Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732194

RESUMEN

An imbalance between production and excretion of amyloid ß peptide (Aß) in the brain tissues of Alzheimer's disease (AD) patients leads to Aß accumulation and the formation of noxious Aß oligomers/plaques. A promising approach to AD prevention is the reduction of free Aß levels by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aß. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aß. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aß40 interaction: prednisone favors HSA-Aß interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Unión Proteica , Albúmina Sérica Humana , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Ligandos , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Enfermedad de Alzheimer/metabolismo , Peso Molecular , Sitios de Unión , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/química
2.
Bioorg Med Chem ; 106: 117754, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728869

RESUMEN

To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.


Asunto(s)
Irinotecán , Profármacos , Irinotecán/química , Irinotecán/farmacología , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Animales , Humanos , Ratones , Distribución Tisular , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos , Albúminas/química , Masculino , Relación Estructura-Actividad , Albúmina Sérica Humana/química , Péptidos Similares al Glucagón
3.
Bioorg Chem ; 147: 107398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691907

RESUMEN

Herein, we report a multifaceted nanoformulation, developed by binding thionine acetate (TA) in silica matrix to form TA loaded silica nanoparticles (STA Nps), which were characterized using various physicochemical techniques. STA NPs were spherical shaped having size 40-50 nm and exhibited good heating efficiency, improved photostability and singlet oxygen production rate than TA alone. In PDT experiment, the rate of degradation for ABDMA was enhanced from 0.1367 min-1 for TA alone to 0.1774 min-1 for STA Nps, depicting an increase in the reactive oxygen species (ROS) generation ability of STA Nps. Further, the cytotoxicity of STA Nps was investigated by carrying out the biophysical studies with Calf thymus DNA (Ct-DNA) and Human Serum Albumin (HSA). The results indicated that the binding of STA Nps to Ct-DNA causes alterations in the double helix structure of DNA and as a result, STA Nps can impart chemotherapeutic effects via targeting DNA. STA Nps showed good binding affinity with HSA without compromising the structure of HSA, which is important for STA Nps sustainable biodistribution and pharmacokinetics. Based on this study, it is suggested that because of the synergistic effect of chemo and phototherapy, STA Nps can be extensively utilized as potential candidates for treating cancer.


Asunto(s)
Antineoplásicos , Rayos Láser , Nanopartículas , Fenotiazinas , Dióxido de Silicio , Humanos , Dióxido de Silicio/química , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Fenotiazinas/química , Fenotiazinas/farmacología , Fenotiazinas/síntesis química , Albúmina Sérica Humana/química , ADN/química , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Estructura Molecular , Animales , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fotoquimioterapia , Proliferación Celular/efectos de los fármacos , Bovinos , Relación Estructura-Actividad
4.
Chirality ; 36(5): e23675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38699899

RESUMEN

This study describes the interaction of human serum albumin (HSA) with the binol derivative (R)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol (R-BrB), which has its optical activity based on the prohibitive energetic barrier for conversion into the enantiomer (S)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol (S-BrB). The objective was to assess the ability of HSA to differentiate axial enantiomers based on their binding efficiency and their impact on the CD spectra. We discovered that both enantiomers were effective ligands, and the CD signal disappeared when equimolar amounts of R-BrB and S-BrB were simultaneously added, indicating no preference for either enantiomer. The complexation resulted in a significant signal increase at 250 nm and a bathochromic effect at 370 nm. Molecular docking simulations were performed, and the lower energy pose of R-BrB was selected for DFT calculations. The theoretical CD spectra of free and complexed R-BrB were obtained and showed alterations corroborating the experimental results. By comparing the difference spectrum (HSA:R-BrB minus HSA) with the spectrum of free RBrB in water or ethyl alcohol, we concluded that the CD signal intensification was due to the increased solubilization of R-BrB upon binding to HSA.


Asunto(s)
Dicroismo Circular , Simulación del Acoplamiento Molecular , Naftoles , Albúmina Sérica Humana , Dicroismo Circular/métodos , Naftoles/química , Albúmina Sérica Humana/química , Estereoisomerismo , Humanos , Teoría Funcional de la Densidad , Simulación por Computador , Unión Proteica
5.
Biotechnol J ; 19(5): e2400154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719568

RESUMEN

Maximizing product yield in biopharmaceutical manufacturing processes is a critical factor in determining the overall cost of goods, especially given the high value of these biological products. However, there has been relatively limited research on the quantitative analysis of protein losses due to adsorption and fouling during the different membrane filtration processes employed in typical downstream operations. This study aims to provide a comprehensive analysis of protein loss in the range of membrane systems used in downstream processing including clarification, virus removal filtration, ultrafiltration/diafiltration for formulation, and final sterile filtration, all using commercially available membranes with three model proteins (bovine serum albumin, human serum albumin, and immunoglobulin G). The correlation between protein loss and various parameters (i.e., protein type, protein concentration, throughput, membrane morphology, and protein removal mechanism) was also investigated. This study provides important insights into the nature of protein loss during membrane processes as well as a methodology for quantifying protein yield loss in bioprocesses.


Asunto(s)
Membranas Artificiales , Ultrafiltración , Humanos , Ultrafiltración/métodos , Filtración/métodos , Animales , Productos Biológicos/química , Albúmina Sérica Bovina/química , Inmunoglobulina G/química , Adsorción , Bovinos , Albúmina Sérica Humana/química
8.
J Phys Chem Lett ; 15(16): 4408-4415, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38625684

RESUMEN

Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Fluidez de la Membrana , Fosfatidilgliceroles , Humanos , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Interacciones Hidrofóbicas e Hidrofílicas , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Electricidad Estática
9.
Arch Biochem Biophys ; 756: 109993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636691

RESUMEN

5,6-Epoxy-cholesterols has been recently revealed to control metabolic pathway in breast cancer, which makes investigating their binding interaction with human serum albumin (HSA) an attractive field of research. The main aim of this article is to examine the binding interaction of 5,6 α-epoxy-cholesterol (5,6 α EC) and 5,6 ß-epoxy-cholesterol (5,6 ß- EC) with HSA using different spectroscopic methods and molecular modeling. These compounds interact with HSA via hydrophobic interactions and hydrogen bonds with binding constants 6.3 × 105 M-1 for 5,6 α-epoxy-cholesterol and 6.9 × 105 M-1 for 5,6 ß-epoxy-cholesterol besides, the mechanism of the interaction can be attributed to static quenching. Circular dichroism data indicated that the α-helical content of HSA increased from 50.5 to 59.8 and 61.1 % after the addition of 5,6 α-ECs and 5,6 ß-EC, respectively, with a ratio of 1:2. Thermodynamic analysis revealed that binding between 5,6-epoxy-cholesterols and HSA is spontaneous and entropy-driven. The molecular docking and esterase-like activity experiments were performed to envision a link between the experimental and theoretical results. The optimal binding site of 5,6-epoxy-cholesterols with HSA was located in subdomain IIA. Moreover, theoretical calculations were performed using the B3LYP function with the 6-311++G (d,p) basis set, indicating the HOMO-LUMO energy gap of 7.874 eV for 5,6 α-epoxy-cholesterol and 7.873 eV for 5,6 ß-epoxy-cholesterol. The obtained findings are assumed to provide basic data for understanding the binding interactions of HSA with oxysterol compounds, which could help explore the pharmacokinetics and pharmacodynamics of oxysterol compounds.


Asunto(s)
Colesterol , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Colesterol/metabolismo , Colesterol/química , Termodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Sitios de Unión , Dicroismo Circular , Enlace de Hidrógeno , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo
10.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666341

RESUMEN

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , ADN , Compuestos Organofosforados , Vanadio , Humanos , Vanadio/química , Vanadio/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , ADN/metabolismo , ADN/química , Supervivencia Celular/efectos de los fármacos , Hidrazinas/química , Hidrazinas/farmacología , Animales , Simulación del Acoplamiento Molecular , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Estructura Molecular , Ligandos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124332, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38676982

RESUMEN

Studies on the interactions between ligands and proteins provide insights into how a possible medication alters the structures and activities of the target or carrier proteins. The natural flavonoid aglycone Chrysin (CHR) has demonstrated anti-inflammatory, antioxidant, antiapoptotic, neuroprotective, and antineoplastic effects, both in vitro and in vivo. In this work, we investigated the impact of CHR binding on the as-yet-unexplored conformation, dynamics, and unfolding mechanism of human serum albumin (HSA). We determined CHR binding to HSA domain-II with the association constant (Ka) of 2.70 ± 0.21 × 105 M-1. The urea-induced sequential unfolding mechanism of HSA was used to elucidate the debatable binding location of CHR. CHR binding induced both secondary and tertiary structural alterations in the protein as studied by far-UV circular dichroism and intrinsic fluorescence spectroscopy. Red edge excitation shift (REES) indicated a decrease in conformational dynamics of the protein on the complex formation. This suggested an ordered compact and spatial arrangement of the CHR-boundmolecule. The binding of CHR was found to significantly modulate the urea-induced unfolding pathway of HSA. Urea-induced unfolding pathway of HSA became a two-state process (N-U) from a three-state process (N-I-U). The interaction of CHR is found to increase the thermal stability of the protein by ∼4 °C. This study focuses on the fundamental sciences and demonstrates how prospective medication compounds can alter the dynamics and stability of protein structure.


Asunto(s)
Flavonoides , Unión Proteica , Desplegamiento Proteico , Albúmina Sérica Humana , Humanos , Flavonoides/química , Flavonoides/farmacología , Flavonoides/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Desplegamiento Proteico/efectos de los fármacos , Urea/farmacología , Urea/química , Dicroismo Circular , Espectrometría de Fluorescencia , Conformación Proteica
12.
Discov Med ; 36(183): 739-752, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665023

RESUMEN

BACKGROUND: Eugenol exhibits broad-spectrum antibacterial and anti-inflammatory properties. However, cytotoxicity at high concentrations limits the full utilization of eugenol-based drug complexes. Formulations of multidrug-loaded eugenol-based nanoemulsions have reduced cytotoxicity; however, it remains crucial to understand how these eugenol complexes interact with primary human carrier proteins to design and develop therapeutic alternatives. Consequently, this study primarily aims to investigate the impact on Human Serum Albumin (HSA) when it interacts with eugenol-based complexes loaded with first-line anti-tuberculosis drugs. METHODS: This study used various spectroscopic such as UV-visible spectroscopy, Fluorescence spectroscopy, Fourier-transform infrared spectroscopy and computational methods such as molecular docking and 100 ns molecular simulation to understand the impact of eugenol-based first-line anti-tuberculosis drug-loaded nanoemulsions on HSA structure. RESULTS: The binding of the HSA protein and eugenol-based complexes was studied using UV-visible spectroscopic analysis. Minor changes in the fluorophores of the protein further confirmed binding upon interaction with the complexes. The Fourier-transform infrared spectra showed no significant changes in protein structure upon interaction with eugenol-based multidrug-loaded nanoemulsions, suggesting that this complex is safe for internal administration. Unlike eugenol or first-line anti-tuberculosis alone, molecular docking revealed the strength of the binding interactions between the complexes and the protein through hydrogen bonds. The docked complexes were subjected to a 100 ns molecular dynamics simulation, which strongly supported the conclusion that the structure and stability of the protein were not compromised by the interaction. CONCLUSIONS: From the results we could comprehend that the eugenol (EUG)-drug complex showed greater stability in HSA protein structure when compared to HSA interacting with isoniazid (INH), rifampicin (RIF), pyrazinamide (PYR), or ethambutol (ETH) alone or with EUG alone. Thus, inferring the potential of EUG-based drug-loaded formulations for a safer and efficient therapeutic use.


Asunto(s)
Antituberculosos , Emulsiones , Eugenol , Simulación del Acoplamiento Molecular , Albúmina Sérica Humana , Eugenol/química , Eugenol/farmacología , Humanos , Antituberculosos/química , Antituberculosos/farmacología , Antituberculosos/farmacocinética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Emulsiones/química , Espectroscopía Infrarroja por Transformada de Fourier , Unión Proteica
13.
Int J Pharm ; 656: 124111, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609057

RESUMEN

Methotrexate (MTX) is recognized as the golden standard for rheumatoid arthritis (RA) treatment. However, it can cause liver damage in long-term application. Although nanomedicines can target to inflamed sites, most of them tend to accumulate in liver. Glycyrrhizinic acid (GA) holds potential to reverse MTX-associated hepatotoxicity. The combination of GA and MTX might achieve a synergistic anti-inflammatory efficacy and reduced hepatotoxicity. As MTX and GA have totally different in vivo performance, it is necessary to co-encapsulate them in one carrier to coordinate their in vivo fates. Here, we co-delivered MTX and GA to arthritic joints using a human serum albumin-based nanoparticle (HSN). We found the dual drug-loaded albumin nanoparticles (HSN/MTX/GA) could preferentially distribute in inflamed joints, where GA can extend MTX retention by inhibiting the expression of efflux pumps for MTX, thereby exerting synergistic therapeutic effect. In liver tissues, GA was able to reverse the MTX-induced liver damage by activating anti-oxidant defense Nrf2/HO-1 and anti-apoptosis Bcl-2/Bax signaling. We offer a combinational strategy to effectively overcome the MTX-induced hepatotoxicity and enhance the anti-rheumatic efficacy simultaneously. Furthermore, we verified the underlying mechanism about how GA cooperated with MTX in vivo for the first time. Our findings can provide valuable insights for long-term treatment of RA.


Asunto(s)
Antirreumáticos , Enfermedad Hepática Inducida por Sustancias y Drogas , Ácido Glicirrínico , Metotrexato , Nanopartículas , Metotrexato/administración & dosificación , Animales , Antirreumáticos/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ácido Glicirrínico/administración & dosificación , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacología , Artritis Reumatoide/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Albúmina Sérica Humana/química , Albúmina Sérica Humana/administración & dosificación , Masculino , Sinergismo Farmacológico , Humanos , Portadores de Fármacos/química , Artritis Experimental/tratamiento farmacológico
14.
Viruses ; 16(4)2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675834

RESUMEN

Tenofovir (TFV) is the active form of the prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), both clinically prescribed as HIV reverse transcriptase inhibitors. The biophysical interactions between these compounds and human serum albumin (HSA), the primary carrier of exogenous compounds in the human bloodstream, have not yet been thoroughly characterized. Thus, the present study reports the interaction profile between HSA and TFV, TDF, and TAF via UV-Vis, steady-state, and time-resolved fluorescence techniques combined with isothermal titration calorimetry (ITC) and in silico calculations. A spontaneous interaction in the ground state, which does not perturb the microenvironment close to the Trp-214 residue, is classified as weak. In the case of HSA/TFV and HSA/TDF, the binding is both enthalpically and entropically driven, while for HSA/TAF, the binding is only entropically dominated. The binding constant (Ka) and thermodynamic parameters obtained via ITC assays agree with those obtained using steady-state fluorescence quenching measurements, reinforcing the reliability of the data. The small internal cavity known as site I is probably the main binding pocket for TFV due to the low steric volume of the drug. In contrast, most external sites (II and III) can better accommodate TAF due to the high steric volume of this prodrug. The cross-docking approach corroborated experimental drug-displacement assays, indicating that the binding affinity of TFV and TAF might be impacted by the presence of different compounds bound to albumin. Overall, the weak binding capacity of albumin to TFV, TDF, and TAF is one of the main factors for the low residence time of these antiretrovirals in the human bloodstream; however, positive cooperativity for TAF and TDF was detected in the presence of some drugs, which might improve their residence time (pharmacokinetic profile).


Asunto(s)
Fármacos Anti-VIH , Unión Proteica , Inhibidores de la Transcriptasa Inversa , Albúmina Sérica Humana , Tenofovir , Tenofovir/análogos & derivados , Humanos , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/química , Tenofovir/metabolismo , Tenofovir/química , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Fármacos Anti-VIH/metabolismo , Termodinámica , Calorimetría , Sitios de Unión , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Alanina/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Transcriptasa Inversa del VIH/química
15.
ACS Appl Bio Mater ; 7(5): 3414-3430, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38687465

RESUMEN

We have semi-synthesized a natural product 7-acetylhorminone from crude extract of Premna obtusifolia (Indian headache tree), which is active against colorectal cancer after probation through computational screening methods as it passed through the set parameters of pharmacokinetics (most important nonblood-brain barrier permeant) and drug likeliness (e.g., Lipinski's, Ghose's, Veber's rule) which most other phytoconstituents failed to pass combined with docking with EGFR protein which is highly upregulated in the colorectal carcinoma cell. The structure of 7-acetylhorminone was confirmed by single crystal X-ray diffraction studies and 1H NMR, 13C NMR, and COSY studies. To validate the theoretical studies, first, in vitro experiments were carried out against human colorectal carcinoma cell lines (HCT116) which revealed the potent cytotoxic efficacy of 7-acetylhorminone and verified preliminary investigation. Second, the drugability of 7-acetylhorminone interaction with serum albumin proteins (HSA and BSA) is evaluated both theoretically and experimentally via steady-state fluorescence spectroscopic studies, circular dichroism, isothermal titration calorimetry, and molecular docking. In summary, this study reveals the applicability of 7-acetylhorminone as a potent drug candidate or as a combinatorial drug against colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Albúmina Sérica Bovina , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Bovina/química , Ensayos de Selección de Medicamentos Antitumorales , Productos Biológicos/química , Productos Biológicos/farmacología , Estructura Molecular , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Células HCT116 , Proliferación Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Supervivencia Celular/efectos de los fármacos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo
16.
Int J Biol Macromol ; 268(Pt 1): 131862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670183

RESUMEN

Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach. HSA-functionalized CdTe QDs have been explored in multiple in vitro sensing and biological applications, namely, (1) sensing, (2) anti-bacterial and (3) anti-cancer properties. Using CdTe-HSA QDs as a fluorescence probe, a simple fluorometric method has been developed for highly sensitive and selective detection of blood marker bilirubin and hazardous Hg2+ ion with a limit of detection (LOD) of 3.38 and 0.53 ng/mL, respectively. CdTe-HSA QDs also acts as a sensor for standard antibiotics, tetracycline and rifampicin with LOD values of 41.34 and 114.99 ng/mL, respectively. Nano-sized biogenic CdTe-HSA QDs have shown promising anti-bacterial activities against both gram-negative, E. coli and gram-positive, E. faecalis strains confirming more effectiveness against E. faecalis strains. The treatment of human cervical cancer cell lines (HeLa cells) with the synthesized QDs reflected the proficient cytotoxic properties of QDs.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Albúmina Sérica Humana , Telurio , Puntos Cuánticos/química , Telurio/química , Humanos , Compuestos de Cadmio/química , Antibacterianos/farmacología , Antibacterianos/química , Técnicas Biosensibles/métodos , Albúmina Sérica Humana/química , Escherichia coli/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Bilirrubina
17.
Int J Biol Macromol ; 268(Pt 1): 131861, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670207

RESUMEN

This study characterized four corrole derivatives, namely Cbz-Cor, MetCbz-Cor, PTz-Cor, and PTzEt-Cor, examining their photophysical, electrochemical, photobiological, and biomolecule-binding properties. Experimental photophysical data of absorption and emission elements correlated with a theoretical analysis obtained through time-dependent density functional theory (TD-DFT). As for the photophysical properties, we observed lower fluorescence quantum yields and discernible differences between the excited and ground states, as indicated by Stokes shift values. Natural Transition Orbit (NTO) plots presented high occupied molecular orbital - low unoccupied molecular orbital (HOMO-LUMO) densities around the tetrapyrrolic macrocycle in all examples. Our findings demonstrate that corroles maintain stability in solution and offer photostability (<20 %), predominantly in DMSO(5 %)/Tris-HCl (pH 7.4) buffer solution. Furthermore, the singlet oxygen (1O2) quantum yield and log POW values underscore their potential application in photoinactivation approaches, as these corroles serve as effective ROS generators with more lipophilic features. We also evaluated their biomolecular binding capacity towards salmon sperm DNA and human serum albumin using spectroscopic techniques and molecular docking analysis for sustenance. Concerning biomolecule interaction profiles, the corrole derivatives showed a propensity for interacting in the minor grooves of the double helix DNA due to secondary forces, which were more pronounced in site III of the human serum protein.


Asunto(s)
Carbazoles , ADN , Fenotiazinas , Albúmina Sérica Humana , ADN/química , Fenotiazinas/química , Humanos , Carbazoles/química , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Porfirinas/química , Animales , Unión Proteica , Salmón , Simulación del Acoplamiento Molecular , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo
18.
Bioorg Chem ; 147: 107360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604019

RESUMEN

HSA (human serum albumin), a most abundant protein in blood serum, plays a key role in maintaining human health. Abnormal HSA level is correlated with many diseases, and thus has been used as an essential biomarker for therapeutic monitoring and biomedical diagnosis. Development of small-molecule fluorescent probes allowing the selective and sensitive recognition of HSA in in vitro and in vivo is of fundamental importance in basic biological research as well as medical diagnosis. Herein, we reported a series of new synthesized fluorescent dyes containing D-π-A constitution, which exhibited different optical properties in solution and solid state. Among them, dye M-H-SO3 with a hydrophilic sulfonate group at electron-acceptor part displayed selectivity for discrimination of HSA from BSA and other enzymes. Upon binding of dye M-H-SO3 with HSA, a significant fluorescence enhancement with a turn-on ratio about 96-fold was triggered. The detection limit was estimated to be âˆ¼ 40 nM. Studies on the interaction mechanism revealed that dye M-H-SO3 could bind to site III of HSA with a 1:1 binding stoichiometry. Furthermore, dye M-H-SO3 has been applied to determine HSA in real urine samples with good recoveries, which provided a useful method for HSA analysis in biological fluids.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica Bovina , Albúmina Sérica Humana , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Estructura Molecular , Bovinos , Animales , Espectrometría de Fluorescencia
19.
Mol Pharm ; 21(5): 2198-2211, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38625037

RESUMEN

Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Albúmina Sérica Humana , Tensoactivos , Humanos , Sitios de Unión , Sistemas de Liberación de Medicamentos/métodos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Tensoactivos/química , Espectrometría de Fluorescencia , Naftalenosulfonatos de Anilina/química , Unión Proteica
20.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675682

RESUMEN

Drug discovery is a challenging process, with many compounds failing to progress due to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using computational and chromatographic approaches. In addition, the affinity to human serum albumin (HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative Structure-Retention Relationship (QSRR) methodologies were used to determine the impact of theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR) model was calculated to identify the most important features, and genetic algorithms (GAs) were used to assist in the selection of features. The resultant models showed commendable predictive accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930 for the validation group, respectively.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Humanos , Albúmina Sérica Humana/química , Algoritmos , Modelos Lineales , Estructura Molecular , Fosfolípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA