Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 596: 76-82, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35121372

RESUMEN

OBJECTIVE: Nonalcoholic steatohepatitis (NASH) is a disease entity with an increasing incidence, with involvement of several metabolic pathways. Various organs, including the liver, kidneys, and the vasculature, are damaged in NASH, indicating the urgent need to develop a standard therapy. Therefore, this study was conducted to investigate the effects of drugs targeting various metabolic pathways and their combinations on a high-fat diet (HFD)-induced NASH medaka model. METHODS: To investigate the effects of drugs on vascular structures, the NASH animal model was developed using the fli::GFP transgenic medaka fed with HFD at 20 mg/fish daily. The physiological changes, histological changes in the liver, vascular structures in the fin, and serum biochemical markers were evaluated in a time-dependent manner after treatment with selective peroxisome proliferator-activated receptor α modulator (pemafibrate), statin (pitavastatin), sodium-glucose cotransporter 2 inhibitor (tofogliflozin), and their combinations. Furthermore, to determine the mechanisms underlying the effects, whole transcriptome sequencing was conducted using medaka liver samples. RESULTS: Histological analyses revealed significant suppression of fat accumulation and fibrotic changes in the liver after treatment with drugs and their combinations. The expression levels of steatosis- and fibrosis-related genes were modified by the treatments. Moreover, the HFD-induced vascular damages in the fin exhibited milder changes after treatment with the drugs. CONCLUSION: The effects of treating various metabolic pathways on the medaka body, liver, and vascular structures of the NASH medaka model were evidenced. Moreover, to our knowledge, this study is the first to report whole genome sequence and gene expression evaluation of medaka livers, which could be helpful in clarifying the molecular mechanisms of drugs.


Asunto(s)
Aletas de Animales/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/genética , Oryzias/genética , PPAR alfa/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Aletas de Animales/irrigación sanguínea , Animales , Animales Modificados Genéticamente , Compuestos de Bencidrilo/farmacología , Benzoxazoles/farmacología , Butiratos/farmacología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ontología de Genes , Glucósidos/farmacología , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oryzias/metabolismo , PPAR alfa/metabolismo , Quinolinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Secuenciación del Exoma/métodos
2.
Sci Rep ; 11(1): 19520, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593884

RESUMEN

Although well investigated, the importance of collagen fibers in supporting angiogenesis is not well understood. In this study, we demonstrate that extracellular collagen fibers provide guidance cues for endothelial cell migration during regenerative angiogenesis in the caudal zebrafish fin. Inhibition of collagen cross-linking by ß-Aminopropionitrile results in a 70% shorter regeneration area with 50% reduced vessel growth and disintegrated collagen fibers. The disrupted collagen scaffold impedes endothelial cell migration and induces formation of abnormal angioma-like blood vessels. Treatment of the Fli//colRN zebrafish line with the prodrug Nifurpirinol, which selectively damages the active collagen-producing 1α2 cells, reduced the regeneration area and vascular growth by 50% with wider, but less inter-connected, capillary segments. The regenerated area contained larger vessels partially covered by endothelial cells embedded in atypical extracellular matrix containing cell debris and apoptotic bodies, macrophages and granulocytes. Similar experiments performed in early embryonic zebrafish suggested that collagens are important also during embryonic angiogenesis. In vitro assays revealed that collagen I allows for the most efficient endothelial cell migration, followed by collagen IV relative to the complete absence of exogenous matrix support. Our data demonstrates severe vascular defects and restricted fin regeneration when collagens are impaired. Collagen I therefore, provides support and guidance for endothelial cell migration while collagen IV is responsible for proper lumen formation and vascular integrity.


