Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.732
Filtrar
1.
Carbohydr Polym ; 340: 122249, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858018

RESUMEN

The recently characterized Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB) from glycoside hydrolase family 70 is a novel 4,6-α-glucanotransferase acting on starch/maltooligosaccharides with high enzyme activity and soluble protein yield (in heterogenous system). In this study, the influence of the treatment by LrN1 GtfB on the fine structure and functional characteristics of three maize starches were furtherly investigated and elucidated. Due to the treatment of LrN1 GtfB, the starch molecules were transformed into reuterans containing linear and branched (α1 â†’ 6) linkages with notably smaller molecular weight and shorter chain length. Moreover, the (α1 â†’ 6) linkage ratios in the GtfB-modified high-amylose maize starch (GHMS)/normal maize starch (GNMS)/waxy maize starch (GWMS) increased by 18.3 %/12.6 %/9.0 % as compared to their corresponding controls. In vitro digestibility experiment revealed that the resistant starch content of GHMS, GNMS and GWMS increased by 16 %, 18 % and 25 % as compared to the starch substrates. Furthermore, the butyric acid yielded from GHMS, GNMS and GWMS in the in vitro fermentation experiments were 1.4, 1.5 and 1.4 times higher than those of commercial galactose oligosaccharides. These results indicated that the highly-branched short-clustered reuteran synthesized by LrN1 GtfB might serve as novel potential prebiotics, and provide insights for the synthesis of promising prebiotic dietary fiber from starch.


Asunto(s)
Limosilactobacillus reuteri , Prebióticos , Almidón , Zea mays , Zea mays/química , Almidón/química , Almidón/metabolismo , Oligosacáridos/química
2.
Food Res Int ; 189: 114533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876603

RESUMEN

Glutinous rice is extensively consumed due to its nutritious content and wonderful flavor. However, glutinous rice flour has a high glycemic index, and the storage deterioration of sweet dumplingsissevere. Transglutaminase (TG) was used to cross-link glutinous rice protein and improve the characteristics of glutinous rice products. The findings demonstrated that TG significantly catalysed protein cross-linking to form a dense protein network, reduced the viscosity of glutinous rice paste and improved the thermal stability. The protein network may physically block the access of starch granules to digestive enzymes to lower the digestion rate of starch, and attenuate the damage of ice crystal molecules to the starch structure to improve the freezing stability of starch gels. The cracking rate and water loss of sweet dumplings prepared using glutinous rice flour with TG treated for 60 min reduced significantly. In conclusion, this study broadened the application of TG in starch products.


Asunto(s)
Digestión , Harina , Manipulación de Alimentos , Oryza , Almidón , Transglutaminasas , Oryza/química , Transglutaminasas/metabolismo , Almidón/metabolismo , Almidón/química , Harina/análisis , Manipulación de Alimentos/métodos , Viscosidad , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química
3.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849759

RESUMEN

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Asunto(s)
Luz , Phaseolus , Phaseolus/fisiología , Phaseolus/metabolismo , Phaseolus/enzimología , Fosforilación , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Frío , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Vía de Pentosa Fosfato/fisiología , Activación Enzimática , Fotosíntesis/fisiología , Estrés Fisiológico , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Sci Rep ; 14(1): 12682, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830978

RESUMEN

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Asunto(s)
Anoxybacillus , Detergentes , Suero Lácteo , alfa-Amilasas , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Suero Lácteo/metabolismo , Suero Lácteo/química , Anoxybacillus/enzimología , Anoxybacillus/genética , Detergentes/química , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Almidón/metabolismo , Almidón/química , Temperatura
5.
Food Res Int ; 189: 114563, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876595

RESUMEN

The digestibility of ungelatinized, short-term retrograded and long-term retrograded starch from foxtail millet was investigated and correlated with starch chain length distributions (CLDs). Some variations in starch CLDs of different varieties were obtained. Huangjingu and Zhonggu 9 had higher average chain lengths of debranched starch and lower average chain length ratios of amylopectin and amylose than Dajinmiao and Jigu 168. Compared to ungelatinized starch, retrogradation significantly increased the estimated glycemic index (eGI), whereas significantly decreased the resistant starch (RS). In contrast, long-term retrograded starches have lower eGI (93.33-97.37) and higher RS (8.04-14.55%) than short-term retrograded starch. PCA and correlation analysis showed that amylopectin with higher amounts of long chains and longer long chains contributed to reduced digestibility in ungelatinized starch. Both amylose and amylopectin CLDs were important for the digestibility of retrograded starch. This study helps a better understanding of the interaction of starch CLDs and digestibility during retrogradation.


Asunto(s)
Amilopectina , Amilosa , Digestión , Setaria (Planta) , Almidón , Setaria (Planta)/química , Setaria (Planta)/metabolismo , Almidón/química , Almidón/metabolismo , Amilopectina/química , Amilosa/química , Índice Glucémico
6.
Food Res Int ; 189: 114572, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876610

RESUMEN

One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-ß-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.


Asunto(s)
Glucosa , Juglans , Extractos Vegetales , Polifenoles , Humanos , Polifenoles/farmacología , Juglans/química , Células CACO-2 , Glucosa/metabolismo , Extractos Vegetales/farmacología , Digestión/efectos de los fármacos , Nueces/química , Almidón/metabolismo , alfa-Amilasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , Transporte Biológico , Complejo Sacarasa-Isomaltasa/metabolismo
7.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864891

RESUMEN

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Asunto(s)
Fósforo , Almidón , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Almidón/metabolismo , Fósforo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo
8.
Sci Rep ; 14(1): 12722, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830940

RESUMEN

Pinellia ternata (Thunb.) Breit is a traditional Chinese medicine with important pharmacological effects. However, its cultivation is challenged by soil degradation following excessive use of chemical fertilizer. We conducted an experiment exploring the effects of replacing chemical fertilizers with organic fertilizers (OF) on the growth and yield of P. ternata, as well as on the soil physicochemical properties and microbial community composition using containerized plants. Six fertilization treatments were evaluated, including control (CK), chemical fertilizer (CF), different proportions of replacing chemical fertilizer with organic fertilizer (OM1-4). Containerized P. ternata plants in each OF treatment had greater growth and yield than the CK and CF treatments while maintaining alkaloid content. The OM3 treatment had the greatest yield among all treatments, with an increase of 42.35% and 44.93% compared to the CK and CF treatments, respectively. OF treatments improved soil quality and fertility by enhancing the activities of soil urease (S-UE) and sucrase (S-SC) enzymes while increasing soil organic matter and trace mineral elements. OF treatments increased bacterial abundance and changed soil community structure. In comparison to the CK microbial groups enriched in OM3 were OLB13, Vicinamibacteraceae, and Blrii41. There were also changes in the abundance of gene transcripts among treatments. The abundance of genes involved in the nitrogen cycle in the OM3 has increased, specifically promoting the transformation of N-NO3- into N-NH4+, a type of nitrogen more easily absorbed by P. ternata. Also, genes involved in "starch and sucrose metabolism" and "plant hormone signal transduction" pathways were positively correlated to P. ternata yield and were upregulated in the OM3 treatment. Overall, OF in P. ternata cultivation is a feasible practice in advancing sustainable agriculture and is potentially profitable in commercial production.


Asunto(s)
Fertilizantes , Ciclo del Nitrógeno , Pinellia , Suelo , Almidón , Sacarosa , Suelo/química , Pinellia/metabolismo , Sacarosa/metabolismo , Almidón/metabolismo , Microbiología del Suelo , Nitrógeno/metabolismo
9.
Curr Opin Clin Nutr Metab Care ; 27(4): 338-343, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38836807

