Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.200
Filtrar
1.
Food Res Int ; 186: 114410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729706

RESUMEN

Protein and lipid are two major components that undergo significant changes during processing of aquatic products. This study focused on the protein oxidation, protein conformational states, lipid oxidation and lipid molecule profiling of salted large yellow croaker during storage, and their correlations were investigated. The degree of oxidation of protein and lipid was time-dependent, leading to an increase in carbonyl content and surface hydrophobicity, a decrease in sulfhydryl groups, and an increase in conjugated diene, peroxide value and thiobarbituric acid reactive substances value. Oxidation caused protein structure denaturation and aggregation during storage. Lipid composition and content changed dynamically, with polyunsaturated phosphatidylcholine (PC) was preferentially oxidized compared to polyunsaturated triacylglycerol. Correlation analysis showed that the degradation of polyunsaturated key differential lipids (PC 18:2_20:5, PC 16:0_22:6, PC 16:0_20:5, etc.) was closely related to the oxidation of protein and lipid. The changes in protein conformation and the peroxidation of polyunsaturated lipids mutually promote each other's oxidation process.


Asunto(s)
Proteínas de Peces , Almacenamiento de Alimentos , Oxidación-Reducción , Perciformes , Animales , Perciformes/metabolismo , Proteínas de Peces/química , Peroxidación de Lípido , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Conformación Proteica , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Alimentos Marinos/análisis
2.
Food Res Int ; 186: 114363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729725

RESUMEN

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Asunto(s)
Antioxidantes , Digestión , Manipulación de Alimentos , Gadus morhua , Valor Nutritivo , Alimentos Marinos , Gadus morhua/metabolismo , Animales , Alimentos Marinos/análisis , Antioxidantes/análisis , Antioxidantes/química , Manipulación de Alimentos/métodos , Fenoles/análisis , Ondas Ultrasónicas , Flavonoides/análisis , Nutrientes/análisis , Gusto , Color
3.
Food Res Int ; 187: 114342, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763635

RESUMEN

Microplastics, an emerging pollutant, have garnered widespread attention due to potential repercussions on human health and the environment. Given the critical role of seafood in food security, growing concerns about microplastics might be detrimental to meeting future global food demand. This study employed a discrete choice experiment to investigate Chilean consumers' preferences for technology aimed at mitigating microplastic levels in mussels. Using a between-subjects design with information treatments, we examined the impact of informing consumers about potential human health and environmental effects linked to microplastics pollution on their valuation for the technology. We found that the information treatments increased consumers' willingness to pay for mussels. Specifically, consumers were willing to pay a premium of around US$ 4 for 250 g of mussel meat with a 90 % depuration efficiency certification. The provision of health impact information increased the price premium by 56 %, while the provision of environmental information increased it by 21 %. Furthermore, combined health and environmental information significantly increased the probability of non-purchasing behavior by 22.8 % and the risk perception of microplastics for human health by 5.8 %. These results emphasized the critical role of information in shaping consumer preferences and provided evidence for validating investment in research and development related to microplastic pollution mitigation measures.


Asunto(s)
Comportamiento del Consumidor , Microplásticos , Alimentos Marinos , Humanos , Microplásticos/análisis , Alimentos Marinos/análisis , Femenino , Adulto , Masculino , Contaminación de Alimentos , Animales , Contaminantes Químicos del Agua/análisis , Chile , Persona de Mediana Edad , Adulto Joven , Bivalvos , Conducta de Elección
4.
Food Res Int ; 187: 114323, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763630

RESUMEN

The balance regulation between characteristic aroma and hazards in high-temperature processed fish is a hot spot. This study was aimed to explore the interactive relationship between the nutritional value, microstructures, aroma, and harmful substances of hairtail under different frying methods including traditional frying (TF), air frying (AF), and vacuum frying (VF) via chemical pattern recognition. The results indicated that VF-prepared hairtail could form a crunchy mouthfeel and retain the highest content of protein (645.53 mg/g) and the lowest content of fat (242.03 mg/g). Vacuum frying reduced lipid oxidation in hairtail, resulting in the POV reaching 0.02 mg/g, significantly lower than that of TF (0.05 mg/g) and AF (0.21 mg/g), and TBARS reached 0.83 mg/g, significantly lower than that of AF (1.96 mg/g) (P < 0.05), respectively. Notable variations were observedin the aroma profileof hairtail preparedfrom different frying methods. Vacuum frying of hairtail resulted in higher levels of pyrazines and alcohols, whereas traditional frying and air frying were associated with the formation of aldehydes and ketones, respectively. Air frying was not a healthy way to cook hairtail which produced the highest concentration of harmful substances (up to 190.63 ng/g), significantly higher than VF (5.72 ng/g) and TF (52.78 ng/g) (P < 0.05), especially norharman (122.57 ng/g), significantly higher than VF (4.50 ng/g) and TF (32.63 ng/g) (P < 0.05). Norharman and acrylamide were the key harmful substances in hairtail treated with traditional frying. The vacuum frying method was an excellent alternative for deep-fried hairtail as a snack food with fewer harmful substances and a fine aroma, providing a theoretic guidance for preparing healthy hairtail food with high nutrition and superior sensory attraction.