Asunto(s)
Capilares , Colágenos Fibrilares/metabolismo , Neovascularización Fisiológica , Regeneración , Pez Cebra , Aletas de Animales/irrigación sanguínea , Aletas de Animales/metabolismo , Aletas de Animales/ultraestructura , Animales , Biomarcadores , Línea Celular , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Endoteliales , Colágenos Fibrilares/genética , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Cicatrización de Heridas/genética
3.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R89-R97, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31692366

RESUMEN

Convective water flow across respiratory epithelia in water-breathing organisms maintains transcutaneous oxygen (O2) partial pressure (Po2) gradients that drive O2 uptake. Following hatch, larval fishes lack a developed gill and the skin is the dominant site of gas transfer, yet few studies have addressed the contribution of convective water flow to cutaneous O2 uptake in larvae. We hypothesized that the pectoral fins, which can generate water flow across the skin in larvae, promote transcutaneous O2 transfer and thus aid in O2 uptake. In zebrafish (Danio rerio), the frequency of pectoral fin movements increased in response to hypoxia at 4 days postfertilization (dpf), but the response was blunted by 15 dpf, when the gills become the dominant site of O2 uptake, and was absent by 21 dpf. In rainbow trout (Oncorhynchus mykiss), Po2 measured at the skin surface of ventilating larvae was lower when the pectoral fins had been surgically removed, directly demonstrating that fins contribute to convective flow that dissipates cutaneous Po2 boundary layers. Lack of pectoral fins compromised whole animal O2 consumption in trout during hypoxia, but this effect was absent in zebrafish. Overall, our findings support a respiratory role of the pectoral fins in rainbow trout, but their involvement in zebrafish remains equivocal.


Asunto(s)
Aletas de Animales/irrigación sanguínea , Aletas de Animales/fisiología , Oncorhynchus mykiss/embriología , Consumo de Oxígeno/fisiología , Animales , Larva/fisiología , Oncorhynchus mykiss/fisiología , Oxígeno/química , Pez Cebra
4.
Wound Repair Regen ; 27(4): 375-385, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31017740

RESUMEN

The zebrafish is a vertebrate organism capable of regenerating many of its organs. Notably, it can undergo epimorphic regeneration of its fins after amputation. This process occurs through the formation of a wound epithelium and the dedifferentiation of mesenchymal and bone-forming cells, which form a proliferative blastema. Here, we report that the entry into the regenerative process involves the local synthesis of serotonin (5-hydroxytryptamine, 5-HT) in the injury-associated tissue. One day after wounding, intracellular accumulation of serotonin was induced in the stump below the amputation plane. During blastema formation, serotonin was detected in the mesenchyme at the vicinity of the amputation plane and in the apical wound epithelium. During the advanced outgrowth phase, this monoamine was no longer present in the blastema, suggesting a temporal involvement of serotonin in the postinjury area. We show the expression of two serotonin synthesizing enzymes, tryptophan hydroxylase 1a and 1b in the blastema, suggesting the local production of this monoamine. Neither depletion of serotonin by chemical inhibition of tryptophan hydroxylase, nor ectopic administration of this monoamine affected fin regeneration, indicating it does not play a role during this process. Finally, we found that the presence of serotonin during regeneration depends on fibroblast growth factor and retinoic acid signaling. Overall, our study demonstrates that the initiation of fin regeneration is associated with a transient synthesis of serotonin in the regrowing tissue.


Asunto(s)
Muñones de Amputación , Aletas de Animales/fisiología , Regeneración/fisiología , Serotonina/biosíntesis , Pez Cebra/fisiología , Muñones de Amputación/irrigación sanguínea , Aletas de Animales/irrigación sanguínea , Animales , Diferenciación Celular , Proliferación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Transducción de Señal , Cicatrización de Heridas/fisiología
5.
Sci Rep ; 6: 33601, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27640676

RESUMEN

Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25-100 µm wide) and minibeams (200-800 µm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a(+) thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.


Asunto(s)
Plaquetas/efectos de la radiación , Vasos Sanguíneos/patología , Infiltración Neutrófila/efectos de la radiación , Adhesividad Plaquetaria/efectos de la radiación , Sincrotrones , Aletas de Animales/irrigación sanguínea , Aletas de Animales/efectos de la radiación , Aletas de Animales/ultraestructura , Animales , Tejido Conectivo/patología , Hemostasis , Inflamación/patología , Perfusión , Pez Cebra
6.
Oncotarget ; 7(11): 12102-20, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26933814

RESUMEN

Hypoxia Inducible Factor (HIF) is the main transcription factor that mediates cell response to hypoxia. Howeverthe complex factor cascades induced by HIF during regenerative angiogenesis are currently incompletely mapped and the biological outcome mediated by chronic HIF induction during vessel regeneration are not well known. Here, we investigated the biological impact of HIF induction on vascular regeneration and identified the differentially regulated genes during regeneration, HIF induction and hypoxic regeneration. The use of the fin zebrafish regeneration model revealed that exposure to HIF inducer (cobalt chloride) prevents vessel differentiation by maintaining their vascular plexuses in an immature state. The regenerated fins are easily breakable, lacking completely endochondral ossification. Gene expression arrays combined to gene functional enrichment analysis revealed that regenerative process and HIF induction shared the regulation of common genes mainly involved in DNA replication and proteasome complex. HIF induction during regeneration affected the expression of exclusive genes involved in cell differentiation and communication, consistent with the observed immature vascular plexuses of the regenerated fins during HIF induction. The use of morpholino (MO) knockdown strategy revealed that the expression of some of these genes such as tubulin and col10a1 are required for fin regeneration. Taken together, this study revealed the impact of HIF induction on regenerative angiogenesis and provided a framework to develop a gene network leading to regenerative process during HIF expression.


Asunto(s)
Aletas de Animales/irrigación sanguínea , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Regeneración/fisiología , Aletas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología , Hipoxia de la Célula/fisiología , Cobalto/farmacología , Factor 1 Inducible por Hipoxia/biosíntesis , Neovascularización Fisiológica/fisiología , Transducción de Señal , Pez Cebra
7.
PLoS One ; 11(3): e0149281, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950851

RESUMEN

BACKGROUND: Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. OBJECTIVE: To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. APPROACH & RESULTS: Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. CONCLUSIONS: The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.


Asunto(s)
Aletas de Animales/irrigación sanguínea , Microscopía/métodos , Neovascularización Fisiológica , Pez Cebra , Aletas de Animales/efectos de los fármacos , Aletas de Animales/fisiología , Animales , Análisis Costo-Beneficio , Microscopía/economía , Neovascularización Fisiológica/efectos de los fármacos , Ftalazinas/farmacología , Piridinas/farmacología , Regeneración/efectos de los fármacos , Cola (estructura animal) , Factores de Tiempo
8.
Nat Commun ; 5: 5758, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25502622

RESUMEN

Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.


Asunto(s)
Arterias/crecimiento & desarrollo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Neovascularización Fisiológica , Receptores CXCR4/metabolismo , Venas/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/irrigación sanguínea , Aletas de Animales/citología , Aletas de Animales/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Arterias/citología , Arterias/metabolismo , Linaje de la Célula/genética , Movimiento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células Endoteliales/citología , Endotelio Vascular/citología , Endotelio Vascular/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Ratones , Receptores CXCR4/genética , Retina/citología , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo , Venas/citología , Venas/metabolismo , Grabación en Video , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
9.
Development ; 140(21): 4323-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089472

RESUMEN

Sexually dimorphic breeding tubercles (BTs) are keratinized epidermal structures that form clusters on the dorsal surface of the anterior rays of zebrafish male pectoral fins. BTs appear during sexual maturation and are maintained through regular shedding and renewal of the keratinized surface. Following pectoral fin amputation, BT clusters regenerate after the initiation of revascularization, but concomitantly with a second wave of angiogenesis. This second wave of regeneration forms a web-like blood vessel network that penetrates the supportive epidermis of BTs. Upon analyzing the effects of sex steroids and their inhibitors, we show that androgens induce and estrogens inhibit BT cluster formation in intact and regenerating pectoral fins. Androgen-induced BT formation in females is accompanied by the formation of a male-like blood vessel network. Treatment of females with both androgens and an angiogenesis inhibitor results in the formation of undersized BT clusters when compared with females treated with androgens alone. Overall, the growth and regeneration of large BTs requires a hormonal stimulus and the presence of an additional blood vessel network that is naturally found in males.