RESUMEN

PURPOSE OF REVIEW: This review will summarize recent studies assessing the effect of slowly digestible starch (SDS) and resistant starch (RS) on glucose metabolism in healthy, prediabetic or type 2 diabetic adults. RECENT FINDINGS: Currently, a particular interest in starch and its digestibility has arisen, with data showing a positive effect of SDS and RS on the glucose homeostasis of healthy, at-risk, prediabetic and type 2 diabetic patients but research is ongoing. SUMMARY: Carbohydrates (CHO) and especially starch play a major role in the prevention and management of metabolic diseases such as type 2 diabetes (T2D). This largely depends on the quality and the digestibility (rate and extent) of the ingested starchy products, beyond their quantity. SDS have been poorly studied but display a beneficial effect on reducing glucose excursions in healthy and insulin-resistant subjects and a relevant potential to improve glucose control in type 2 diabetic individuals. As for RS, the results appear to be encouraging but remain heterogeneous, depending the nature of the RS and its role on microbiota modulation. Further studies are needed to confirm the present results and investigate the potential complementary beneficial effects of SDS and RS on long-term glucose homeostasis to prevent cardiometabolic diseases.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Digestión , Homeostasis , Resistencia a la Insulina , Almidón , Humanos , Almidón/metabolismo , Digestión/efectos de los fármacos , Glucemia/metabolismo , Estado Prediabético/metabolismo , Almidón Resistente/farmacología , Carbohidratos de la Dieta/metabolismo
10.
Food Res Int ; 188: 114517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823849

RESUMEN

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Asunto(s)
Glucemia , Cicer , Estudios Cruzados , Digestión , Insulina , Periodo Posprandial , Reología , Humanos , Cicer/química , Periodo Posprandial/fisiología , Insulina/sangre , Insulina/metabolismo , Glucemia/metabolismo , Adulto , Masculino , Femenino , Adulto Joven , Almidón/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/sangre , Voluntarios Sanos , Cinética
11.
Ying Yong Sheng Tai Xue Bao ; 35(4): 933-941, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884228

RESUMEN

Clarifying the appropriate application rates of N, P, and K fertilizers and the physiological mechanisms of wheat under water-saving recharge irrigation in the North China Plain would provide a theoretical basis for formulating reasonable fertilization plans for high-yield and high-efficiency wheat production. We established four treatments with different amounts of nitrogen (N), phosphorus (P2O5), and potassium (K2O) application: 0, 0, and 0 kg·hm-2 (F0), 180, 75, and 60 kg·hm-2 (F1), 225, 120, and 105 kg·hm-2 (F2), and 270, 165, and 150 kg·hm-2 (F3). During the jointing and anthesis stages of wheat, the relative water content of each treatment in the 0-40 cm soil layer was replenished to 70%, to investigate the differences in wheat flag leaf photosynthetic characteristics, distribution of 13C assimilates, grain starch accumulation, and fertilizer utilization. The results showed that the relative chlorophyll content of flag leaves, photosynthetic and chlorophyll fluorescence parameters, 13C assimilate allocation in each organ, enzyme activities involved in starch synthesis, and starch accumulation in the F1 treatment were significantly higher than that in F0 treatment, which was an important physiological basis for the 20.9% increase in grain yield. The above parameters and yield in the F2 and F3 treatments showed no significant increase compared to F1 treatment, while fertilizer productivity and agronomic efficiency of N, P, and K decreased by 17.5%-58.4% and 12.7%-50.7%, respectively. Therefore, F1 could promote flag leaf photosynthetic assimilate production and grain starch accumulation under water-saving supplementary irrigation conditions, resulting in higher grain yield and fertilizer utilization efficiency.


Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Potasio , Almidón , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Almidón/metabolismo , Potasio/metabolismo , Potasio/análisis , Isótopos de Carbono/metabolismo , Isótopos de Carbono/análisis , China , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo
12.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902625

RESUMEN

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Asunto(s)
Aegilops , Semillas , Triticum , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Semillas/genética , Semillas/metabolismo , Hibridación Genética , Poliploidía , Almidón/biosíntesis , Almidón/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteómica/métodos , Multiómica
13.
Ultrason Sonochem ; 106: 106904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749102

