Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.832
Filtrar
1.
J Bras Nefrol ; 46(3): e20240023, 2024.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-38748946

RESUMEN

In the last few years, evidence from the Brazilian Registry of Bone Biopsy (REBRABO) has pointed out a high incidence of aluminum (Al) accumulation in the bones of patients with CKD under dialysis. This surprising finding does not appear to be merely a passive metal accumulation, as prospective data from REBRABO suggest that the presence of Al in bone may be independently associated with major adverse cardiovascular events. This information contrasts with the perception of epidemiologic control of this condition around the world. In this opinion paper, we discussed why the diagnosis of Al accumulation in bone is not reported in other parts of the world. We also discuss a range of possibilities to understand why bone Al accumulation still occurs, not as a classical syndrome with systemic signs of intoxication, as occurred it has in the past.


Asunto(s)
Aluminio , Huesos , Humanos , Aluminio/metabolismo , Aluminio/efectos adversos , Huesos/metabolismo , Diálisis Renal , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/complicaciones , Brasil/epidemiología
2.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503187

RESUMEN

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Asunto(s)
Aluminio , Fabaceae , Aluminio/toxicidad , Aluminio/metabolismo , Malatos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Fabaceae/metabolismo
3.
Biometals ; 37(2): 477-494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190032

RESUMEN

There is limited experimental evidence on the biochemical consequences of aluminium (Al) and cadmium (Cd) co-exposures during pregnancy and postnatal life.This study investigated the impacts of perinatal Al chloride (AlCl3) and Cd chloride (CdCl2) co-exposures on neuroendocrine functions in mice offspring during postnatal life. The study comprised of four pregnant experimental groups. Group 1 received AlCl3 (10 mg/kg), group 2 were administered CdCl2 (1.5 mg/kg), while group 3 received both AlCl3 (10 mg/kg) and CdCl2 (1.5 mg/kg) (AlCl3+CdCl2), and group 4 received saline (10 mL/kg) only and served as control group. All experimental animals were chemically exposed once daily from gestation days 7-20. Upon delivery, male pups were regrouped based on maternal chemical exposure on postnatal day 21 (PND 21) and allowed to grow to adulthood until PND 78, after which they were sacrificed for assessment of neuroendocrine markers and histological investigations. There was no statistical significance (p > 0.05) on follicle stimulating hormone, testosterone, estrogen and progesterone, thyroid stimulating hormone, thyroxine (T4) in all treatment groups relative to controls|. However, AlCl3 and AlCl3-CdCl2 significantly (p < 0.05) reduced triiodothyronine (T3) levels, with a profound increase in T3:T4 ratio by AlCl3, and AlCl3+CdCl2 compared to control. Furthermore, pups from pregnant mice treated with CdCl2 and AlCl3+CdCl2 demonstrated increased testicular malondialdehyde concentration with increased catalase activity relative to controls, suggesting oxidative imbalance. In addition, AlCl3, CdCl2, and AlCl3+CdCl2 exposures induced testicular and hypothalamic architectural disruption compared to controls, with marked architectural derangement in the AlCl3+CdCl2 group. Our findings suggest that prenatal co-exposures to Alcl3 and CdCl2 induce testicular and hypothalamic alterations in offspring via a testicular oxidative stress and thyrotoxicosis-dependent mechanisms.


Asunto(s)
Aluminio , Cadmio , Embarazo , Femenino , Masculino , Ratones , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Cloruros , Testículo/metabolismo , Testículo/patología , Estrés Oxidativo , Cloruro de Cadmio/toxicidad , Atrofia/metabolismo , Atrofia/patología
4.
Chemosphere ; 352: 141320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296208

RESUMEN

In the environment, algae are exposed to several stressors such as limitation of essential nutrients and excess of toxic substances. It is well known the importance of phosphorus (P) supply for healthy metabolism of algae and impacts at this level can affect the whole aquatic trophic chain. Aluminum (Al) is the most abundant metal on Earth and it is toxic to different trophic levels. Processes related to P and Al assimilation still need to be clarified and little is known about the responses of microalgae exposed to the two stressors simultaneously. We evaluated the effects of environmental concentrations of Al and P limitation, isolated and in combination, on growth, pigment production and photosynthesis of the freshwater microalga Raphidocelis subcapitata. Both stressors affected cell density, chlorophyll a, carotenoids, and maximum quantum yield. Al did not affect any other evaluated parameter, while P limitation affected parameters related to the dissipation of heat by algae and the maximum electron transport rate, decreasing the saturation irradiance. In the combination of both stressors, all parameters evaluated were affected in a synergistic way, i.e., the results were more harmful than expected considering the responses to isolated stressors. Our results indicate that photoprotection mechanisms of algae were efficient in the presence of both stressors, avoiding damages to the photosynthetic apparatus. In addition, our data highlight the higher susceptibility of R. subcapitata to Al in P-limited conditions.


Asunto(s)
Chlorophyceae , Microalgas , Contaminantes Químicos del Agua , Chlorophyceae/metabolismo , Microalgas/metabolismo , Aluminio/metabolismo , Clorofila A/metabolismo , Agua Dulce , Contaminantes Químicos del Agua/análisis
5.
Cell Res ; 34(4): 281-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200278

RESUMEN

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aluminio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Iones , Suelo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
6.
Sci Total Environ ; 915: 170128, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242464

RESUMEN

Studies have revealed neurotoxicity, hepatotoxicity, and developmental and reproductive toxicity in mice exposed to aluminum. However, relatively few studies have been conducted to clarify the mechanism underlying the impact of embryonic exposure to aluminum on the development of the male reproductive system in offspring. Pregnant mice were administered aluminum chloride (AlCl3) by gavage from day 12.5 of gestation until birth. Our findings demonstrated that embryonic exposure to AlCl3 disrupted testicular development and spermatogenesis by impairing testicular architecture, reducing sperm count, and upregulating the expression of tight junction (TJ) protein between Sertoli cells (SCs). Further in vitro studies revealed that treatment with AlCl3 stabilized TJ proteins Occludin and ZO-1 expression by inhibiting ERK signaling pathway activation, thereby upregulating Slc25a5 expression which induced ATP production leading to disruption of cytoskeletal protein homeostasis. Therefore, the study provided a new mechanistic insight into how AlCl3 exposure interfered with testicular development and spermatogenesis while suggesting that Slc25a5 might be a target affected by AlCl3 influencing cell metabolism.


Asunto(s)
Aluminio , Uniones Estrechas , Embarazo , Femenino , Masculino , Ratones , Animales , Cloruro de Aluminio , Aluminio/metabolismo , Uniones Estrechas/metabolismo , Semen , Testículo/metabolismo , Espermatogénesis , Proteínas de Uniones Estrechas/metabolismo
7.
Ecotoxicol Environ Saf ; 271: 115966, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219620

RESUMEN

Aluminum (Al) is a common neurotoxicant in the environment, but the molecular mechanism of its toxic effects is still unclear. Studies have shown that aluminum exposure causes an increase in neuronal apoptosis. The aim of this study was to investigate the mechanism and signaling pathway of neuronal apoptosis induced by aluminum exposure. The rat model was established by intraperitoneal injection of maltol aluminum for 90 days. The results showed that the escape latency of the three groups exposed to maltol aluminum was higher than that of the control group on the 3rd, 4th and 5th days of the positioning cruise experiment (P < 0.05). On the 6th day of the space exploration experiment, compared with the control group(6.00 ± 0.71,15.33 ± 1.08) and the low-dose group(5.08 ± 1.69,13.67 ± 1.09), the number of times that the high-dose group crossed the platform(2.25 ± 0.76) and the platform quadrant(7.58 ± 1.43) was significantly reduced (P < 0.01). The relative expression levels of Sirt1 and Nrf2 in hippocampal tissues of all groups decreased gradually with increasing maltol aluminum exposure dose the relative expression levels of Sirt1 and Nrf2 in high-dose group (0.261 ± 0.094,0.325 ± 0.108) were significantly lower than those in control group (1.018 ± 0.222,1.009 ± 0.156)(P < 0.05). The relative expression level of Keap1 increased gradually with increasing maltol aluminum exposure dose (P < 0.05). The relative expression level of miR-128-3p in the high-dose group(1.520 ± 0.280) was significantly higher than that in the control group(1.000 ± 0.420) (P < 0.05). The content of GSH-Px in the hippocampus of rats decreased with increasing dose. ROS levels gradually increased. We speculated that subchronic aluminum exposure may lead to the activation of miR-128-3p in rat hippocampus of rats, thereby inhibiting the Sirt1-Keap1/Nrf2 pathway so that the Sirt1-Keap1/Nrf2 pathway could not be activated to exert antioxidant capacity, resulting in an imbalance in the antioxidant system of rats and the apoptosis of neurons, which caused reduced cognitive impairment in rats.


Asunto(s)
Disfunción Cognitiva , MicroARNs , Ratas , Animales , Antioxidantes/metabolismo , Estrés Oxidativo , Aluminio/toxicidad , Aluminio/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Apoptosis
8.
J Exp Bot ; 75(7): 2113-2126, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069635

RESUMEN

The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD. However, the mechanism by which AhMC1 is altered in the peanut response to Al stress remained unclear. Here, we show that a nuclear protein, mutator-like transposable element 9A (AhMULE9A), directly interacts with AhMC1 in vitro and in vivo. This interaction occurs in the nucleus in peanut and is weakened during Al stress. Furthermore, a conserved C2HC zinc finger domain of AhMULE9A (residues 735-751) was shown to be required for its interaction with AhMC1. Overexpression of AhMULE9A in Arabidopsis and peanut strongly inhibited root growth with a loss of root cell viability under Al treatment. Conversely, knock down of AhMULE9A in peanut significantly reduced Al uptake and Al inhibition of root growth, and alleviated the occurrence of typical hallmarks of Al-induced PCD. These findings provide novel insight into the regulation of Al-induced PCD.


Asunto(s)
Arabidopsis , Arachis , Arachis/genética , Elementos Transponibles de ADN , Aluminio/metabolismo , Incidencia , Raíces de Plantas/metabolismo , Apoptosis
9.
Ecotoxicol Environ Saf ; 269: 115791, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070417

RESUMEN

Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.


Asunto(s)
Alcaloides , Aluminio , Aluminio/toxicidad , Aluminio/metabolismo , Malatos/metabolismo , Fitomejoramiento , Plantas/metabolismo , Alcaloides/farmacología , Compuestos Orgánicos/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Biol Trace Elem Res ; 202(3): 1084-1102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37382810

RESUMEN

Aluminum contamination is a growing environmental and public health concern, and aluminum testicular toxicity has been reported in male rats; however, the underlying mechanisms of this toxicity are unclear. The objective of this study was to investigate the effects of exposure to aluminum chloride (AlCl3) on alterations in the levels of sex hormones (testosterone [T], luteinizing hormone [LH], and follicle-stimulating hormone [FSH]) and testicular damage. Additionally, the mechanisms of toxicity in the testes of AlCl3-exposed rats were analyzed by proteomics. Three different concentrations of AlCl3 were administered to rats. The results demonstrated a decrease in T, LH, and FSH levels with increasing concentrations of AlCl3 exposure. HE staining results revealed that the spermatogenic cells in the AlCl3-exposed rats were widened, disorganized, or absent, with increased severe tissue destruction at higher concentrations of AlCl3 exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that differentially expressed proteins (DEPs) after AlCl3 exposure were primarily associated with various metabolic processes, sperm fibrous sheath, calcium-dependent protein binding, oxidative phosphorylation, and ribosomes. Subsequently, DEPs from each group were subjected to protein-protein interaction (PPI) analysis followed by the screening of interactional key DEPs. Western blot experiments validated the proteomics data, revealing the downregulation of sperm-related DEPs (AKAP4, ODF1, and OAZ3) and upregulation of regulatory ribosome-associated protein (UBA52) and mitochondrial ribosomal protein (MRPL32). These findings provide a basis for studying the mechanism of testicular toxicity due to AlCl3 exposure.


Asunto(s)
Aluminio , Testículo , Ratas , Masculino , Animales , Aluminio/metabolismo , Proteómica , Semen , Testosterona/metabolismo , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante/metabolismo
11.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776153

RESUMEN

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Asunto(s)
Cajanus , ARN Largo no Codificante , Ácido Cítrico/metabolismo , Cajanus/genética , Aluminio/toxicidad , Aluminio/metabolismo , Citrato (si)-Sintasa , Citratos/metabolismo
12.
Plant Cell ; 36(3): 688-708, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37936326

RESUMEN

Aluminum (Al) stress triggers the accumulation of hydrogen peroxide (H2O2) in roots. However, whether H2O2 plays a regulatory role in aluminum resistance remains unclear. In this study, we show that H2O2 plays a crucial role in regulation of Al resistance, which is modulated by the mitochondrion-localized pentatricopeptide repeat protein REGULATION OF ALMT1 EXPRESSION 6 (RAE6). Mutation in RAE6 impairs the activity of complex I of the mitochondrial electron transport chain, resulting in the accumulation of H2O2 and increased sensitivity to Al. Our results suggest that higher H2O2 concentrations promote the oxidation of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1), an essential transcription factor that promotes Al resistance, thereby promoting its degradation by enhancing the interaction between STOP1 and the F-box protein RAE1. Conversely, decreasing H2O2 levels or blocking the oxidation of STOP1 leads to greater STOP1 stability and increased Al resistance. Moreover, we show that the thioredoxin TRX1 interacts with STOP1 to catalyze its chemical reduction. Thus, our results highlight the importance of H2O2 in Al resistance and regulation of STOP1 stability in Arabidopsis (Arabidopsis thaliana).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
13.
Plant Physiol ; 194(4): 2533-2548, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38142233

