Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39136676

RESUMEN

A novel, Gram-positive, facultatively anaerobic, and non-motile bacterial strain, designated B2T-5T, was isolated from jeotgal, a traditional Korean fermented seafood. Colonies grown on gifu anaerobic medium agar plates were cream-coloured, irregular, and umbonate with curled margins. Optimal growth of strain B2T-5T occurred at 20 °C, pH 8.0, and in the presence of 1% (w/v) NaCl. Strain B2T-5T was negative for oxidase and catalase activity. Hippurate was not hydrolysed and acetoin was not produced. The major cellular fatty acids were C18 : 1 ω9c and C16 : 0. The cell-wall peptidoglycan was of the A4α type containing l-Lys-d-Asp. The predominant respiratory quinone was menaquinone 7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylcholine. According to the phylogenetic analysis based on 16S rRNA gene sequences, strain B2T-5T was most closely related to Vagococcus teuberi DSM 21459T, showing 98.2% sequence similarity. Genome sequencing of strain B2T-5T revealed a genome size of 2.0 Mbp and a G+C content of 33.8 mol%. The average nucleotide identities of strain B2T-5T with Vagococcus teuberi DSM 21459T, Vagococcus bubulae SS1994T, and Vagococcus martis D7T301T were 75.0, 74.7, and 75.1%, respectively. Based on the phenotypic, chemotaxonomic, and genotypic data, strain B2T-5T represents a novel species of the genus Vagococcus, for which the name Vagococcus jeotgali sp. nov. is proposed. The type strain is B2T-5T (=KCTC 21223T=JCM 35937T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Alimentos Fermentados , Peptidoglicano , Filogenia , ARN Ribosómico 16S , Alimentos Marinos , Análisis de Secuencia de ADN , Vitamina K 2 , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Alimentos Marinos/microbiología , ADN Bacteriano/genética , República de Corea , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Animales , Alimentos Fermentados/microbiología , Secuenciación Completa del Genoma , Enterococcaceae/aislamiento & purificación , Enterococcaceae/genética , Enterococcaceae/clasificación , Genoma Bacteriano , Fermentación , Microbiología de Alimentos
2.
J Agric Food Chem ; 72(32): 18089-18099, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39102436

RESUMEN

Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.


Asunto(s)
Bacteriocinas , Enterococcus , Fermentación , Alimentos Fermentados , Listeria monocytogenes , Probióticos , Enterococcus/metabolismo , Enterococcus/genética , Probióticos/metabolismo , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/crecimiento & desarrollo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Microbiología de Alimentos , Inocuidad de los Alimentos
3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39066493

RESUMEN

AIMS: Microbial transformation to modify saponins and enhance their biological activities has received increasing attention in recent years. This study aimed to screen the strain that can biotransform notoginsenoside R1, identify the product and study its biological activity. METHODS AND RESULTS: A lactic acid bacteria strain S165 with glycosidase-producing activity was isolated from traditional Chinese fermented foods, which was identified and grouped according to API 50 CHL kit and 16S rDNA sequence analysis. Subsequently, notoginsenoside R1 underwent a 30-day fermentation period by the strain S165, and the resulting products were analyzed using High-performance liquid chromatography (HPLC), Ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS)/MS, and 13C-Nuclear magnetic resonance (NMR) techniques. Employing a model of Lipopolysaccharide (LPS)-induced damage to Caco-2 cells, the damage of Caco-2 cells was detected by Hoechst 33 258 staining, and the activity of notoginsenoside R1 biotransformation product was investigated by CCK-8 and western blotting assay. The strain S165 was identified as Lactiplantibacillus plantarum and was used to biotransform notoginsenoside R1. Through a 30-day biotransformation, L. plantarum S165 predominantly converts notoginsenoside R1 into 3ß,12ß-dihydroxydammar-(E)-20(22),24-diene-6-O-ß-D-xylopyranosyl-(1→2)-ß-D-glucopyranoside, temporarily named notoginsenoside T6 (NGT6) according to HPLC, UPLC-MS/MS, and 13C-NMR analysis. Results from CCK-8 and Hoechst 33258 staining indicated that the ability notoginsenoside T6 to alleviate the intestinal injury induced by LPS in the Caco-2 cell was stronger than that of notoginsenoside R1. In addition, Western blotting result showed that notoginsenoside T6 could prevent intestinal injury by protecting tight junction proteins (Claudin-1, Occludin, and ZO-1). CONCLUSION: Notoginsenoside R1 was biotransformed into the notoginsenoside T6 by L. plantarum S165, and the biotransformed product showed an enhanced intestinal protective effect in vitro.