Asunto(s)
Andrógenos/metabolismo , Aletas de Animales/fisiología , Neovascularización Fisiológica/fisiología , Regeneración/fisiología , Caracteres Sexuales , Pez Cebra/fisiología , Aletas de Animales/irrigación sanguínea , Aletas de Animales/metabolismo , Animales , Cartilla de ADN/genética , Células Epidérmicas , Femenino , Histocitoquímica , Queratinocitos/metabolismo , Masculino , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Development ; 139(16): 2916-25, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22791899

RESUMEN

Fins and limbs, which are considered to be homologous paired vertebrate appendages, have obvious morphological differences that arise during development. One major difference in their development is that the AER (apical ectodermal ridge), which organizes fin/limb development, transitions into a different, elongated organizing structure in the fin bud, the AF (apical fold). Although the role of AER in limb development has been clarified in many studies, little is known about the role of AF in fin development. Here, we investigated AF-driven morphogenesis in the pectoral fin of zebrafish. After the AER-AF transition at ∼36 hours post-fertilization, the AF was identifiable distal to the circumferential blood vessel of the fin bud. Moreover, the AF was divisible into two regions: the proximal AF (pAF) and the distal AF (dAF). Removing the AF caused the AER and a new AF to re-form. Interestingly, repeatedly removing the AF led to excessive elongation of the fin mesenchyme, suggesting that prolonged exposure to AER signals results in elongation of mesenchyme region for endoskeleton. Removal of the dAF affected outgrowth of the pAF region, suggesting that dAF signals act on the pAF. We also found that the elongation of the AF was caused by morphological changes in ectodermal cells. Our results suggest that the timing of the AER-AF transition mediates the differences between fins and limbs, and that the acquisition of a mechanism to maintain the AER was a crucial evolutionary step in the development of tetrapod limbs.


Asunto(s)
Aletas de Animales/embriología , Pez Cebra/embriología , Aletas de Animales/irrigación sanguínea , Animales , Animales Modificados Genéticamente , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Secuencia de Bases , Evolución Biológica , Forma de la Célula , Cartilla de ADN/genética , Ectodermo/citología , Ectodermo/embriología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 31(7): 1589-97, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21527751

RESUMEN

OBJECTIVE: The vascular competence of human-derived hematopoietic progenitors for postnatal vascularization is still poorly characterized. It is unclear whether, in the absence of ischemia, hematopoietic progenitors participate in neovascularization and whether they play a role in new blood vessel formation by incorporating into developing vessels or by a paracrine action. METHODS AND RESULTS: In the present study, human cord blood-derived CD34(+) (hCD34(+)) cells were transplanted into pre- and postgastrulation zebrafish embryos and in an adult vascular regeneration model induced by caudal fin amputation. When injected before gastrulation, hCD34(+) cells cosegregated with the presumptive zebrafish hemangioblasts, characterized by Scl and Gata2 expression, in the anterior and posterior lateral mesoderm and were involved in early development of the embryonic vasculature. These morphogenetic events occurred without apparent lineage reprogramming, as shown by CD45 expression. When transplanted postgastrulation, hCD34(+) cells were recruited into developing vessels, where they exhibited a potent paracrine proangiogenic action. Finally, hCD34(+) cells rescued vascular defects induced by Vegf-c in vivo targeting and enhanced vascular repair in the zebrafish fin amputation model. CONCLUSIONS: These results indicate an unexpected developmental ability of human-derived hematopoietic progenitors and support the hypothesis of an evolutionary conservation of molecular pathways involved in endothelial progenitor differentiation in vivo.


Asunto(s)
Aletas de Animales/irrigación sanguínea , Antígenos CD34/análisis , Diferenciación Celular , Trasplante de Células Madre de Sangre del Cordón Umbilical , Células Endoteliales/trasplante , Sangre Fetal/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Neovascularización Fisiológica , Pez Cebra , Amputación Quirúrgica , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Células CACO-2 , Diferenciación Celular/efectos de los fármacos , Movimiento Celular , Células Endoteliales/inmunología , Sangre Fetal/inmunología , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/inmunología , Humanos , Comunicación Paracrina , Fenotipo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Regeneración , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA