Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Wound Repair Regen ; 29(1): 189-195, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776615

RESUMEN

Great progresses have been made in comprehension of tissue regeneration process. However, one of the central questions in regeneration research remains to be deciphered is what factors initiate regenerative process. In present study, we focused on systematic profiling of early regulators in tissue regeneration via high-throughput screening on zebrafish caudal fin model. Firstly, 53 GO-annotated regeneration-related genes, which were specifically activated upon fin amputation, were identified according to the transcriptomic analysis. Moreover, qRT-PCR analysis of a couple of randomly selected genes from the aforementioned gene list validated our sequencing results. These studies confirmed the reliability of transcriptome sequencing analysis. Fibroblast growth factor 20a (fgf20a) is a key initial factor in the regeneration of zebrafish. Through a gene expression correlation analysis, we discovered a collection of 70 genes correlating with fgf20a, whose expression increased promptly at 2 days post amputation (dpa) and went down to the basal level until the completion of fin regeneration. In addition, two genes, socs3b and nppc, were chosen to investigate their functions during the fin regeneration. Inhibition of either of those genes significantly delayed the regenerative process. Taken together, we provided a simple and effective time-saving strategy that may serve as a tool for identifying early regulators in regeneration and identified 71 genes as early regulators of fin regeneration.


Asunto(s)
Aletas de Animales/fisiología , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Regeneración/genética , Herida Quirúrgica/genética , Cicatrización de Heridas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Amputación Quirúrgica , Aletas de Animales/cirugía , Animales , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/biosíntesis , ARN/genética , Transducción de Señal , Herida Quirúrgica/metabolismo , Herida Quirúrgica/patología , Proteínas de Pez Cebra/biosíntesis
2.
Mar Biotechnol (NY) ; 22(3): 333-347, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32080776

RESUMEN

Teleosts have the ability to regenerate their caudal fin upon amputation. A highly proliferative mass of undifferentiated cells called blastema forms beneath wound epidermis and differentiates to regenerate all missing parts of the fin. To date, the origin and fate of the blastema is not completely understood. However, current hypotheses suggest that the blastema is comprised of lineage-restricted dedifferentiated cells. To investigate the differentiation capacity of regenerating fin-derived cells, primary cultures were initiated from the explants of 2-days post-amputation (dpa) regenerates of juvenile gilthead seabream (Sparus aurata). These cells were subcultured for over 30 passages and were named as BSa2. After 10 passages they were characterized for their ability to differentiate towards different bone cell lineages and mineralize their extracellular matrix, through immunocytochemistry, histology, and RT-PCR. Exogenous DNA was efficiently delivered into these cells by nucleofection. Assessment of lineage-specific markers revealed that BSa2 cells were capable of osteo/chondroblastic differentiation. BSa2 cells were also found to be capable of osteoclastic differentiation, as demonstrated through TRAP-specific staining and pit resorption assay. Here, we describe the development of the first successful cell line viz., BSa2, from S. aurata 2-dpa regenerating caudal fins, which has the ability of multilineage differentiation and is capable of in vitro mineralization. The availability of such in vitro cell systems has the potential to stimulate research on the mechanisms of cell differentiation during fin regeneration and provide new insights into the mechanisms of bone formation.


Asunto(s)
Aletas de Animales/fisiopatología , Diferenciación Celular , Regeneración/fisiología , Dorada , Aletas de Animales/citología , Aletas de Animales/cirugía , Animales , Calcificación Fisiológica/fisiología , Línea Celular , Osteoblastos
3.
Dev Biol ; 455(1): 85-99, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325454

RESUMEN

The caudal fin of teleost fish regenerates fully within two weeks of amputation. While various cell lineages have been identified and characterized in the regenerating fin, the origin of bone cells remains debated. Here, we analysed collagen10a1 (col10a1) expressing cells in the regenerating fin of the medaka (Oryzias latipes) and tested whether they represent an alternative progenitor source for regenerating osteoblasts. Under normal conditions, col10a1 cells are positioned along fin ray segments and in intersegmental regions. Lineage tracing in the amputated fin revealed that col10a1 cells from the stump contribute to the regenerating bony fin rays. However, ablation of col10a1 cells did not abolish fin regeneration suggesting that col10a1 expressing osteoblast progenitors are dispensable for regeneration. Intriguingly, however, after ablation of osterix (osx)/sp7-col10a1 double-positive osteoblasts, col10a1 cells exclusively gave rise to joint cells in the intersegmental region thus identifying a pool of lineage-restricted joint progenitor cells. To identify additional sources for regenerating osteoblasts, we performed clonal lineage analysis. Our data provide the first evidence that after ablation of mature osteoblasts in medaka, transdifferentiation does not account for de novo osteoblast generation. Instead, our findings suggest the presence of lineage restricted progenitor pools in medaka, similar to the situation in zebrafish. After osteoblast ablation, these pools become activated and give rise to fin ray osteoblasts and intersegmental joint cells during regeneration. In summary, we conclude that col10a1-positive cells do not represent an exclusive source for osteoblasts but are progenitors of joint cells in the regenerating fin.


Asunto(s)
Colágeno Tipo X/genética , Proteínas de Peces/genética , Articulaciones/metabolismo , Oryzias/genética , Osteoblastos/metabolismo , Células Madre/metabolismo , Aletas de Animales/metabolismo , Aletas de Animales/fisiopatología , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Linaje de la Célula/genética , Colágeno Tipo X/metabolismo , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Articulaciones/citología , Oryzias/metabolismo , Oryzias/fisiología , Osteoblastos/citología , Regeneración/genética , Regeneración/fisiología , Células Madre/citología
4.
Sci Total Environ ; 653: 10-22, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30390549

RESUMEN

The ability to restore tissue function and morphology after injury is a key advantage of many fish for a greater chance of survival. The tissue regeneration process is regulated by multiple pathways, and it can therefore be hypothesized that environmental contaminants targeting components of these signaling pathways, may disrupt the fish's capability to repair or regenerate. This could lead to higher mortality and eventually even to a decline in populations. In this study, the effects of 17α­ethinylestradiol (EE2), a synthetic estrogen, were assessed on the regenerative capacity of larval zebrafish. Zebrafish aged 2 hour post fertilization (hpf) were exposed to 1, 10, or 100 ng/L EE2, and the caudal fins were amputated at 72 hpf. It was found that EE2 exposure significantly inhibited fin regeneration and changed locomotor behavior. The transcription levels for most of the genes involved in the signaling networks regulating the fin regeneration, such as axin2, fgfr1, bmp2b and igf2b, were down-regulated in the amputated fish in response to EE2 exposure, which was in contrast to their increased patterns in the vehicle-exposed control fish. Additionally, the mRNA levels of several immune-related genes, such as il-1ß, il-6, il-10 and nf-κb2, were significantly decreased after EE2 exposure, accompanied by a lower density of neutrophils migrated into the wound site. In conclusion, the present study indicated for the first time that estrogenic endocrine disrupting chemicals (EEDCs) could inhibit the regenerative capacity of zebrafish, and this effect was speculated to be mediated through the alteration in regeneration-related signaling pathways and immune competence. This work expands our knowledge of the potential effects of EEDCs on injured aquatic organisms, and highlights the ecotoxicological significance of relationships between regenerative process and endocrine system. This study also implies the potential application of fin regeneration assay for assessing immunotoxicity in ecotoxicological risk assessment.


Asunto(s)
Aletas de Animales/fisiología , Disruptores Endocrinos/efectos adversos , Etinilestradiol/efectos adversos , Regeneración/efectos de los fármacos , Contaminantes Químicos del Agua/efectos adversos , Pez Cebra/fisiología , Aletas de Animales/efectos de los fármacos , Aletas de Animales/cirugía , Animales , Movimiento Celular/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Leucocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Pez Cebra/cirugía
5.
Sci Rep ; 7(1): 8460, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814789

RESUMEN

Zebrafish have the capacity to regenerate lost tissues and organs. Amputation of the caudal fin results in a rapid, transient increase in H2O2 levels emanating from the wound margin, which is essential for regeneration, because quenching of reactive oxygen species blocks regeneration. Protein-tyrosine phosphatases (PTPs) have a central role in cell signalling and are susceptible to oxidation, which results in transient inactivation of their catalytic activity. We hypothesized that PTPs may become oxidized in response to amputation of the caudal fin. Using the oxidized PTP-specific (ox-PTP) antibody and liquid chromatography-mass spectrometry, we identified 33 PTPs in adult zebrafish fin clips of the total of 44 PTPs that can theoretically be detected based on sequence conservation. Of these 33 PTPs, 8 were significantly more oxidized 40 min after caudal fin amputation. Surprisingly, Shp2, one of the PTPs that were oxidized in response to caudal fin amputation, was required for caudal fin regeneration. In contrast, Rptpα, which was not oxidized upon amputation, was dispensable for caudal fin regeneration. Our results demonstrate that PTPs are differentially oxidized in response to caudal fin amputation and that there is a differential requirement for PTPs in regeneration.


Asunto(s)
Aletas de Animales/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Regeneración/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Amputación Quirúrgica , Aletas de Animales/cirugía , Animales , Isoenzimas/genética , Isoenzimas/metabolismo , Familia de Multigenes/genética , Mutación , Oxidación-Reducción , Proteínas Tirosina Fosfatasas/genética , Regeneración/genética , Homología de Secuencia de Aminoácido , Pez Cebra/genética , Pez Cebra/cirugía , Proteínas de Pez Cebra/genética
6.
Zebrafish ; 13(4): 256-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27096743

RESUMEN

Tissue regeneration requires not only the replacement of lost cells and tissues, but also the recreation of morphologies and patterns. Skin pigment pattern is a relatively simple system that can allow researchers to uncover the underlying mechanisms of pattern formation. To gain insight into how pigment patterns form, undergraduate students in the senior level course Developmental Biology designed an experiment that assayed pigment patterns in original and regenerated caudal fins of wild-type, striped, and mutant, spotted zebrafish. A majority of the WT fins regenerated with a similar striped pattern. In contrast, the pattern of spots even in the original fins of the mutants varied among individual fish. Similarly, the majority of the spots in the mutants did not regenerate with the same morphology, size, or spacing as the original fins. This was true even when only a small amount of fin was removed, leaving most of the fin to potentially reseed the pattern in the regenerating tissue. This suggests that the mechanism that creates the wild-type, striped pattern persists to recreate the pattern during regeneration. The mechanism that creates the spots in the mutants, however, must include an unknown element that introduces variability.


Asunto(s)
Aletas de Animales/fisiología , Pigmentación , Regeneración , Pez Cebra/fisiología , Aletas de Animales/cirugía , Animales , Pez Cebra/genética
7.
FASEB J ; 29(10): 4299-312, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26148971

RESUMEN

Zebrafish fin regeneration involves initial formation of the wound epidermis and the blastema, followed by tissue morphogenesis. The mechanisms coordinating differentiation of distinct tissues of the regenerate are poorly understood. Here, we applied pharmacologic and transgenic approaches to address the role of bone morphogenetic protein (BMP) signaling during fin restoration. To map the BMP transcriptional activity, we analyzed the expression of the evolutionarily conserved direct phospho-Smad1 target gene, id1, and its homologs id2a and id3. This analysis revealed the BMP activity in the distal blastema, wound epidermis, osteoblasts, and blood vessels of the regenerate. Blocking the BMP function with a selective chemical inhibitor of BMP type I receptors, DMH1, suppressed id1 and id3 expression and arrested regeneration after blastema formation. We identified several previously uncharacterized functions of BMP during fin regeneration. Specifically, BMP signaling is required for remodeling of plexus into structured blood vessels in the rapidly growing regenerate. It organizes the wound epithelium by triggering wnt5b expression and promoting Collagen XIV-A deposition into the basement membrane. BMP represents the first known signaling that induces actinotrichia formation in the regenerate. Our data reveal a multifaceted role of BMP for coordinated morphogenesis of distinct tissues during regeneration of a complex vertebrate appendage.


Asunto(s)
Aletas de Animales/metabolismo , Vasos Sanguíneos/metabolismo , Proteínas Morfogenéticas Óseas/genética , Epidermis/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Aletas de Animales/fisiopatología , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/crecimiento & desarrollo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Colágeno/genética , Colágeno/metabolismo , Epidermis/lesiones , Epidermis/fisiopatología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Morfogénesis/genética , Pirazoles/farmacología , Quinolinas/farmacología , Regeneración/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/metabolismo
8.
Trends Genet ; 31(6): 336-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25929514

RESUMEN

In contrast to mammals, adult salamanders and fish can completely regenerate their appendages after amputation. The cellular and molecular mechanisms underlying this fascinating phenomenon are beginning to emerge, including substantial progress in the identification of signals that control regenerative growth of the zebrafish caudal fin. Despite the fairly simple architecture of the fin, the regulation of its regeneration is complex. Many signals, including fibroblast growth factor (FGF), Wnt, Hedgehog (Hh), retinoic acid (RA), Notch, bone morphogenic protein (BMP), activin, and insulin-like growth factor (IGF), are required for regeneration. Much work needs to be done to dissect tissue-specific functions of these pathways and how they interact, but Wnt/ß-catenin signaling is already emerging as a central player. Surprisingly, Wnt/ß-catenin signaling appears to largely indirectly control epidermal patterning, progenitor cell proliferation, and osteoblast maturation via regulation of a multitude of secondary signals.


Asunto(s)
Aletas de Animales/metabolismo , Redes Reguladoras de Genes , Regeneración/genética , Transducción de Señal/genética , Pez Cebra/genética , Amputación Quirúrgica , Aletas de Animales/fisiología , Aletas de Animales/cirugía , Animales , Expresión Génica , Modelos Genéticos , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
9.
Molecules ; 18(2): 2052-60, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23385341

RESUMEN

The aim of this study was to investigate novel chalcones with potent anti-inflammatory activities in vivo. Chalcone and two chalcone analogues (compound 5 and 9) were evaluated using a caudal fin-wounded transgenic zebrafish line "Tg(mpx:gfp)" to visualize the effect of neutrophil recruitment dynamically. Results showed that treatment with compound 9 not only affected wound-induced neutrophil recruitment, but also affected Mpx enzymatic activity. Moreover, protein expression levels of pro-inflammatory factors (Mpx, NFκB, and TNFα) were also regulated by compound 9. Taken together, our results provide in vivo evidence of the anti-inflammatory effects of synthesized chalcone analogues on wound-induced inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Chalcona/análogos & derivados , Chalcona/farmacología , Pez Cebra/metabolismo , Aletas de Animales/cirugía , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Chalcona/síntesis química , Chalcona/química , Larva/efectos de los fármacos , Larva/enzimología , Modelos Animales , Infiltración Neutrófila/efectos de los fármacos , Peroxidasa/metabolismo , Cicatrización de Heridas/efectos de los fármacos
10.
Dev Growth Differ ; 55(2): 282-300, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23350700

RESUMEN

The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well-known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1-4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature-dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage-specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn-fgfr1:EGFP)(pd1) completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn-fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn-fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin-positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).


Asunto(s)
Aletas de Animales/fisiología , Estructuras Animales/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Regeneración/fisiología , Proteínas de Pez Cebra/fisiología , Amputación Quirúrgica , Aletas de Animales/metabolismo , Aletas de Animales/cirugía , Estructuras Animales/metabolismo , Estructuras Animales/cirugía , Animales , Animales Modificados Genéticamente , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía Fluorescente , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Regeneración/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Temperatura , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
11.
Arterioscler Thromb Vasc Biol ; 31(7): 1589-97, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21527751

RESUMEN

OBJECTIVE: The vascular competence of human-derived hematopoietic progenitors for postnatal vascularization is still poorly characterized. It is unclear whether, in the absence of ischemia, hematopoietic progenitors participate in neovascularization and whether they play a role in new blood vessel formation by incorporating into developing vessels or by a paracrine action. METHODS AND RESULTS: In the present study, human cord blood-derived CD34(+) (hCD34(+)) cells were transplanted into pre- and postgastrulation zebrafish embryos and in an adult vascular regeneration model induced by caudal fin amputation. When injected before gastrulation, hCD34(+) cells cosegregated with the presumptive zebrafish hemangioblasts, characterized by Scl and Gata2 expression, in the anterior and posterior lateral mesoderm and were involved in early development of the embryonic vasculature. These morphogenetic events occurred without apparent lineage reprogramming, as shown by CD45 expression. When transplanted postgastrulation, hCD34(+) cells were recruited into developing vessels, where they exhibited a potent paracrine proangiogenic action. Finally, hCD34(+) cells rescued vascular defects induced by Vegf-c in vivo targeting and enhanced vascular repair in the zebrafish fin amputation model. CONCLUSIONS: These results indicate an unexpected developmental ability of human-derived hematopoietic progenitors and support the hypothesis of an evolutionary conservation of molecular pathways involved in endothelial progenitor differentiation in vivo.


Asunto(s)
Aletas de Animales/irrigación sanguínea , Antígenos CD34/análisis , Diferenciación Celular , Trasplante de Células Madre de Sangre del Cordón Umbilical , Células Endoteliales/trasplante , Sangre Fetal/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Neovascularización Fisiológica , Pez Cebra , Amputación Quirúrgica , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Células CACO-2 , Diferenciación Celular/efectos de los fármacos , Movimiento Celular , Células Endoteliales/inmunología , Sangre Fetal/inmunología , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/inmunología , Humanos , Comunicación Paracrina , Fenotipo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Regeneración , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Genesis ; 48(8): 505-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506187

RESUMEN

We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)-mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into one cell-stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP-positive cells were also detected in adult fish, and were found associated with regenerating fin rays post-amputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton.


Asunto(s)
Regeneración Ósea/genética , Organogénesis/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Aletas de Animales/fisiología , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Condrocitos/metabolismo , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Oído/embriología , Oído/crecimiento & desarrollo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Larva/genética , Larva/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...