Asunto(s)
Ginsenósidos , Lipopolisacáridos , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Humanos , Células CACO-2 , Lipopolisacáridos/metabolismo , Fermentación , Biotransformación , Cromatografía Líquida de Alta Presión , Lactobacillus plantarum/metabolismo , Alimentos Fermentados/microbiología
4.
Food Res Int ; 191: 114738, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059928

RESUMEN

Salt-tolerant proteases with remarkable stability are highly desirable biocatalysts in the salt-fermented food industry. In this study, the undigested autocleavage product of HlyA (halolysin A), a low-salt adapted halolysin from halophilic archaeon Halococcus salifodinae, was investigated. HlyA underwent autocleavage of its C-terminal extension (CTE) at temperatures over 40 °C or NaCl concentrations below 2 M to yield HlyAΔCTE. HlyAΔCTE demonstrated robust stability over a wide range of -20-60 °C, 0.5-4 M NaCl, and pH 6.0-10.0 for at least 72 h. Notably, HlyAΔCTE is the first reported halolysin with such exceptional stability. Compared with HlyA, HlyAΔCTE preferred high temperatures (50-75 °C), low salinities (0.5-2.5 M NaCl), and near-neutral (pH 6.5-8.0) conditions to achieve high activity, consistently with its production conditions. HlyAΔCTE displayed a higher Vmax value against azocasein than HlyA. During fish sauce fermentation, HlyAΔCTE significantly enhanced fish protein hydrolysis, indicating its potential as a robust biocatalyst in the salt-fermented food industry.


Asunto(s)
Fermentación , Alimentos Fermentados , Cloruro de Sodio , Alimentos Fermentados/microbiología , Cloruro de Sodio/química , Estabilidad de Enzimas , Productos Pesqueros/análisis , Concentración de Iones de Hidrógeno , Halococcus/metabolismo , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Péptido Hidrolasas/metabolismo , Temperatura
5.
Int J Food Microbiol ; 422: 110826, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39024730

RESUMEN

This study investigated the safety characteristics and potential probiotic properties of Enterococcus faecium by using whole genome analysis, and then explored the effect of this strain on the virulence of Listeria monocytogenes in vitro and during the storage of fermented sausages. Results showed that E. faecium B1 presented enterocin A, B, and P, enterolysin A, and UviB, and the exotoxin related genes and exoenzyme related genes were not detected in the genome of E. faecium B1. However, the adherence genes including acm and scm were present in this strain, which also positively correlated with characteristics related to probiotic potential. In addition, E. faecium could adapt to the condition of fermented sausages, and decrease the survival of L. monocytogenes in vitro and in vivo. The expression of the virulence genes (prfA, hly, inlA, and inlB) and sigB-related genes (prli42, rsbT, rsbU, rsbV, rsbW, and sigB) were all inhibited by E. faecium B1 to different extents during the storage of fermented sausages at 4 °C. Moreover, compared with the E. faecium B1 group, the expression level of entA, entB, and entP genes of E. faecium B1 in the co-culture of fermented sausages was increased during the storage, which may be the inhibition mechanism of E. faecium B1 on L. monocytogenes. These results demonstrated that E. faecium B1 could potentially be used as bio-protection to control L. monocytogenes in meat products.


Asunto(s)
Enterococcus faecium , Fermentación , Microbiología de Alimentos , Listeria monocytogenes , Productos de la Carne , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Enterococcus faecium/genética , Enterococcus faecium/patogenicidad , Productos de la Carne/microbiología , Virulencia/genética , Animales , Genoma Bacteriano , Probióticos , Almacenamiento de Alimentos , Factores de Virulencia/genética , Secuenciación Completa del Genoma , Alimentos Fermentados/microbiología , Ratones , Porcinos
6.
Curr Microbiol ; 81(8): 250, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951184

RESUMEN

Nukadoko, a fermented rice bran employed in traditional Japanese pickling, uses lactic acid bacteria to ferment vegetables. Here, we report the microbial and chemical data of a mixture of matured 150-year-old nukadoko and commercially available rice bran placed in two open environments over 29 days. Across the two environments, Loigolactobacillus was identified as the dominant microbial genera in the later stages of fermentation in nukadoko. The period of increase in the relative abundance of Loigolactobacillus correlated with a decrease in pH and Oxidation-Reduction Potential (ORP) values. While the two environments showed a difference in the rate of change in microbial diversity, they shared the common process through which Loigolactobacillus outcompeted adventitious bacteria in nukadoko, as indicated by the alpha and beta diversity index. Thus, the similarities in microbial and chemical data across two open environments during fermentation using starters indicate that starters contribute to the stability of fermentation in open environments.


Asunto(s)
Fermentación , Oryza , Oryza/microbiología , Alimentos Fermentados/microbiología , Concentración de Iones de Hidrógeno , Microbiología de Alimentos
7.
J Agric Food Chem ; 72(28): 15841-15853, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957116

RESUMEN

Aflatoxin B1 (AFB1), a mycotoxin and natural carcinogen, commonly contaminates cereals and animal feeds, posing serious health risks to human and animal. In this study, Bacillus amyloliquefaciens ZG08 isolated from kimchi could effectively remove 80.93% of AFB1 within 72 h at 37 °C and pH 7.0. Metabolome and transcriptome analysis showed that metabolic processes including glycerophospholipid metabolism and amino acid metabolism were most affected in B. amyloliquefaciens ZG08 exposed to AFB1. The adaptation mechanism likely involved activation of the thioredoxin system to restore intracellular redox equilibrium. The key genes, tpx and gldA, overexpressed in Escherichia coli BL21, achieved degradation rates of 60.15% and 47.16% for 100 µg/kg AFB1 under optimal conditions of 37 °C and pH 8.0 and 45 °C and pH 7.0, respectively. The degradation products, identified as AFD1, were less cytotoxic than AFB1 in HepG2 cells. These findings suggest potential strategies for utilizing probiotics and engineered enzymes in AFB1 detoxification.


Asunto(s)
Aflatoxina B1 , Bacillus amyloliquefaciens , Proteínas Bacterianas , Biodegradación Ambiental , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/química , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Células Hep G2 , Alimentos Fermentados/microbiología , Multiómica
8.
J Agric Food Chem ; 72(32): 17730-17745, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078823

RESUMEN

Lactobacilli fermentation possesses special nutritional and health values to food, especially in improving diseases related to the gut microbiota such as osteoporosis risk. Previous research indicates that lactobacilli-fermented foods have the potential to enhance the bone mineral density (BMD), as suggested by some clinical studies. Nonetheless, there is currently a lack of comprehensive summaries of the effects and potential mechanisms of lactobacilli-fermented foods on BMD. This review summarizes findings from preclinical and clinical studies, revealing that lactobacilli possess the potential to mitigate age-related and secondary factor-induced bone loss. Furthermore, these findings imply that lactobacilli are likely mediated through the modulation of bone remodeling via gut inflammation-related pathways. Additionally, lactobacilli fermentation may augment calcium accessibility through directly promoting calcium absorption or modifying food constituents. Considering the escalating global health challenge of bone-related issues among the elderly population, this review may offer a valuable reference for the development of food strategies aimed at preventing osteoporosis.


Asunto(s)
Densidad Ósea , Fermentación , Alimentos Fermentados , Lactobacillus , Osteoporosis , Humanos , Animales , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Lactobacillus/metabolismo , Microbioma Gastrointestinal , Probióticos
9.
Nutrients ; 16(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064654

RESUMEN

Lacticaseibacillus spp. are genetically close lactic acid bacteria species widely used in fermented products for their technological properties as well as their proven beneficial effects on human and animal health. This study, the first to include such a large collection of heterogeneous isolates (121) obtained from international collections belonging to Lacticaseibacillus paracasei, aimed to characterize the safety traits and technological properties of this important probiotic species, also making comparisons with other genetically related species, such as Lacticaseibacillus casei and Lacticaseibacillus zeae. These strains were isolated from a variety of heterogeneous sources, including dairy products, sourdoughs, wine, must, and human body excreta. After a preliminary molecular characterization using repetitive element palindromic PCR (Rep-PCR), Random Amplification of Polymorphic DNA (RAPD), and Sau-PCR, particular attention was paid to safety traits, evaluating antibiotic resistance profiles, biogenic amine (BA) production, the presence of genes related to the production of ethyl carbamate and diaminobenzidine (DAB), and multicopper oxidase activity (MCO). The technological characteristics of the strains, such as the capability to grow at different NaCl and ethanol concentrations and different pH values, were also investigated, as well as the production of bacteriocins. From the obtained results, it was observed that strains isolated from the same type of matrix often shared similar genetic characteristics. However, phenotypic traits were strain-specific. This underscored the vast potential of the different strains to be used for various purposes, from probiotics to bioprotective and starter cultures for food and feed production, highlighting the importance of conducting comprehensive evaluations to identify the most suitable strain for each purpose with the final aim of promoting human health.


Asunto(s)
Microbiología de Alimentos , Lacticaseibacillus paracasei , Probióticos , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Humanos , Aminas Biogénicas/metabolismo , Fermentación , Alimentos Fermentados/microbiología , Técnica del ADN Polimorfo Amplificado Aleatorio , Farmacorresistencia Bacteriana/genética
10.
J Microbiol Biotechnol ; 34(7): 1443-1451, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38960875

RESUMEN

Weizmannia coagulans can be used as a starter strain in fermented foods or as a probiotic. However, it is salt-sensitive. Here, W. coagulans genomes were compared with the genomes of strains of Bacillus species (B. licheniformis, B. siamensis, B. subtilis, and B. velezensis) that were isolated from fermented foods and show salt tolerance, to identify the basis for the salt-sensitivity of W. coagulans. Osmoprotectant uptake (Opu) systems transport compatible solutes into cells to help them tolerate osmotic stress. B. siamensis, B. subtilis, and B. velezensis each possess five Opu systems (OpuA, OpuB, OpuC, OpuD, and OpuE); B. licheniformis has all except OpuB. However, W. coagulans only has the OpuC system. Based on these findings, the opuA and opuB operons, and the opuD and opuE genes, were amplified from B. velezensis. Expression of each of these systems, respectively, in W. coagulans increased salt-tolerance. W. coagulans expressing B. velezensis opuA, opuD, or opuE grew in 10.5% NaCl (w/v), whereas wild-type W. coagulans could not grow in 3.5% NaCl. The salt resistance of B. subtilis was also increased by overexpression of B. velezensis opuA, opuB, opuD, or opuE. These results indicate that the salt-susceptibility of W. coagulans arises because it is deficient in Opu systems.


Asunto(s)
Tolerancia a la Sal , Cloruro de Sodio , Cloruro de Sodio/metabolismo , Presión Osmótica , Genoma Bacteriano , Bacillus/genética , Bacillus/metabolismo , Alimentos Fermentados/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Micrococcaceae/genética , Micrococcaceae/metabolismo , Probióticos , Operón
11.
J Microbiol Biotechnol ; 34(7): 1501-1510, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38960873

RESUMEN

Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.


Asunto(s)
Antiinflamatorios , Colitis , Citocinas , Sulfato de Dextran , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Alimentos de Soja , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Ratones , Antiinflamatorios/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Citocinas/metabolismo , Fermentación , Alimentos Fermentados/microbiología , Glycine max/química , Colon/metabolismo , Colon/microbiología , Colon/patología , Ratones Endogámicos C57BL , Masculino
12.
Food Microbiol ; 123: 104566, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038883

RESUMEN

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Asunto(s)
Bacterias , Fermentación , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , China , Microbiota , Filogenia , ADN Bacteriano/genética , Biodiversidad , Bebidas Alcohólicas/microbiología , Bebidas Alcohólicas/análisis , Microbiología de Alimentos , Metagenoma , Alimentos Fermentados/microbiología
13.
Food Microbiol ; 123: 104584, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038890

RESUMEN

A single strain of Candida anglica, isolated from cider, is available in international yeast collections. We present here seven new strains isolated from French PDO cheeses. For one of the cheese strains, we achieved a high-quality genome assembly of 13.7 Mb with eight near-complete telomere-to-telomere chromosomes. The genomes of two additional cheese strains and of the cider strain were also assembled and annotated, resulting in a core genome of 5966 coding sequences. Phylogenetic analysis showed that the seven cheese strains clustered together, away from the cider strain. Mating-type locus analysis revealed the presence of a MATa locus in the cider strain but a MATalpha locus in all cheese strains. The presence of LINE retrotransposons at identical genome position in the cheese strains, and two different karyotypic profiles resulting from chromosomal rearrangements were observed. Together, these findings are consistent with clonal propagation of the cheese strains. Phenotypic trait variations were observed within the cheese population under stress conditions whereas the cider strain was found to have a much greater capacity for growth in all conditions tested.


Asunto(s)
Candida , Queso , Alimentos Fermentados , Genoma Fúngico , Filogenia , Queso/microbiología , Candida/genética , Candida/metabolismo , Candida/clasificación , Candida/aislamiento & purificación , Candida/crecimiento & desarrollo , Alimentos Fermentados/microbiología , Adaptación Fisiológica , Microbiología de Alimentos , Fermentación , Genes del Tipo Sexual de los Hongos
14.
J Food Sci ; 89(7): 3973-3994, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957107

RESUMEN

Mushrooms have garnered significant attention for their nutritional composition and potential health benefits, including antioxidant, antihypertensive, and cholesterol-lowering properties. This review explores the nutritional composition of edible mushrooms, including their high protein content, essential amino acids, low fat, cholesterol levels, and bioactive compounds with medicinal value. Moreover, the study analyzes the microbiology of mushroom fermentation, focusing on the diverse microbial ecosystem involved in the transformation of raw mushrooms and the preservation methods employed to extend their shelf life. Special emphasis is placed on lactic acid fermentation as a cost-effective and efficient preservation technique. It involves controlling the growth of lactic acid bacteria to enhance the microbial stability and nutritional quality of mushrooms. Furthermore, the bioactivities of fermented mushrooms are elucidated, which are antioxidant, antimicrobial, anticancer, anti-glycemic, immune modulatory, and other biological activities. The mechanisms underlying these bioactivities are explored, emphasizing the role of fermented mushrooms in suppressing free radicals, enhancing antioxidant defenses, and modulating immune responses. Overall, this review provides comprehensive insights into the nutritional composition, microbiology, bioactivities, and underlying mechanisms of fermented mushrooms, highlighting their potential as functional foods with significant health-promoting properties.


Asunto(s)
Agaricales , Antioxidantes , Fermentación , Valor Nutritivo , Agaricales/química , Humanos , Antioxidantes/análisis , Antioxidantes/farmacología , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Alimentos Funcionales
15.
J Agric Food Chem ; 72(31): 17465-17480, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046216

RESUMEN

Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.


Asunto(s)
Proteínas Bacterianas , Alimentos Fermentados , Lactobacillus , Fenetilaminas , Tiramina , Tiramina/metabolismo , Fenetilaminas/metabolismo , Fenetilaminas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Lactobacillus/enzimología , Lactobacillus/genética , Lactobacillus/metabolismo , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Simulación del Acoplamiento Molecular , Cinética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química , Fermentación
16.
Biotechnol Adv ; 74: 108397, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909664

RESUMEN

In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.


Asunto(s)
Fermentación , Microbiología de Alimentos , Lactobacillales , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lactobacillales/metabolismo , Probióticos/metabolismo , Alimentos Fermentados/microbiología
17.
World J Microbiol Biotechnol ; 40(8): 235, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850338

RESUMEN

Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.


Asunto(s)
Antibacterianos , Lactobacillus delbrueckii , Probióticos , Probióticos/farmacología , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Industria de Alimentos , Microbiología de Alimentos , Alimentos Fermentados/microbiología
18.
J Food Sci ; 89(8): 5047-5064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922911

RESUMEN

In vegetable fermentation, pellicle is a common quality deterioration phenomenon. This study investigates the characteristics of glucose, organic acids, amino acids, and biogenic amines during the pellicle occurrence and disappearance of paocai. The results revealed a slight increase in pH of the fermentation system after pellicle occurred, and glucose was the main carbohydrate that microbial activity primary relied on. The microorganisms responsible for pellicle formation consumed organic acids in brine, but the lactic acid in paocai gradually increased and exceeded 25 mg/g. The appearance of pellicle caused a decrease in total free amino acids from 200.390 mg/100 g to 172.079 when pellicle occurred, whereas its impact on biogenic amines was not apparent. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment of metagenomics sequencing data, screening, and sorting of the key enzymes involved in organic acid metabolism, it was observed that the composition and species of the key microorganisms capable of metabolizing organic acids were more abundant before the appearance of pellicle. When pellicle occurred, lactic acid may be metabolized by Lactobacillus plantarum; in contrast, Lactobacillus and Pichia were associated with citric acid metabolism, and Lactobacillus, Pichia, Saccharomycodes, and Kazachstania were linked to malic acid metabolism. Moreover, Prevotella, Kazachstania, Lactobacillus, Vibrio, and Siphonobacter were implicated in succinic acid metabolism. Additionally, the production of tartaric acid and oxalic acid in paocai and brine resulted from abiotic effects. This knowledge offers a theoretical basis for precise control of paocai fermentation process. PRACTICAL APPLICATION: Our study revealed the specific situation of the metabolites produced by the microorganisms during the pollution and recovery process of pellicle in paocai fermentation, especially the effect of pellicle on the key process of organic acid metabolism. These research results provided theoretical basis for precise control of paocai fermentation.


Asunto(s)
Aminoácidos , Fermentación , Ácido Láctico , Aminoácidos/metabolismo , Ácido Láctico/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Ácido Cítrico/metabolismo , Concentración de Iones de Hidrógeno , Aminas Biogénicas/metabolismo , Aminas Biogénicas/análisis , Glucosa/metabolismo , Malatos/metabolismo , Microbiología de Alimentos , Alimentos Fermentados/microbiología , Verduras/microbiología , Sales (Química)
19.
Food Res Int ; 189: 114490, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876584

RESUMEN

Fermentation is resurgent around the world as people seek healthier, more sustainable, and tasty food options. This study explores the microbial ecology of miso, a traditional Japanese fermented paste, made with novel regional substrates to develop new plant-based foods. Eight novel miso varieties were developed using different protein-rich substrates: yellow peas, Gotland lentils, and fava beans (each with two treatments: standard and nixtamalisation), as well as rye bread and soybeans. The misos were produced at Noma, a restaurant in Copenhagen, Denmark. Samples were analysed with biological and technical triplicates at the beginning and end of fermentation. We also incorporated in this study six samples of novel misos produced following the same recipe at Inua, a former affiliate restaurant of Noma in Tokyo, Japan. To analyse microbial community structure and diversity, metabarcoding (16S and ITS) and shotgun metagenomic analyses were performed. The misos contain a greater range of microbes than is currently described for miso in the literature. The composition of the novel yellow pea misos was notably similar to the traditional soybean ones, suggesting they are a good alternative, which supports our culinary collaborators' sensory conclusions. For bacteria, we found that overall substrate had the strongest effect, followed by time, treatment (nixtamalisation), and geography. For fungi, there was a slightly stronger effect of geography and a mild effect of substrate, and no significant effects for treatment or time. Based on an analysis of metagenome-assembled genomes (MAGs), strains of Staphylococccus epidermidis differentiated according to substrate. Carotenoid biosynthesis genes in these MAGs appeared in strains from Japan but not from Denmark, suggesting a possible gene-level geographical effect. The benign and possibly functional presence of S. epidermidis in these misos, a species typically associated with the human skin microbiome, suggests possible adaptation to the miso niche, and the flow of microbes between bodies and foods in certain fermentation as more common than is currently recognised. This study improves our understanding of miso ecology, highlights the potential for developing novel misos using diverse local ingredients, and suggests how fermentation innovation can contribute to studies of microbial ecology and evolution.


Asunto(s)
Bacterias , Fermentación , Microbiología de Alimentos , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Gusto , Alimentos Fermentados/microbiología , Microbiota , Japón , Metagenómica
20.
Compr Rev Food Sci Food Saf ; 23(4): e13388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865218

RESUMEN

Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.


Asunto(s)
Fermentación , Alimentos Fermentados , Microbiología de Alimentos , Alimentos Fermentados/microbiología , Microbiota , Calidad de los Alimentos , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...