RESUMEN

Aluminum-activated malate transporters (ALMTs) and slow anion channels (SLACs) are important in various physiological processes in plants, including stomatal regulation, nutrient uptake, and in response to abiotic stress such as aluminum toxicity. To understand their evolutionary history and functional divergence, we conducted phylogenetic and expression analyses of ALMTs and SLACs in green plants. Our findings from phylogenetic studies indicate that ALMTs and SLACs may have originated from green algae and red algae, respectively. The ALMTs of early land plants and charophytes formed a monophyletic clade consisting of three subgroups. A single duplication event of ALMTs was identified in vascular plants and subsequent duplications into six clades occurred in angiosperms, including an identified clade, 1-1. The ALMTs experienced gene number losses in clades 1-1 and 2-1 and expansions in clades 1-2 and 2-2b. Interestingly, the expansion of clade 1-2 was also associated with higher expression levels compared to genes in clades that experienced apparent loss. SLACs first diversified in bryophytes, followed by duplication in vascular plants, giving rise to three distinct clades (I, II, and III), and clade II potentially associated with stomatal control in seed plants. SLACs show losses in clades II and III without substantial expansion in clade I. Additionally, ALMT clade 2-2 and SLAC clade III contain genes specifically expressed in reproductive organs and roots in angiosperms, lycophytes, and mosses, indicating neofunctionalization. In summary, our study demonstrates the evolutionary complexity of ALMTs and SLACs, highlighting their crucial role in the adaptation and diversification of vascular plants.


Asunto(s)
Magnoliopsida , Proteínas de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aluminio/metabolismo , Plantas/genética , Plantas/metabolismo , Evolución Biológica , Magnoliopsida/genética , Evolución Molecular
14.
Ecotoxicol Environ Saf ; 270: 115860, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142589

RESUMEN

Epidemiological studies from diverse global regions suggest a correlation between the accumulation of aluminum in the brain and the onset of various neurodegenerative diseases, including Alzheimer's disease, of which, neuronal cells death happen. Our previous research has found the potential of aluminum to induce neuronal cell death. A comprehensive exploration of the regulatory pathways influenced by aluminum in neuronal cell death could contribute to the development of strategies aimed at preventing the detrimental impact of aluminum on neuronal cells. This study is dedicated to exploring the impact of aluminum on mitochondrial homeostasis through the RIP3-PGAM5-Drp1 pathway, with a specific focus on its potential role in necroptosis. We observed that the inhibition of RIP3 function and the reduction in PGAM5 protein expression both mitigate aluminum-induced necroptosis in PC12 cells and enhance mitochondrial function. However, the inhibition of PGAM5 protein expression does not exert an impact on the expression of RIP3 and MLKL proteins. In summary, our study posits that aluminum can induce necroptosis in PC12 cells through the RIP3-PGAM5-Drp1 pathway.


Asunto(s)
Aluminio , Apoptosis , Ratas , Animales , Células PC12 , Aluminio/toxicidad , Aluminio/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
15.
Ecotoxicol Environ Saf ; 270: 115878, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150748

RESUMEN

Aluminum (Al) exposure has been linked to the development of a variety of neurodegenerative diseases. However, whether m6A RNA methylation participated in Al-induced neurotoxicity remain to be defined. In this study, mice were administrated with aluminum-lactate at dose of 220 mg/kg. bw by gavage for 3 months. Meanwhile, the primary hippocampal neurons were isolated and treated with 0, 50, 100, 150 µM aluminum-lactate, respectively for 7 days. Al exposure caused neuronal shrinkage, decreased Nissl bodies, and increased apoptosis. In accordance, in vitro studies also showed that Al exposure led to neuronal apoptosis in a dose-dependent manner, together with the decline in m6A RNA methylation levels. Moreover, the mRNA expression of Mettl3, Mettl14, Fto, and Ythdf2 were decreased upon Al exposure. Notably, the protein expression of METTL3 was dramatically down-regulated by 42% and 35% in Al-treated mice and neurons, suggesting METTL3 might exert a crucial role in Al-induced neurotoxicity. We next established a mouse model with hippocampus-specific overexpressing of Mettl3 gene to confirm the regulatory role of RNA methylation and found that METTL3 overexpression relieved the neurological injury induced by Al. The integrated MeRIP-seq and RNA-seq analysis elucidated that 631 genes were differentially expressed at both m6A RNA methylation and mRNA expression. Notably, EGFR tyrosine kinase inhibitor resistance, Rap1 signaling pathway, protein digestion and absorption might be involved in Al-induced neurotoxicity. Moreover, VEGFA, Thbs1, and PDGFB might be the central molecules. Collectively, our findings provide the novel sight into the role of m6A RNA methylation in neurodegenerative disease induced by Al.


Asunto(s)
Aluminio , Enfermedades Neurodegenerativas , Ratones , Animales , Aluminio/toxicidad , Aluminio/metabolismo , Metilación de ARN , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Lactatos , ARN/metabolismo
16.
Neurol Res ; 46(3): 284-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145565

RESUMEN

OBJECTIVES: Increasing evidence indicates a link between aluminum (Al) intake and Alzheimer's disease (AD). The main entry of Al into the human body is through oral route, and in the digestive tract, under the influence of the pH change, Al can be transformed into Al nanoparticles (Al-NP). However, studies related to the effect of Al-NP on the brain are limited and need further investigation. Neuro-inflammation is considered as one of the principal features of AD. Microglial activation and expression of the inflammatory cytokine IL-1ß (interleukin-1ß) in the brain have been used as hallmarks of brain inflammation. Therefore, in the present study, the hippocampal levels of ionized calcium-binding adaptor molecule 1 (IBA-1), as the marker of microglia activation, and IL-1ß were assessed. METHODS: Adult male NMRI mice were treated with Al-NP (5 or 10 mg/kg) for 5 days. A novel object recognition (NOR) test was used to assess memory. Following cognitive assessments, the hippocampal tissues were isolated to analyze the levels of IL-1ß and IBA-1 as well as beta actin proteins using western blot technique. RESULTS: Al-NP in both doses of 5 and 10 mg/kg impaired NOR memory in mice. In addition, Al-NP increased IL-1ß and IBA-1 in the hippocampus. DISCUSSION: These findings indicate that the memory impairing effect of Al-NP coincides with hippocampal inflammation. According to the proposed relationship between AD and Al toxicity, this study can increase the knowledge about the toxic effects of Al-NP and highlight the need to limit the use of this nanoparticle.


Asunto(s)
Aluminio , Enfermedad de Alzheimer , Humanos , Ratones , Masculino , Animales , Aluminio/toxicidad , Aluminio/metabolismo , Regulación hacia Arriba , Hipocampo , Enfermedad de Alzheimer/metabolismo , Interleucina-1beta/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Inflamación/metabolismo , Microglía/metabolismo
17.
Int J Phytoremediation ; 26(1): 27-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37259532

RESUMEN

We examined the efficacy of 2,4-dichlorophenoxy acetic acid (2,4-D; 500 µM) in enhancing the potential of Salvinia species for tolerance to aluminum (Al) toxicity (240 and 480 µM, seven days). Salvinia showed better efficacy in removal of toxicity of Al by sorption mechanism with changes of bond energy shifting on cell wall residues and surface structure. Plants recorded tolerance to Al concentration (480 µM) when pretreated with 2,4-D through adjustment of relative water content, proline content, osmotic potential, and improved the pigment fluorescence for energy utilization under Al stress. Photosynthetic activities with regards to NADP-malic enzyme and malic dehydrogenase and sugar metabolism with wall and cytosolic invertase activities were strongly correlated with compatible solutes. A less membrane peroxidation and protein carbonylation had reduced ionic loss over the membrane that was studied with reduced electrolyte leakage with 2,4-D pretreated plants. Membrane stabilization was also recorded with higher ratio of K+ to Na+, thereby suggesting roles of 2,4-D in ionic balance. Better sustenance of enzymatic antioxidation with peroxidase and glutathione metabolism reduced reactive oxygen species accumulation and save the plant for oxidative damages. Moreover, gene polymorphism for antioxidant, induced by 2,4-D varied through Al concentrations would suggest an improved biomarker for tolerance. Collectively, analysis and discussion of plant's responses assumed that auxin herbicide could be a potential phytoprotectant for Salvinia as well as improving the stability to Al toxicity and its bioremediation efficacy.


In previous reports, aquatic weeds, particularly, from pteridophytic flora have been exercised, however, in less frequent. Aluminum (Al) toxicity, being a major problem, specifically with respect to cultivated crops like rice and vegetables, is a serious issue in alkaline soil. In context to growth of Salvinia in the areas of low lands where few important crops like rice are frequently cultivated. Therefore, Al toxicity with regards to rice cultivation in low land conditions, which is habitat for Salvinia, could be interesting. Thus, decontamination of low land for salinity with aquatic environment can be remediated with biological materials where Salvinia would be a choice. This would be something new in studies for the aquatic weeds over the existing database. Moreover, 2,4-dichlorophenoxy acetic acid (2,4-D) being a common herbicide in agricultural field that becomes more problematic with metal toxicity is another focus for physiological responses with Salvinia. The adoption and sustainability of Salvinia against 2,4-D may highlight insights for physiological activities would be the biomarker for herbicide toxicity.


Asunto(s)
Aluminio , Antioxidantes , Aluminio/toxicidad , Aluminio/metabolismo , Biodegradación Ambiental , Antioxidantes/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo
18.
Plant Physiol Biochem ; 206: 108315, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157836

RESUMEN

Aluminium (Al) toxicity stands out as a primary cause of crop failure in acidic soils. The root gravity setpoint angle (GSA), one of the important traits of the root system architecture (RSA), plays a pivotal role in enabling plants to adapt to abiotic stress. This study explored the correlation between GSA and Al stress using hydroponic culture with pea (Pisum sativum) plants. The findings revealed that under Al stress, GSA increased in newly developed lateral roots. Notably, this response remained consistent regardless of the treatment duration, extending for at least 3 days during the experiment. Furthermore, exposure to Al led to a reduction in both the size and quantity of starch granules, pivotal components linked to gravity perception. The accumulation of auxin in root transition zone increased. This variation was mirrored in the expression of genes linked to granule formation and auxin efflux, particularly those in the PIN-formed family. This developmental framework suggested a unique role for the root gravitropic response that hinges on starch granules and auxin transport, acting as mediators in the modulation of GSA under Al stress. Exogenous application of indole-3-acetic acid (IAA) and the auxin efflux inhibitor N-1-naphthylphthalamic acid (NPA) had an impact on the root gravitropic response to Al stress. The outcomes indicate that Al stress inhibited polar auxin transport and starch granule formation, the two processes crucial for gravitropism. This impairment led to an elevation in GSA and a reconfiguration of RSA. This study introduces a novel perspective on how plant roots react to Al toxicity, culminating in RSA modification in the context of acidic soil with elevated Al concentrations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Gravitropismo , Proteínas de Arabidopsis/genética , Pisum sativum/genética , Arabidopsis/genética , Aluminio/toxicidad , Aluminio/metabolismo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Almidón/metabolismo
19.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069359

RESUMEN

Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.


Asunto(s)
Oryza , Oryza/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
20.
World J Microbiol Biotechnol ; 40(1): 36, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057648

RESUMEN

Microorganisms can play a significant role in material corrosion, with bacterial biofilms as major participants in microbially influenced corrosion (MIC). The exact mechanisms by which this takes place are poorly understood, resulting in a scarcity of information regarding MIC detection and prevention. In this work, a consortium of moderately thermophilic bacteria isolated from a biofilm growing over aluminum alloy 7075 was characterized. Its effect over the alloy was evaluated on a 40-day period using Electron Microscopy, demonstrating acceleration of corrosion in comparison to the abiotic control. The bacterial consortium was biochemically and microbiologically characterized as an attempt to elucidate factors contributing to corrosion. Molecular analysis revealed that the consortium consisted mainly of members of the Bacillus genus, with lower abundance of other genera such as Thermoanaerobacterium, Anoxybacillus and Paenibacillus. The EPS polysaccharide presented mainly mannose, galactose, rhamnose and ribose. Our observations suggest that the acidification of the culture media resulting from bacterial metabolism acted as the main contributor to corrosion, hinting at an unspecific mechanism. The consortium was not sulfate-reducing, but it was found to produce hydrogen, which could also be a compounding factor for corrosion.


Asunto(s)
Aleaciones , Aluminio , Humanos , Aleaciones/química , Aluminio/química , Aluminio/metabolismo , Aluminio/farmacología , Corrosión , Bacterias/metabolismo , Biopelículas , Acero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA