Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 1525, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251275

RESUMEN

Long-chain alk(a/e)nes represent the major constituents of conventional transportation fuels. Biosynthesis of alkanes is ubiquitous in many kinds of organisms. Cyanobacteria possess two enzymes, acyl-acyl carrier protein (acyl-ACP) reductase (AAR) and aldehyde-deformylating oxygenase (ADO), which function in a two-step alkane biosynthesis pathway. These two enzymes act in series and possibly form a complex that efficiently converts long chain fatty acyl-ACP/fatty acyl-CoA into hydrocarbon. While the structure of ADO has been previously described, structures of both AAR and AAR-ADO complex have not been solved, preventing deeper understanding of this pathway. Here, we report a ligand-free AAR structure, and three AAR-ADO complex structures in which AARs bind various ligands. Our results reveal the binding pattern of AAR with its substrate/cofactor, and suggest a potential aldehyde-transferring channel from AAR to ADO. Based on our structural and biochemical data, we proposed a model for the complete catalytic cycle of AAR.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Aldehído Oxidorreductasas/ultraestructura , Aldehído-Liasas/ultraestructura , Proteínas Bacterianas/ultraestructura , Synechococcus/enzimología , Aldehído Oxidorreductasas/metabolismo , Aldehído-Liasas/metabolismo , Alcanos/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Cristalografía por Rayos X
2.
Biochemistry ; 59(10): 1124-1136, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32125848

RESUMEN

ATP:Co(I)rrinoid adenosyltransferases (ACATs) catalyze the transfer of the adenosyl moiety from co-substrate ATP to a corrinoid substrate. ACATs are grouped into three families, namely, CobA, PduO, and EutT. The EutT family of enzymes is further divided into two classes, depending on whether they require a divalent metal ion for activity (class I and class II). To date, a structure has not been elucidated for either class of the EutT family of ACATs. In this work, results of bioinformatics analyses revealed several conserved residues between the C-terminus of EutT homologues and the structurally characterized Lactobacillus reuteri PduO (LrPduO) homologue. In LrPduO, these residues are associated with ATP binding and formation of an intersubunit salt bridge. These residues were substituted, and in vivo and in vitro data support the conclusion that the equivalent residues in the metal-free (i.e., class II) Listeria monocytogenes EutT (LmEutT) enzyme affect ATP binding. Results of in vivo and in vitro analyses of LmEutT variants with substitutions at phenylalanine and tryptophan residues revealed that replacement of the phenylalanine residue at position 72 affected access to the substrate-binding site and replacement of a tryptophan residue at position 238 affected binding of the Cbl substrate to the active site. Unlike the PduO family of ACATs, a single phenylalanine residue is not responsible for displacement of the α-ligand. Together, these data suggest that while EutT enzymes share a conserved ATP-binding motif and an intersubunit salt bridge with PduO family ACATs, class II EutT family ACATs utilize an unidentified mechanism for Cbl lower-ligand displacement and reduction that is different from that of PduO and CobA family ACATs.


Asunto(s)
Corrinoides/metabolismo , Listeria monocytogenes/enzimología , Aciltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/ultraestructura , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Catálisis , Dominio Catalítico , Cobalto/química , Cobamidas/metabolismo , Cinética , Limosilactobacillus reuteri/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Modelos Moleculares , Mutación , Transferasas/metabolismo
3.
Nat Commun ; 10(1): 4527, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586059

RESUMEN

Aldehyde-alcohol dehydrogenase (AdhE) is a key enzyme in bacterial fermentation, converting acetyl-CoA to ethanol, via two consecutive catalytic reactions. Here, we present a 3.5 Å resolution cryo-EM structure of full-length AdhE revealing a high-order spirosome architecture. The structure shows that the aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) active sites reside at the outer surface and the inner surface of the spirosome respectively, thus topologically separating these two activities. Furthermore, mutations disrupting the helical structure abrogate enzymatic activity, implying that formation of the spirosome structure is critical for AdhE activity. In addition, we show that this spirosome structure undergoes conformational change in the presence of cofactors. This work presents the atomic resolution structure of AdhE and suggests that the high-order helical structure regulates its enzymatic activity.


Asunto(s)
Alcohol Deshidrogenasa/ultraestructura , Aldehído Oxidorreductasas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Acetilcoenzima A/química , Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/aislamiento & purificación , Aldehído Oxidorreductasas/metabolismo , Microscopía por Crioelectrón , Pruebas de Enzimas , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Etanol/química , Mutación , Conformación Proteica en Hélice alfa/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
4.
Arch Biochem Biophys ; 579: 8-17, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26032336

RESUMEN

The first enzyme in the oxalocrotonate branch of the naphthalene-degradation lower pathway in Pseudomonas putida G7 is NahI, a 2-hydroxymuconate semialdehyde dehydrogenase which converts 2-hydroxymuconate semialdehyde to 2-hydroxymuconate in the presence of NAD(+). NahI is in family 8 (ALDH8) of the NAD(P)(+)-dependent aldehyde dehydrogenase superfamily. In this work, we report the cloning, expression, purification and preliminary structural and kinetic characterization of the recombinant NahI. The nahI gene was subcloned into a T7 expression vector and the enzyme was overexpressed in Escherichia coli ArcticExpress as a hexa-histidine-tagged fusion protein. After purification by affinity and size-exclusion chromatography, dynamic light scattering and small-angle X-ray scattering experiments were conducted to analyze the oligomeric state and the overall shape of the enzyme in solution. The protein is a tetramer in solution and has nearly perfect 222 point group symmetry. Protein stability and secondary structure content were evaluated by a circular dichroism spectroscopy assay under different thermal conditions. Furthermore, kinetic assays were conducted and, for the first time, KM (1.3±0.3µM) and kcat (0.9s(-1)) values were determined at presumed NAD(+) saturation. NahI is highly specific for its biological substrate and has no activity with salicylaldehyde, another intermediate in the naphthalene-degradation pathway.


Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/ultraestructura , NAD/química , Naftalenos/química , Pseudomonas putida/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Activación Enzimática , Estabilidad de Enzimas , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pseudomonas putida/genética , Proteínas Recombinantes , Especificidad por Sustrato
5.
J Struct Biol ; 128(2): 165-74, 1999 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10600570

RESUMEN

The acetyl-CoA decarbonylase/synthase (ACDS) complex is responsible for synthesis and cleavage of acetyl-CoA in methanogens. The complex is composed of five different subunits, with a probable stoichiometry of alpha(8)beta(8)gamma(8)delta(8)epsilon(8). The native molecular mass of a subcomponent of the ACDS complex from Methanosarcina thermophila, the Ni/Fe-S protein containing the 90-kDa alpha and 19-kDa epsilon subunits, was determined by scanning transmission electron microscopy. A value of 218.6 +/- 19.6 kDa (n = 566) was obtained, thus establishing that the oligomeric structure of this subcomponent is alpha(2)epsilon(2). The three-dimensional structure of alpha(2)epsilon(2) was determined at 26-A resolution by analysis of a large number of electron microscopic images of negatively stained, randomly oriented particles. The alpha(2)epsilon(2) subcomponent has a globular appearance, 110 A in diameter, and consists of two large, hemisphere-like masses that surround a hollow internal cavity. The two large masses are connected along one face by a bridge-like structure and have relatively less protein density joining them at other positions. The internal cavity has four main openings to the outside, one of which is directly adjacent to the bridge. The results are consistent with a structure in which the large hemispheric masses are assigned to the two alpha subunits, with epsilon(2) as the bridge forming a structural link between them. The structure of the alpha(2)epsilon(2) subcomponent is discussed in connection with biochemical data from gel filtration, crosslinking, and dissociation experiments and in the context of its function as a major component of the ACDS complex.


Asunto(s)
Aldehído Oxidorreductasas/química , Proteínas Hierro-Azufre/química , Methanosarcina/enzimología , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/ultraestructura , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Procesamiento de Imagen Asistido por Computador , Proteínas Hierro-Azufre/ultraestructura , Microscopía Electrónica de Rastreo , Complejos Multienzimáticos/ultraestructura , Conformación Proteica
6.
J Biol Chem ; 267(25): 18073-9, 1992 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-1325457

RESUMEN

The AdhE protein of Escherichia coli is a homopolymer of 96-kDa subunits harboring three Fe(2+)-dependent catalytic functions: acetaldehyde-CoA dehydrogenase, alcohol dehydrogenase, and pyruvate formatelyase (PFL) deactivase. By negative staining electron microscopy, we determined a helical assembly of 20-60 subunits into rods of 45-120 nm in length. The subunit packing is widened along the helix axis when Fe2+ and NAD are present. Chymotrypsin dissects the AdhE polypeptide between Phe762 and Ser763, thereby retaining the alcohol dehydrogenase activity on the NH2-terminal core, but destroying all other activities. PFL deactivation, i.e. quenching of the glycyl radical in PFL by the AdhE protein, was examined with respect to cofactor involvements (Fe2+, NAD, and CoA). This process is coupled to NAD reduction and requires the intact CoA sulfhydryl group. Pyruvate and NADH are inhibitors that affect the steady-state level of the radical form of PFL in a reconstituted interconversion cycle. Studies of cell cultures found that PFL deactivation in situ is initiated at redox potentials of greater than or equal to +100 mV. Our results provide insights into the structure/function organization of the AdhE multienzyme and give a rationale for how its PFL radical quenching activity may be suppressed in situ to enable effective glucose fermentation.


Asunto(s)
Acetiltransferasas/metabolismo , Alcohol Deshidrogenasa/ultraestructura , Aldehído Oxidorreductasas/ultraestructura , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Quimotripsina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de Escherichia coli , Radicales Libres , Genes Bacterianos , Cinética , Sustancias Macromoleculares , Microscopía Electrónica , Modelos Moleculares , Peso Molecular , Complejos Multienzimáticos/genética , Fragmentos de Péptidos/aislamiento & purificación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...