Asunto(s)
Culinaria , Calor , Odorantes , Animales , Culinaria/métodos , Odorantes/análisis , Aldehídos/análisis , Valor Nutritivo , Perciformes , Compuestos Orgánicos Volátiles/análisis , Pirazinas/análisis , Pirazinas/química , Alimentos Marinos/análisis
5.
Food Res Int ; 187: 114462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763689

RESUMEN

The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.


Asunto(s)
Péptidos , Especificidad de la Especie , Atún , Animales , Péptidos/análisis , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Proteínas de Peces/análisis
6.
J Agric Food Chem ; 72(20): 11820-11835, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38710668

RESUMEN

Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.


Asunto(s)
Braquiuros , Músculos , Proteómica , Animales , Braquiuros/metabolismo , Braquiuros/química , Músculos/metabolismo , Músculos/química , Transportes , Mariscos/análisis , Frío , Espectrometría de Masas en Tándem , Alimentos Marinos/análisis
7.
Anal Bioanal Chem ; 416(14): 3459-3471, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38727737

RESUMEN

Concerns regarding microplastic (MP) contamination in aquatic ecosystems and its impact on seafood require a better understanding of human dietary MP exposure including extensive monitoring. While conventional techniques for MP analysis like infrared or Raman microspectroscopy provide detailed particle information, they are limited by low sample throughput, particularly when dealing with high particle numbers in seafood due to matrix-related residues. Consequently, more rapid techniques need to be developed to meet the requirements of large-scale monitoring. This study focused on semi-automated fluorescence imaging analysis after Nile red staining for rapid MP screening in seafood. By implementing RGB-based fluorescence threshold values, the need for high operator expertise to prevent misclassification was addressed. Food-relevant MP was identified with over 95% probability and differentiated from natural polymers with a 1% error rate. Comparison with laser direct infrared imaging (LDIR), a state-of-the-art method for rapid MP analysis, showed similar particle counts, indicating plausible results. However, highly variable recovery rates attributed to inhomogeneous particle spiking experiments highlight the need for future development of certified reference material including sample preparation. The proposed method demonstrated suitability of high throughput analysis for seafood samples, requiring 0.02-0.06 h/cm2 filter surface compared to 4.5-14.7 h/cm with LDIR analysis. Overall, the method holds promise as a screening tool for more accurate yet resource-intensive MP analysis methods such as spectroscopic or thermoanalytical techniques.


Asunto(s)
Oxazinas , Alimentos Marinos , Alimentos Marinos/análisis , Oxazinas/análisis , Contaminación de Alimentos/análisis , Microplásticos/análisis , Animales , Contaminantes Químicos del Agua/análisis , Coloración y Etiquetado/métodos , Plásticos/análisis , Humanos , Colorantes Fluorescentes/química
8.
Food Res Int ; 183: 114240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760119

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Asunto(s)
Contaminación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos , Alimentos Marinos , Espectrometría de Masas en Tándem , Hidrocarburos Policíclicos Aromáticos/análisis , Alimentos Marinos/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Extracción en Fase Sólida/métodos , Reproducibilidad de los Resultados , Brasil , Tecnología Química Verde/métodos
9.
Food Res Int ; 183: 114190, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760127

RESUMEN

This study aimed to determine the effect of different frozen temperatures during storage on the quality of Antarctic krill (Euphausia superba) and assess the change at the metabolite level via a combination of physicochemical property analysis, liquid chromatography-tandem mass spectrometry (LC-MS) based non-targeted metabolomics profiling. Regarding samples stored at -20 °C, the expressions of 7055 metabolites were elevated, while 2313 were downregulated. Lipids and lipid molecules had the highest proportion of differential metabolites. A total of 432 discriminatory metabolites with Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs was obtained. We also observed that the concentrations of differential bitter free amino acids (FAAs) and oxidation products of arachidonic and linoleic acid increased. Moreover, as the storage temperature increased, the freshness, umami, and sweetness components were considerably reduced. Furthermore, results indicated that the color, pH and water-holding capacity (WHC) were potential indicators of quality deterioration, while inosinic acid was a probable biomarker for umami degradation of frozen Antarctic krill. In conclusion, this study demonstrates that storage at lower temperatures can be beneficial for maintaining the freshness of Antarctic krill from macro and micro perspectives.


Asunto(s)
Euphausiacea , Congelación , Metabolómica , Espectrometría de Masas en Tándem , Animales , Euphausiacea/química , Regiones Antárticas , Almacenamiento de Alimentos/métodos , Gusto , Concentración de Iones de Hidrógeno , Alimentos Marinos/análisis , Cromatografía Liquida
10.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580836

RESUMEN

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Asunto(s)
Aminoácidos Diaminos , Decápodos , Síndromes de Neurotoxicidad , Animales , Masculino , Femenino , Humanos , Nephropidae/metabolismo , Ecosistema , Neurotoxinas/toxicidad , Aminoácidos Diaminos/metabolismo , Alimentos Marinos/análisis , Decápodos/metabolismo , beta-Alanina
11.
An Acad Bras Cienc ; 96(1): e20230238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629657

RESUMEN

Fish consumption is the main path of human exposure to Hg and may represent a risk to public health, even with low Hg concentrations in fish, if consumption rates are high. This study quantifies, for the first time, the Hg concentrations in nine most commercialized species in the São Luís (MA) fish market, where fish consumption is high, and estimates human exposure. Average Hg concentrations were highest in carnivorous species, yellow hake (Cynoscion acoupa) (0.296 mg kg-1), the Atlantic croaker (Micropogonias undulatus) (0.263 mg kg-1), whereas lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (0.021 mg kg-1) and the Shorthead drum Larimus breviceps (0.025 mg kg-1). Significant correlations were observed between Hg concentrations and fish length in two species: the Coco-Sea catfish (Bagre bagre) and the Atlantic bumper (Chloroscombrus crysurus), but not in the other species, since they presented relatively uniform size of individuals and/or a small number of samples. Risk coefficients, despite the relatively low Hg concentrations, suggest that consumers should limit their consumption of Yellow hake and Atlantic croaker, as they can present some risk to human health (EDI > RfD and THQ > 1), depending on the frequency of their consumption and the consumer's body weight.


Asunto(s)
Bagres , Mercurio , Smegmamorpha , Contaminantes Químicos del Agua , Animales , Humanos , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Peces , Alimentos Marinos/análisis , Monitoreo del Ambiente , Contaminación de Alimentos
12.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602359

RESUMEN

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Asunto(s)
Peces , Formaldehído , Límite de Detección , Compuestos de Tritilo , Formaldehído/análisis , Formaldehído/química , Animales , Compuestos de Tritilo/química , Compuestos de Tritilo/análisis , Gases/química , Gases/análisis , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Soluciones , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación , Espectrometría de Fluorescencia/métodos
13.
Mar Drugs ; 22(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667793

RESUMEN

Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.


Asunto(s)
Técnicas de Placa-Clamp , Tetraodontiformes , Tetrodotoxina , Tetrodotoxina/análisis , Animales , Alimentos Marinos/análisis , Ratones , Contaminación de Alimentos/análisis , Límite de Detección
14.
Int J Biol Macromol ; 267(Pt 1): 131485, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604429

RESUMEN

Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.


Asunto(s)
Alginatos , Antocianinas , Colorimetría , Embalaje de Alimentos , Geles , Antocianinas/química , Embalaje de Alimentos/métodos , Alginatos/química , Geles/química , Colorimetría/métodos , Animales , Porosidad , Alimentos Marinos/análisis , Oncorhynchus mykiss , Aprendizaje Automático
15.
Sci Total Environ ; 929: 172332, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615776

RESUMEN

Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.


Asunto(s)
Carbono , Inocuidad de los Alimentos , Nanoestructuras , Alimentos Marinos , Alimentos Marinos/análisis , Inocuidad de los Alimentos/métodos , Nanoestructuras/análisis , Carbono/análisis , Contaminación de Alimentos/análisis
16.
Mar Pollut Bull ; 202: 116375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621352

RESUMEN

The massive industrial growth in Gresik, East Java, Indonesia has the potential to result in metal contamination in the nearby coastal waters. The purpose of this study was to analyze the metal concentrations in edible species from the Gresik coastal waters and evaluate the potential health risks linked to this metal contamination. Metal concentrations (Cu, Fe, Pb, Zn, As, Cd, Ni, Hg, and Cr) in fish and shrimp samples mostly met the maximum limits established by national and international regulatory organizations. The concentrations of As in Scatophagus argus exceed both the permissible limit established by Indonesia and the provisional tolerable weekly intake (PTWI). The As concentration in Arius bilineatus is equal to the PTWI. The target cancer risk (TCR) values for both As and Cr in all analyzed species exceed the threshold of 0.0001, suggesting that these two metals possess the potential to provide a cancer risk to humans.


Asunto(s)
Monitoreo del Ambiente , Peces , Metales , Contaminantes Químicos del Agua , Indonesia , Contaminantes Químicos del Agua/análisis , Animales , Metales/análisis , Medición de Riesgo , Metales Pesados/análisis , Humanos , Contaminación de Alimentos/análisis , Alimentos Marinos/análisis
17.
Sci Total Environ ; 929: 172535, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641109

RESUMEN

Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (µFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.


Asunto(s)
Acuicultura , Lubina , Metales , Microplásticos , Contaminantes Químicos del Agua , Lubina/metabolismo , Animales , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Humanos , Metales/análisis , Inocuidad de los Alimentos , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Medición de Riesgo , Alimentos Marinos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos
18.
Food Chem ; 448: 139049, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518443

RESUMEN

There is limited research on the occurrence of microplastics (MPs) in canned seafood. All types of canned seafood investigated in the present study were contaminated. After sample digestion in 30 % hydrogen peroxide, a total of 40 MPs were recovered. Fibers were the most common type, blue was the dominant colour, and Fourier Transform Infrared Spectroscopy (FTIR) identified polyester as the most common polymer. Considering all samples, an average of 3.5 ± 5.2 MPs/can was obtained, with octopus in tomato sauce and tuna in olive oil presenting the highest contamination (5.2 ± 7.5 MPs/can and 5.2 ± 5.1 MPs/can, respectively). Also, significant differences between the number of MPs in the seafood tissues and immersion liquids were verified. The present study demonstrates MPs occurrence in canned seafood, a potential contamination pathway for humans. More research on the different stages of the canning processing is vital for understanding MPs contamination in cans.


Asunto(s)
Contaminación de Alimentos , Microplásticos , Alimentos Marinos , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Microplásticos/análisis , Animales , Alimentos en Conserva/análisis
19.
Food Chem ; 448: 139045, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537549

RESUMEN

This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteómica , Alimentos Marinos , Factores de Virulencia , Alimentos Marinos/microbiología , Alimentos Marinos/análisis , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Animales , Microbiología de Alimentos
20.
Food Chem Toxicol ; 187: 114598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493981

RESUMEN

Seafood products accumulate methylmercury throughout the food chain and are the main source of methylmercury exposure. Methylmercury may trigger a number of adverse health effects, such as neurodevelopmental or nephrotoxic effects, the risk of which cannot be ruled out for the French high consumers of seafood. The characterisation of methylmercury-related risks is generally based on short-term dietary exposure without considering changes in consumption and exposure over the lifetime. Additionally, focusing on short-term dietary exposure, the fate of methylmercury (especially its accumulation) in the organism is not considered. The present study proposes a methodology basing risk characterization on estimates of body burden over a lifetime. First, trajectories of dietary exposures throughout lifetime were constructed based on the actual concentrations of total diet studies for a fictive representative French population, taking into account the social, economic and demographic parameters of individuals. Next, the fate of methylmercury in the body was estimated, based on these trajectories, using a specific physiologically-based kinetic (PBK) model that generated a representative pool of body burden trajectories. Simulated hair mercury concentrations were closed to previously reported French representative human biomonitoring data. Results showed that at certain stages of life, concentrations of methylmercury in hair were higher than the human biomonitoring guidance value set at 2.5 µg/g of hair by JECFA. This study showed the added value, in the case of substances accumulating in the body, of estimating dietary exposure over a lifetime and using exposure biomarkers estimated by a PBK model characterize the risk.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Humanos , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/análisis , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Dieta , Exposición Dietética , Mercurio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA