown. In this study, RCA phages CRP-9 and CRP-13 have been isolated on a Roseobacter RCA strain and shown to have a unique genomic architecture, which appears to be the result of a recombination event. CRP-9 and CRP-13 have a DNA replication module most similar to those in Cobavirus group phages and morphogenesis and packaging modules most similar to those in HMO-2011-type phages. HMO-2011-type morphogenesis and packaging modules are found in combination with distinct types of DNA replication genes, suggesting compatibility with various DNA replication modules. Altogether, this study contributes toward a better understanding of marine viral diversity and evolution.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Agua de Mar/virología , Viroma , Bacteriófagos/clasificación , Biodiversidad , Evolución Molecular , Genoma Viral , Genómica , Filogenia , Roseobacter/virología
16.
J Microbiol Biotechnol ; 31(12): 1709-1715, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34675140

RESUMEN

Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.


Asunto(s)
Colifagos/aislamiento & purificación , Monitoreo del Ambiente/métodos , Contaminación de Alimentos/análisis , Animales , Colifagos/genética , ADN Viral/genética , Humanos , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agua de Mar/virología , Mariscos/virología , Ensayo de Placa Viral , Viroma/genética
17.
Microbiol Spectr ; 9(2): e0046321, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643440

RESUMEN

Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.


Asunto(s)
Alteromonas/virología , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Genoma Viral , Myoviridae/genética , Myoviridae/aislamiento & purificación , Bacteriófagos/clasificación , Bacteriófagos/crecimiento & desarrollo , China , Myoviridae/clasificación , Sistemas de Lectura Abierta , Filogenia , Agua de Mar/virología
18.
Viruses ; 13(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34578276

RESUMEN

Multiple enveloped viruses with rod-shaped nucleocapsids have been described, infecting the epithelial cell nuclei within the hepatopancreas tubules of crustaceans. These bacilliform viruses share the ultrastructural characteristics of nudiviruses, a specific clade of viruses infecting arthropods. Using histology, electron microscopy and high throughput sequencing, we characterise two further bacilliform viruses from aquatic hosts, the brown shrimp (Crangon crangon) and the European shore crab (Carcinus maenas). We assembled the full double stranded, circular DNA genome sequences of these viruses (~113 and 132 kbp, respectively). Comparative genomics and phylogenetic analyses confirm that both belong within the family Nudiviridae but in separate clades representing nudiviruses found in freshwater and marine environments. We show that the three thymidine kinase (tk) genes present in all sequenced nudivirus genomes, thus far, were absent in the Crangon crangon nudivirus, suggesting there are twenty-eight core genes shared by all nudiviruses. Furthermore, the phylogenetic data no longer support the subdivision of the family Nudiviridae into four genera (Alphanudivirus to Deltanudivirus), as recently adopted by the International Committee on Taxonomy of Viruses (ICTV), but rather shows two main branches of the family that are further subdivided. Our data support a recent proposal to create two subfamilies within the family Nudiviridae, each subdivided into several genera.


Asunto(s)
Crangonidae/virología , Genoma Viral , Nudiviridae/clasificación , Nudiviridae/genética , Filogenia , Animales , Genómica , Hepatopáncreas/virología , Nudiviridae/aislamiento & purificación , Agua de Mar/virología
19.
Viruses ; 13(9)2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34578351

RESUMEN

Infectious salmon anemia virus (ISAV) infection is currently detected by fish sampling for PCR and immunohistochemistry analysis. As an alternative to sampling fish, we evaluated two different membrane filters in combination with four buffers for elution, concentration, and detection of ISAV in seawater, during a bath challenge of Atlantic salmon (Salmo salar L.) post-smolts with high and low concentrations of ISAV. Transmission of ISAV in the bath challenge was confirmed by a high mortality, clinical signs associated with ISA disease, and detection of ISAV RNA in organ tissues and seawater samples. The electronegatively charged filter, combined with lysis buffer, gave significantly higher ISAV RNA detection by droplet digital PCR from seawater (5.6 × 104 ISAV RNA copies/L; p < 0.001). Viral shedding in seawater was first detected at two days post-challenge and peaked on day 11 post-challenge, one day before mortalities started in fish challenged with high dose ISAV, demonstrating that a large viral shedding event occurs before death. These data provide important information for ISAV shedding that is relevant for the development of improved surveillance tools based on water samples, transmission models, and management of ISA.


Asunto(s)
Enfermedades de los Peces/virología , Isavirus/genética , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Salmo salar/virología , Esparcimiento de Virus , Anemia , Animales , Acuicultura , Enfermedades de los Peces/patología , Enfermedades de los Peces/transmisión , Isavirus/aislamiento & purificación , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Reacción en Cadena de la Polimerasa , Agua de Mar/virología
20.
Microbiol Spectr ; 9(2): e0059321, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34585945

RESUMEN

Cyanobacteria and cyanophages are present widely in both freshwater and marine environments. However, freshwater cyanophages remain unknown largely due to the small numbers of cyanophage isolates despite their ecological and environmental significance. In this study, we present the characterization of two novel lytic freshwater cyanophages isolated from a tropical inland lake in Singapore, namely, cyanopodovirus S-SRP01 and cyanomyovirus S-SRM01, infecting two different strains of Synechococcus spp. Functional annotation of S-SRP01 and S-SRM01 genomes revealed a high degree of homology with marine cyanophages. Phylogenetic trees of concatenated genes and whole-genome alignment provided further evidence that S-SRP01 is close evolutionarily to marine cyanopodoviruses, while S-SRM01 is evolutionarily close to marine cyanomyoviruses. Few genetic similarities between freshwater and marine cyanophages have been identified in previous studies. The isolation of S-SRP01 and S-SRM01 expand current knowledge on freshwater cyanophages infecting Synechococcus spp. Their high degree of gene sharing provides new insights into the evolutionary relationships between freshwater and marine cyanophages. This relatedness is further supported by the discovery of similar phenomenon from other freshwater viral metagenomes. IMPORTANCE This study expands the current knowledge on freshwater cyanophage isolates and cyanophage genetic diversity, indicating that freshwater and marine cyanophages infecting Synechococcus spp. may share close genetic similarity and evolutionary relationships.


Asunto(s)
Bacteriófagos , Evolución Biológica , Cianobacterias/virología , Agua Dulce/virología , Agua de Mar/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Especificidad del Huésped , Filogenia , Alineación de Secuencia , Synechococcus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...