Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cells ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38920699

RESUMEN

Alkaptonuria (AKU) is a genetic disorder that affects connective tissues of several body compartments causing cartilage degeneration, tendon calcification, heart problems, and an invalidating, early-onset form of osteoarthritis. The molecular mechanisms underlying AKU involve homogentisic acid (HGA) accumulation in cells and tissues. HGA is highly reactive, able to modify several macromolecules, and activates different pathways, mostly involved in the onset and propagation of oxidative stress and inflammation, with consequences spreading from the microscopic to the macroscopic level leading to irreversible damage. Gaining a deeper understanding of AKU molecular mechanisms may provide novel possible therapeutical approaches to counteract disease progression. In this review, we first describe inflammation and oxidative stress in AKU and discuss similarities with other more common disorders. Then, we focus on HGA reactivity and AKU molecular mechanisms. We finally describe a multi-purpose digital platform, named ApreciseKUre, created to facilitate data collection, integration, and analysis of AKU-related data.


Asunto(s)
Alcaptonuria , Estrés Oxidativo , Alcaptonuria/metabolismo , Alcaptonuria/genética , Humanos , Ácido Homogentísico/metabolismo , Inflamación/patología , Inflamación/metabolismo , Animales
2.
J Inherit Metab Dis ; 47(4): 664-673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38487984

RESUMEN

Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] µmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] µmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.


Asunto(s)
Alcaptonuria , Ciclohexanonas , Modelos Animales de Enfermedad , Ácido Homogentísico , Nitrobenzoatos , Alcaptonuria/orina , Alcaptonuria/metabolismo , Animales , Ácido Homogentísico/orina , Ácido Homogentísico/metabolismo , Ratones , Ciclohexanonas/orina , Masculino , Tirosina/metabolismo , Tirosina/orina , Hígado/metabolismo , Fenilalanina/metabolismo
3.
Cells ; 12(13)2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37443717

RESUMEN

Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program.


Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas , Ácido Homogentísico/metabolismo , Estudios Prospectivos
4.
Adv Clin Chem ; 114: 47-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37268334

RESUMEN

Alkaptonuria (AKU) is an ultra-rare inherited inborn error of metabolism that afflicts the tyrosine metabolic pathway, resulting in the accumulation of homogentisic acid (HGA) in the circulation, and significant excretion in urine. Clinical manifestations, typically observed from the third decade of life, are lifelong and significantly affect the quality of life. This review provides a comprehensive overview of the natural history of AKU, including clinical, biochemical and genetic perspectives. An update on the major advances on studies in murine models and human subjects, providing mechanistic insight into the molecular and biochemical processes that underlie pathophysiology and its response to treatment are presented. The impact of treatment with nitisinone is also presented with a specific emphasis on hypertyrosinemia, as uncertainty on this topic remains. Future perspectives are explored, such as novel approaches to treat hypertyrosinemia including the use of binding agents and amino acid transporter inhibitors, as well as advanced potentially curative gene and cell therapy initiatives.


Asunto(s)
Alcaptonuria , Tirosinemias , Humanos , Animales , Ratones , Alcaptonuria/diagnóstico , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Calidad de Vida , Ácido Homogentísico/metabolismo , Tirosina/metabolismo , Tirosina/orina
5.
Curr Protein Pept Sci ; 24(5): 380-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36880186

RESUMEN

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs, which occurs because the homogentisate 1,2-dioxygenase (HGD) enzyme is not functional due to gene variants. Over time, HGA oxidation and accumulation cause the formation of the ochronotic pigment, a deposit that provokes tissue degeneration and organ malfunction. Here, we report a comprehensive review of the variants so far reported, the structural studies on the molecular consequences of protein stability and interaction, and molecular simulations for pharmacological chaperones as protein rescuers. Moreover, evidence accumulated so far in alkaptonuria research will be re-proposed as the bases for a precision medicine approach in a rare disease.


Asunto(s)
Alcaptonuria , Homogentisato 1,2-Dioxigenasa , Humanos , Alcaptonuria/genética , Alcaptonuria/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Estudios de Asociación Genética , Homogentisato 1,2-Dioxigenasa/genética , Homogentisato 1,2-Dioxigenasa/metabolismo , Ácido Homogentísico/metabolismo , Enfermedades Raras , Relación Estructura-Actividad
6.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985595

RESUMEN

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Alcaptonuria , Ocronosis , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/genética , Alcaptonuria/metabolismo , Simulación del Acoplamiento Molecular , Ocronosis/tratamiento farmacológico , Ácido Homogentísico/metabolismo
7.
Endocr Regul ; 57(1): 61-67, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966367

RESUMEN

Alkaptonuria (AKU, OMIM, No. 203500) is a rare, slow-progressing, irreversible, multisystemic disease resulting from a deficiency of the homogentisate 1,2-dioxygenase enzyme, which leads to the accumulation of homogentisic acid (HGA) and subsequent deposition as pigment in connective tissues called ochronosis. As a result, severe arthropathy of large joints and spondyloarthropathy with frequent fractures, ligament ruptures, and osteoporosis develops in AKU patients. Since 2020, the first-time treatment with nitisinone has become available in the European Union. Nitisinone significantly reduces HGA production and arrests ochronosis in AKU patients. However, blocking of the tyrosine metabolic pathway by the drug leads to tyrosine plasma and tissue concentrations increase. The nitisinone-induced hypertyrosinemia can lead to the development of corneal keratopathy, and once it develops, the treatment needs to be interrupted. A decrease in overall protein intake reduces the risk of the keratopathy during nitisinone-induced hypertyrosinemia in AKU patients. The low-protein diet is not only poorly tolerated by patients, but over longer periods, leads to a severe muscle loss and weight gain due to increased energy intake from carbohydrates and fats. Therefore, the development of novel nutritional approaches is required to prevent the adverse events due to nitisinone-induced hypertyrosinemia and the negative impact on skeletal muscle metabolism in AKU patients.


Asunto(s)
Alcaptonuria , Ocronosis , Tirosinemias , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Ocronosis/tratamiento farmacológico , Tirosina/uso terapéutico , Ácido Homogentísico/metabolismo
8.
Cells ; 11(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36429096

RESUMEN

Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.


Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/complicaciones , Alcaptonuria/metabolismo , Productos Avanzados de Oxidación de Proteínas/metabolismo , Productos Avanzados de Oxidación de Proteínas/uso terapéutico , Calidad de Vida , Biomarcadores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Inflamación/metabolismo , Estrés Oxidativo
9.
Rheumatol Int ; 42(12): 2277-2282, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36053307

RESUMEN

Alkaptonuria is a disease often forgotten because of its rarity. Its pathogenic mechanism is the deficiency of one of the enzymes of the tyrosine degradation pathway-homogentisate-1, 2-dioxygenase, which sequelae is accumulation and deposition of its metabolite homogentisic acid in connective tissues and urine. Alkaptonuria presents as a clinical triad-darkening urine upon prolonged exposure to air, pigmentation of connective tissues and debilitating arthropathy. We present a case report of a 67-year old patient with alkaptonuria who presented with the clinical triad, but was mistakenly diagnosed as having ankylosing spondylitis in the past. Currently there is no treatment for the disease hence the management strategy was focused on symptoms control with analgesics, physical therapy, dietary modification, vitamin C supplementation, and joint arthroplasty. Alkaptonuria's clinical features are extensively described in the literature and despite the fact that it is a rare disease, due to the similar radiographic changes with spondyloarthropathies, it should be included in the differential diagnosis in young patients presenting with severe joint involvement. Early recognition of the disease is necessary since its natural evolution is joint destruction leading to significant reduction in the quality of life. Alkaptonuria's articular features in the spine and peripheral tissues are well described using the classical imaging techniques. Musculoskeletal ultrasonography shows a characteristic set of findings in the soft tissues, including synovium, cartilage, tendons and entheses.


Asunto(s)
Alcaptonuria , Enfermedades de los Cartílagos , Dioxigenasas , Artropatías , Ocronosis , Osteoartritis , Espondiloartropatías , Anciano , Alcaptonuria/complicaciones , Alcaptonuria/diagnóstico , Alcaptonuria/metabolismo , Ácido Ascórbico , Ácido Homogentísico/metabolismo , Humanos , Ocronosis/complicaciones , Ocronosis/diagnóstico , Osteoartritis/complicaciones , Calidad de Vida , Espondiloartropatías/complicaciones , Tirosina
10.
Arch Biochem Biophys ; 717: 109137, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35090868

RESUMEN

Alkaptonuria (AKU) is an ultra-rare genetic disease caused by a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD) leading to the accumulation of homogentisic acid (HGA) on connective tissues. Even though AKU is a multi-systemic disease, osteoarticular cartilage is the most affected system and the most damaged tissue by the disease. In chondrocytes, HGA causes oxidative stress dysfunctions, which induce a series of not fully characterized cellular responses. In this study, we used a human chondrocytic cell line as an AKU model to evaluate, for the first time, the effect of HGA on autophagy, the main homeostasis system in articular cartilage. Cells responded timely to HGA treatment with an increase in autophagy as a mechanism of protection. In a chronic state, HGA-induced oxidative stress decreased autophagy, and chondrocytes, unable to restore balance, activated the chondroptosis pathway. This decrease in autophagy also correlated with the accumulation of ochronotic pigment, a hallmark of AKU. Our data suggest new perspectives for understanding AKU and a mechanistic model that rationalizes the damaging role of HGA.


Asunto(s)
Alcaptonuria/prevención & control , Autofagia/efectos de los fármacos , Biomarcadores/metabolismo , Homogentisato 1,2-Dioxigenasa/metabolismo , Ácido Homogentísico/metabolismo , Alcaptonuria/metabolismo , Apoptosis/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Línea Celular , Condrocitos/citología , Ácido Homogentísico/farmacología , Humanos , Ocronosis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
11.
Ann Nutr Metab ; 78(1): 48-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34736252

RESUMEN

INTRODUCTION: Nitisinone used in alkaptonuria (AKU) can result in keratopathy due to strongly increased tyrosine levels. METHODS: This study aimed to investigate nutritional status and changes in plasma tyrosine and phenylalanine and urinary homogentisic acid (u-HGA) levels in 8 adult AKU patients (mean age, 56.3 ± 4.7 years) who were on tyrosine/phenylalanine-restricted diet together with 2 mg/day nitisinone. RESULTS: The treatment period was 23.4 ± 6.9 months. Daily dietary protein intake was restricted to 0.8-1.0 g/kg/day. Daily tyrosine intake was restricted to 260-450 mg/day for females and 330-550 mg/day for males. Tyrosine/phenylalanine-free amino acid supplements accounted for an average of 56.1% of daily protein intake. The following assessments were performed: anthropometric and plasma tyrosine level measurements every 2 months; ophthalmological examination every 6 months, and nutritional laboratory analyses and measurements of plasma amino acids and u-HGA once in a year. It was targeted to keep the plasma tyrosine level <500 µmol/L. The plasma tyrosine level was <100 µmol/L before the treatment in all patients and around a mean of 582.5 ± 194.8 µmol/L during the treatment. The diet was rearranged if a plasma tyrosine level of >700 µmol/L was detected. The u-HGA level before and after the 1st year of treatment was 1,429.3 ± 1,073.4 mmol/mol creatinine and 33.6 ± 9.5 mmol/mol creatinine, respectively. None of the patients developed keratopathy or experienced weight loss and protein or micronutrient deficiency. CONCLUSION: AKU patients should receive tyrosine/phenylalanine-restricted diet for reducing plasma tyrosine level to the safe range. Tyrosine/phenylalanine-free amino acid supplements can be safely used to enhance dietary compliance. Keratopathy and nutrient deficiency should be frequently monitored.


Asunto(s)
Alcaptonuria , Adulto , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Ciclohexanonas , Dieta , Proteínas en la Dieta , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nitrobenzoatos , Fenilalanina , Tirosina/metabolismo
12.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34165242

RESUMEN

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Asunto(s)
Albinismo/terapia , Alcaptonuria/terapia , Cistinuria/terapia , Errores Innatos del Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patología , Alcaptonuria/genética , Alcaptonuria/metabolismo , Alcaptonuria/patología , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/patología , Errores Innatos del Metabolismo de los Carbohidratos/terapia , Cistinuria/genética , Cistinuria/metabolismo , Cistinuria/patología , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Fenilcetonurias/genética , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Fenilcetonurias/terapia , Deshidrogenasas del Alcohol de Azúcar/deficiencia , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Xilulosa/genética , Xilulosa/metabolismo
13.
Ned Tijdschr Geneeskd ; 1652021 01 27.
Artículo en Holandés | MEDLINE | ID: mdl-33651519

RESUMEN

A 52-year-old men suffered from osteoarthritis of the knee. During knee replacement surgery, the remaining cartilage appeared black. This discoloration and early degeneration of the cartilage is characteristic for the metabolic disorder alkaptonuria in which homogentisic acid accumulates in the body.


Asunto(s)
Alcaptonuria , Artroplastia de Reemplazo de Rodilla , Cartílago/patología , Articulación de la Rodilla/patología , Rodilla/patología , Ocronosis , Alcaptonuria/complicaciones , Alcaptonuria/metabolismo , Alcaptonuria/cirugía , Cartílago/metabolismo , Cartílago/cirugía , Color , Ácido Homogentísico/metabolismo , Humanos , Hallazgos Incidentales , Rodilla/cirugía , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/cirugía , Masculino , Persona de Mediana Edad , Ocronosis/etiología , Ocronosis/metabolismo , Ocronosis/cirugía , Osteoartritis/complicaciones , Osteoartritis/cirugía
14.
J Cell Physiol ; 236(8): 6011-6024, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33469937

RESUMEN

Alkaptonuria (AKU) is an ultra-rare disease caused by the deficient activity of homogentisate 1,2-dioxygenase enzyme, leading the accumulation of homogentisic acid (HGA) in connective tissues implicating the formation of a black pigmentation called "ochronosis." Although AKU is a multisystemic disease, the most affected tissue is the articular cartilage, which during the pathology appears to be highly damaged. In this study, a model of alkaptonuric chondrocytes and cartilage was realized to investigate the role of HGA in the alteration of the extracellular matrix (ECM). The AKU tissues lost its architecture composed of collagen, proteoglycans, and all the proteins that characterize the ECM. The cause of this alteration in AKU cartilage is attributed to a degeneration of the cytoskeletal network in chondrocytes caused by the accumulation of HGA. The three cytoskeletal proteins, actin, vimentin, and tubulin, were analyzed and a modification in their amount and disposition in AKU chondrocytes model was identified. Cytoskeleton is involved in many fundamental cellular processes; therefore, the aberration in this complex network is involved in the manifestation of AKU disease.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Ácido Homogentísico/farmacología , Actinas/efectos de los fármacos , Actinas/metabolismo , Alcaptonuria/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Ocronosis/tratamiento farmacológico , Vimentina/efectos de los fármacos , Vimentina/metabolismo
15.
J Inherit Metab Dis ; 44(3): 666-676, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33452825

RESUMEN

A large alkaptonuria (AKU) cohort was studied to better characterize the poorly understood spondyloarthropathy of rare disease AKU. Eighty-seven patients attended the National Alkaptonuria Centre (NAC) between 2007 and 2020. Seven only attended once. Fifty-seven attended more than once and received nitisinone 2 mg daily. Twenty-three attended at least twice without receiving nitisinone. Assessments included questionnaire analysis, 18F Positron emission tomography computerised tomography (PETCT), as well as photographs of ochronotic pigment in eyes and ears at baseline when 2 mg nitisinone was commenced and yearly thereafter. Blood and urine samples were collected for chemical measurement. The prevalence of ochronosis, as well as pain, PETCT and combined pain and PETCT scores, was greatly increased at 90.5%, 85.7%, 100%, and 100%, respectively. Joint pain scores were greatest in proximal joints in upper and lower limbs. PETCT joint scores were higher in proximal joints in upper limb but higher in distal joints in the lower limb. Spine pain scores were highest in lumbar, followed by cervical, thoracic, and cervical regions at 77.4%, 59.5%, 46.4%, and 25%, respectively. PETCT spine scores were highest in thoracic followed by lumbar, cervical, and sacroiliac regions at 74.4%, 70.7%, 64.6%, and 47.8% respectively; ochronosis associated closely with spondyloarthropathy scores (R = .65; P < .0001). Nitisinone reversed ochronosis significantly, with a similar pattern of decreased joint and spine disease. Spondyloarthropathy is a highly prevalent feature in this NAC cohort. Ochronosis appears to be associated with spondyloarthropathy. Nitisinone decreases ochronosis and had a similar nonsignificant effect pattern on spondyloarthropathy.


Asunto(s)
Alcaptonuria/tratamiento farmacológico , Ciclohexanonas/administración & dosificación , Ácido Homogentísico/metabolismo , Articulaciones/patología , Nitrobenzoatos/administración & dosificación , Ocronosis/tratamiento farmacológico , Columna Vertebral/patología , Anciano , Alcaptonuria/metabolismo , Estudios de Cohortes , Femenino , Humanos , Articulaciones/diagnóstico por imagen , Modelos Lineales , Masculino , Persona de Mediana Edad , Ocronosis/metabolismo , Fenotipo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Índice de Severidad de la Enfermedad , Columna Vertebral/diagnóstico por imagen , Reino Unido
17.
Lancet Diabetes Endocrinol ; 8(9): 762-772, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32822600

RESUMEN

BACKGROUND: Alkaptonuria is a rare, genetic, multisystem disease characterised by the accumulation of homogentisic acid (HGA). No HGA-lowering therapy has been approved to date. The aim of SONIA 2 was to investigate the efficacy and safety of once-daily nitisinone for reducing HGA excretion in patients with alkaptonuria and to evaluate whether nitisinone has a clinical benefit. METHODS: SONIA 2 was a 4-year, open-label, evaluator-blind, randomised, no treatment controlled, parallel-group study done at three sites in the UK, France, and Slovakia. Patients aged 25 years or older with confirmed alkaptonuria and any clinical disease manifestations were randomly assigned (1:1) to receive either oral nitisinone 10 mg daily or no treatment. Patients could not be masked to treatment due to colour changes in the urine, but the study was evaluator-blinded as far as possible. The primary endpoint was daily urinary HGA excretion (u-HGA24) after 12 months. Clinical evaluation Alkaptonuria Severity Score Index (cAKUSSI) score was assessed at 12, 24, 36, and 48 months. Efficacy variables were analysed in all randomly assigned patients with a valid u-HGA24 measurement at baseline. Safety variables were analysed in all randomly assigned patients. The study was registered at ClinicalTrials.gov (NCT01916382). FINDINGS: Between May 7, 2014, and Feb 16, 2015, 139 patients were screened, of whom 138 were included in the study, with 69 patients randomly assigned to each group. 55 patients in the nitisinone group and 53 in the control group completed the study. u-HGA24 at 12 months was significantly decreased by 99·7% in the nitisinone group compared with the control group (adjusted geometric mean ratio of nitisinone/control 0·003 [95% CI 0·003 to 0·004], p<0·0001). At 48 months, the increase in cAKUSSI score from baseline was significantly lower in the nitisinone group compared with the control group (adjusted mean difference -8·6 points [-16·0 to -1·2], p=0·023). 400 adverse events occurred in 59 (86%) patients in the nitisinone group and 284 events occurred in 57 (83%) patients in the control group. No treatment-related deaths occurred. INTERPRETATION: Nitisinone 10 mg daily was well tolerated and effective in reducing urinary excretion of HGA. Nitisinone decreased ochronosis and improved clinical signs, indicating a slower disease progression. FUNDING: European Commission Seventh Framework Programme.


Asunto(s)
Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Ciclohexanonas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Internacionalidad , Nitrobenzoatos/administración & dosificación , Adulto , Anciano , Alcaptonuria/diagnóstico , Esquema de Medicación , Femenino , Ácido Homogentísico/metabolismo , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Método Simple Ciego , Resultado del Tratamiento
18.
Arch Biochem Biophys ; 690: 108416, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32502471

RESUMEN

Alkaptonuria (AKU) is a rare metabolic disease correlated with the deficiency of homogentisate 1,2-dioxygenase and leading to an accumulation of the metabolite homogentisic acid (HGA) which can be subjected to oxidation and polymerization reactions. These events are considered a trigger for the induction of oxidative stress in AKU but, despite the large description of an altered redox status, the underlying pathogenetic processes are still unstudied. In the present study, we investigated the molecular mechanisms responsible for the oxidative damage present in an osteoblast-based cellular model of AKU. Bone, in fact, is largely affected in AKU patients: severe osteoclastic resorption, osteoporosis, even for pediatric cases, and an altered rate of remodeling biomarkers have been reported. In our AKU osteoblast cell model, we found a clear altered redox homeostasis, determined by elevated hydrogen peroxide (H2O2) levels and 4HNE protein adducts formation. These findings were correlated with increased NADPH oxidase (NOX) activity and altered mitochondrial respiration. In addition, we observed a decreased activity of superoxide dismutase (SOD) and reduced levels of thioredoxin (TRX) that parallel the decreased Nrf2-DNA binding. Overall, our results reveal that HGA is able to alter the cellular redox homeostasis by modulating the endogenous ROS production via NOX activation and mitochondrial dysfunctions and impair the cellular response mechanism. These findings can be useful for understanding the pathophysiology of AKU, not yet well studied in bones, but which is an important source of comorbidities that affect the life quality of the patients.


Asunto(s)
Alcaptonuria/metabolismo , Homeostasis/fisiología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Ácido Homogentísico/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Osteoblastos/citología , Oxidación-Reducción , Estrés Oxidativo/fisiología , Transducción de Señal , Superóxido Dismutasa/metabolismo , Tiorredoxinas/metabolismo
19.
JAMA Netw Open ; 3(3): e201357, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32202644

RESUMEN

Importance: Alkaptonuria is an autosomal recessive disorder caused by pathogenic variants in the HGD gene. Deficiency of the HGD enzyme leads to tissue deposition of homogentisic acid (HGA), causing severe osteoarthropathies and cardiac valve degeneration. Although HGD is vital for the catabolism of tyrosine, which provides the basis for thyroid hormone synthesis, the prevalence of thyroid dysfunction in alkaptonuria is unknown. Objective: To assess thyroid structure and function in patients with alkaptonuria. Design, Setting, and Participants: A single-center cohort study was conducted in a tertiary referral center including patients with alkaptonuria followed up for a median of 93 (interquartile range, 48-150) months between February 1, 2000, and December 31, 2018. The alkaptonuria diagnosis was based on clinical presentation and elevated urine HGA levels. A total of 130 patients were considered for participation. Main Outcomes and Measures: Prevalence of thyroid dysfunction in adults with alkaptonuria compared with the general population. Thyrotropin and free thyroxine levels were measured by immunoassay and repeated in each patient a median of 3 (interquartile range, 2-22) times. Neck ultrasonographic scans were analyzed in a subset of participants. Logistic regression was used to test the association of thyroid dysfunction with age, sex, thyroid peroxidase (TPO) antibodies, serum tyrosine levels, and urine HGA levels. Results: Of the 130 patients, 5 were excluded owing to thyroidectomy as the cause of hypothyroidism. The study cohort consisted of 125 patients; the median age was 45 (interquartile range, 35-51) years. Most of the patients were men (72 [57.6%]). The prevalence of primary hyperthyroidism was 0.8% (1 of 125 patients), similar to 0.5% observed in the general population (difference, 0.003; 95% CI, -0.001 to 0.04; P = .88). The prevalence of primary hypothyroidism was 16.0% (20 of 125 patients), which is significantly higher than 3.7% reported in the general population (difference, 0.12; 95% CI, 0.10-0.24; P < .001). Women were more likely to have primary hypothyroidism than men (odds ratio, 10.99; 95% CI, 3.13-38.66; P < .001). Patients with TPO antibodies had a higher likelihood of primary hypothyroidism than those without TPO antibodies (odds ratio, 7.36; 95% CI, 1.89-28.62; P = .004). There was no significant difference in the prevalence of thyroid nodules between patients in this study (29 of 49 [59.2%]) vs the general population (68%) (difference, 0.088; 95% CI, -0.44 to 0.73; P = .20) or of cancer (7% vs 5%; difference, 0.01; 95% CI, -0.01 to 0.17; P = .86). Conclusions and Relevance: The high prevalence of primary hypothyroidism noted in patients with alkaptonuria in this study suggests that serial screening in this population should be considered and prioritized.


Asunto(s)
Alcaptonuria/metabolismo , Hipotiroidismo/epidemiología , Adulto , Alcaptonuria/complicaciones , Alcaptonuria/genética , Autoanticuerpos/sangre , Autoantígenos/inmunología , Estudios de Cohortes , Femenino , Ácido Homogentísico/orina , Humanos , Hipertiroidismo/epidemiología , Hipertiroidismo/genética , Hipotiroidismo/genética , Yoduro Peroxidasa/inmunología , Proteínas de Unión a Hierro/inmunología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Prevalencia , Pruebas de Función de la Tiroides , Glándula Tiroides/enzimología , Tirotropina/sangre , Tiroxina/sangre , Tirosina/sangre
20.
Angew Chem Int Ed Engl ; 59(29): 11937-11942, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32219972

RESUMEN

Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.


Asunto(s)
Alcaptonuria/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Pigmentación , Espectroscopía de Resonancia por Spin del Electrón , Ácido Homogentísico/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Pigmentos Biológicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...