RESUMEN

Ultrasound processing is an emerging green technology that has the potential for wider application in the food processing industry. While the effects of ultrasonication on isolated macromolecules such as protein and starch have been reported, the effects of physical barriers on sonication on these macro-molecules, for example inside whole seed, tissue or cotyledon cells, have mostly been overlooked. Intact chickpea cells were subjected to sonication with different ultrasound processing times, and the effects of sonication on the starch and protein structure and digestibility were studied. The digestibility of these macronutrients significantly increased with the extension of processing time, which, however was not due to the molecular degradation of starch or protein but related to damage to cell wall macro-structure with increasing sonication time, leading to enhanced enzyme accessibility. Through this study, it is demonstrated that ultrasound processing has least effect on whole food structure, for example, whole seeds but can modulate the nutrient bioavailability without changing the properties of the macronutrients in seed fractions e.g. intact cells, offering new scientific knowledge on effect of ultrasound in whole foods at various length scales.


Asunto(s)
Cicer , Nutrientes , Sonicación , Cicer/química , Almidón/química , Almidón/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Digestión , Semillas/química
14.
Food Chem ; 452: 139494, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723566

RESUMEN

This study explores the impact of postharvest storage temperatures (4 °C and 25 °C) on starch metabolism and textural attributes of glutinous lotus root. While starch metabolism is a well-known factor influencing texture, changes in powdery and sticky qualities have remained unexplored. Our research reveals that storing lotus roots at 4 °C delays water dissipation, amylopectin reduction, and the decline in textural elements such as hardness, adhesiveness, springiness, gumminess, and resilience. Lower temperatures postpone amylopectin reduction and sugar interconversion, thereby preserving the sticky texture. Additionally, they suppress starch formation, delay starch metabolism, and elevate the expression of genes involved in starch metabolism. The correlation between gene expression and root texture indicates the critical role of gene regulation in enzyme activity during storage. Overall, low-temperature storage extends lotus root preservation by regulating metabolite content, enzyme activities, and the corresponding genes involved in starch metabolism, preserving both intrinsic and external root quality.


Asunto(s)
Almacenamiento de Alimentos , Nelumbo , Raíces de Plantas , Almidón , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Almidón/metabolismo , Almidón/química , Nelumbo/química , Nelumbo/metabolismo , Nelumbo/genética , Temperatura , Amilopectina/metabolismo , Amilopectina/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
15.
Food Chem ; 452: 139570, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723567

RESUMEN

RS-5 refers to the resistant starch formed by complexation of starch molecules with other molecules. In this study, the molecular mechanism of RS-5 was analysed. First, it was found, when α-amylase acted on the starch-lipid complexes, the glucose residues involved in complexation cannot be hydrolyzed by α-amylase, while the glucose residues not directly involved in complexation can be hydrolyzed. Second, lipid molecules are not necessary for the formation of RS-5 and can be replaced with small peptides or decanal molecules. Considering the multiple health hazards that may result from excessive lipid intake, small peptides composed of essential amino acids may be more desirable materials for RS-5 preparation. Third, starch-lipid complexes had strong interactions with α-amylase, which provides evidence in support of the sliding continuum hydrolysis hypothesis of α-amylase. These results revealed the mechanism of RS-5 at the molecular level, which provides a reference for the production and research of RS-5.


Asunto(s)
Almidón , alfa-Amilasas , Hidrólisis , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Almidón/química , Almidón/metabolismo , Almidón Resistente/metabolismo , Lípidos/química
16.
Food Funct ; 15(11): 5813-5824, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747641

RESUMEN

Carbohydrates are an important macronutrient whose processing and digestive fate can have numerous beneficial or adverse effects on consumer health. This study investigated the impact of heat-moisture treatments (HMT) and citric acid treatments (CAT) on arrowroot starch (ARS) with a focus on its physicochemical properties, digestibility, and influence on gut microbiota. The results revealed that HMT and CAT did not alter the colloidal characteristics of ARS but significantly affected the balance between amorphous and crystalline regions. Changes in thermal properties, morphology, and particle size were also observed. These can influence ARS shelf life and functional properties in various food applications. Furthermore, certain treatments in both processing methods increased the resistant starch (RS) content of ARS, with HMT for 16 hours at 80 °C and CAT with 0.6 M citric acid, resulting in the most pronounced effects. These changes coincided with reductions in rapidly digestible starch (RDS) levels and improvements in the ratio of slowly digestible starch (SDS) to RDS, which could potentially improve glycemic control. This study also examined the impact of processed ARS on colonic microbiota composition. It found that ARS-derived RS formed under HMT and CAT did not negatively affect the prebiotic potential of the RS fraction. Both treatments were associated with lowering the Firmicutes to Bacteroidetes ratio (F/B), a marker of gut health, and decreasing the relative abundance of Proteobacteria, microbes associated with adverse health effects. Additionally, CAT-derived RS showed a significant increase in the relative abundance of Roseburia, a beneficial gut bacterium. In conclusion, processing ARS through HMT and CAT techniques has the potential for enhancing its RS content, improving its glycemic impact, and positively influencing the gut microbiota composition, potentially contributing to gut health and metabolic well-being.


Asunto(s)
Colon , Microbioma Gastrointestinal , Calor , Prebióticos , Almidón , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Almidón/química , Almidón/metabolismo , Colon/microbiología , Colon/metabolismo , Masculino , Ácido Cítrico/farmacología , Almidón Resistente/farmacología , Bacterias/clasificación , Bacterias/metabolismo , Digestión , Adulto , Femenino , Manipulación de Alimentos/métodos
17.
Food Res Int ; 187: 114417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763667

RESUMEN

Resistant starch serves as a prebiotic in the large intestine, aiding in the maintenance of a healthy intestinal environment and mitigating associated chronic illnesses. This study aimed to investigate the impact of resistant starch-enriched brown rice (RBR) on intestinal health and functionality. We assessed changes in resistant starch concentration, structural alterations, and branch chain length distribution throughout the digestion process using an in vitro model. The efficacy of RBR in the intestinal environment was evaluated through analyses of its prebiotic potential, effects on intestinal microbiota, and intestinal function-related proteins in obese animals fed a high-fat diet. RBR exhibited a higher yield of insoluble fraction in both the small and large intestines compared to white and brown rice. The total digestible starch content decreased, while the resistant starch content significantly increased during in vitro digestion. Furthermore, RBR notably enhanced the growth of four probiotic strains compared to white and brown rice, displaying higher proliferation activity than the positive control, FOS. Notably, consumption of RBR by high-fat diet-induced obese mice suppressed colon shortening, increased Bifidobacteria growth, and improved intestinal permeability. These findings underscore the potential prebiotic and gut health-promoting attributes of RBR, offering insights for the development of functional foods aimed at preventing gastrointestinal diseases.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Obesidad , Oryza , Prebióticos , Almidón , Animales , Oryza/química , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Almidón/metabolismo , Masculino , Obesidad/metabolismo , Ratones Obesos , Almidón Resistente , Probióticos , Digestión , Bifidobacterium/crecimiento & desarrollo
18.
Hereditas ; 161(1): 15, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702800

RESUMEN

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Asunto(s)
Proteínas de Plantas , Proteómica , Rhododendron , Rayos Ultravioleta , Acetilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/fisiología , Estrés Fisiológico , Metabolómica , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica de las Plantas , Almidón/metabolismo , Fotosíntesis
19.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710564

RESUMEN

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Asunto(s)
Amilopectina , Amilosa , Almidón Sintasa , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biosíntesis , Amilosa/química , Amilosa/biosíntesis , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Almidón Sintasa/química , Almidón/química , Almidón/biosíntesis , Almidón/metabolismo , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Anim Sci J ; 95(1): e13950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712489

RESUMEN

The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).


Asunto(s)
Antioxidantes , Fenómenos Químicos , Digestión , Fermentación , Melastomataceae , Extractos Vegetales , Rumen , Almidón , Rumen/metabolismo , Animales , Almidón/metabolismo , Antioxidantes/metabolismo , Melastomataceae/química , Melastomataceae/metabolismo , Reología , Metano/metabolismo , Frutas/química , Técnicas In Vitro , Fenoles/metabolismo , Fenoles/análisis , Tamaño de la Partícula , Polifenoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA