Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.084
Filtrar
1.
Physiol Rep ; 12(17): e16175, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39218587

RESUMEN

Using a 50-compartment Python-coded mathematical lung model, we compared mixed venous blood flow (Q) distributions and arterial oxygen tension/inspired oxygen fraction (PaO2/FiO2) relationships in lungs modeled with log normal distributions (LND) of inspired (VI) versus expired (VA) alveolar gas volumes. In lungs with normal V/Q heterogeneity, Q versus VA/Q and Q versus VI/Q distributions were similar with either approach, and PaO2/FiO2 sequences remained indistinguishable. In V/Q heterogeneous lungs at high FiO2, VILND generated low Q versus VA/Q shoulders and some negative VA units, while VALND preserved Q versus VA/Q log normality by blood flow diversion from low VI/Q units. We managed VILND-induced negative VA units either by shunt conversion (VI decreased to 0) or VI redistribution simulating collateral ventilation (VI increased till VA = 0). Comparing oxygen transfer: VALND > VILND (redistribution) > VILND (shunt). In V/Q heterogeneous lungs VALND and VILND (redistribution) regained near optimal oxygen transfer on 100% oxygen, while impairment persisted with VILND (shunt). Unlike VALND, VILND (redistribution) produced Q versus VA/Q distributions in V/Q heterogeneity compatible with multiple inert gas (MIGET) reports. VILND (redistribution) is a physiologically-based MIGET-compatible alternative to West's original VALND lung modeling approach.


Asunto(s)
Pulmón , Intercambio Gaseoso Pulmonar , Humanos , Intercambio Gaseoso Pulmonar/fisiología , Pulmón/fisiología , Pulmón/metabolismo , Pulmón/irrigación sanguínea , Modelos Biológicos , Oxígeno/metabolismo , Oxígeno/sangre , Alveolos Pulmonares/fisiología , Alveolos Pulmonares/metabolismo , Animales
3.
J Mech Behav Biomed Mater ; 159: 106685, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173497

RESUMEN

Micro-scale models of lung tissue have been employed by researchers to investigate alveolar mechanics; however, they have been limited by the lack of biofidelic material properties for the alveolar wall. To address this challenge, a finite element model of an alveolar cluster was developed comprising a tetrakaidecahedron array with the nominal characteristics of human alveolar structure. Lung expansion was simulated in the model by prescribing a pressure and monitoring the volume, to produce a pressure-volume (PV) response that could be compared to experimental PV data. The alveolar wall properties in the model were optimized to match experimental PV response of lungs filled with saline, to eliminate surface tension effects and isolate the alveolar wall tissue response. When simulated in uniaxial tension, the model was in agreement with reported experimental properties of uniaxial tension on excised lung tissue. The work presented herein was able to link micro-scale alveolar response to two disparate macroscopic experimental datasets (stress-stretch and PV response of lung) and presents hyperelastic properties of the alveolar wall for use in alveolar scale finite element models and multi-scale models. Future research will incorporate surface tension effects, and investigate alveolar injury mechanisms.


Asunto(s)
Elasticidad , Análisis de Elementos Finitos , Presión , Alveolos Pulmonares , Estrés Mecánico , Alveolos Pulmonares/fisiología , Humanos , Modelos Biológicos , Fenómenos Biomecánicos
4.
Comput Biol Med ; 180: 108960, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159543

RESUMEN

Mathematical models can be used to generate high-fidelity simulations of the cardiopulmonary system. Such models, when applied to real patients, can provide valuable insights into underlying physiological processes that are hard for clinicians to observe directly. In this work, we propose a novel modelling strategy capable of generating scenario-specific cardiopulmonary simulations to replicate the vital physiological signals clinicians use to determine the state of a patient. This model is composed of a tree-like pulmonary system that features a novel, non-linear alveoli opening strategy, based on the dynamics of balloon inflation, that interacts with the cardiovascular system via the thorax. A baseline simulation of the model is performed to measure the response of the system during spontaneous breathing which is subsequently compared to the same system under mechanical ventilation. To test the new lung opening mechanics and systematic recruitment of alveolar units, a positive end-expiratory pressure (PEEP) test is performed and its results are then compared to simulations of a deep spontaneous breath. The system displays a marked decrease in tidal volume as PEEP increases, replicating a sigmoidal curve relationship between volume and pressure. At high PEEP, cardiovascular function is shown to be visibly impaired, in contrast to the deep breath test where normal function is maintained.


Asunto(s)
Modelos Biológicos , Respiración con Presión Positiva , Alveolos Pulmonares , Humanos , Respiración con Presión Positiva/métodos , Alveolos Pulmonares/fisiología , Simulación por Computador , Mecánica Respiratoria/fisiología , Modelos Cardiovasculares , Respiración
5.
Adv Sci (Weinh) ; 11(33): e2306256, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959397

RESUMEN

It is self-evident that our chests expand and contract during breathing but, surprisingly, exactly how individual alveoli change shape over the respiratory cycle is still a matter of debate. Some argue that all the alveoli expand and contract rhythmically. Others claim that the lung volume change is due to groups of alveoli collapsing and reopening during ventilation. Although this question might seem to be an insignificant detail for healthy individuals, it might be a matter of life and death for patients with compromised lungs. Past analyses were based on static post-mortem preparations primarily due to technological limitations, and therefore, by definition, incapable of providing dynamic information. In contrast, this study provides the first comprehensive dynamic data on how the shape of the alveoli changes, and, further, provides valuable insights into the optimal lung volume for efficient gas exchange. It is concluded that alveolar micro-dynamics is nonlinear; and at medium lung volume, alveoli expand more than the ducts.


Asunto(s)
Alveolos Pulmonares , Sincrotrones , Animales , Alveolos Pulmonares/fisiología , Volumen de Ventilación Pulmonar/fisiología
6.
Int J Numer Method Biomed Eng ; 40(8): e3839, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885939

RESUMEN

This study aims to investigate how inert gas affects the partial pressure of alveolar and venous blood using a fast and accurate operator splitting method (OSM). Unlike previous complex methods, such as the finite element method (FEM), OSM effectively separates governing equations into smaller sub-problems, facilitating a better understanding of inert gas transport and exchange between blood capillaries and surrounding tissue. The governing equations were discretized with a fully implicit finite difference method (FDM), which enables the use of larger time steps. The model employed partial differential equations, considering convection-diffusion in blood and only diffusion in tissue. The study explores the impact of initial arterial pressure, breathing frequency, blood flow velocity, solubility, and diffusivity on the partial pressure of inert gas in blood and tissue. Additionally, the effects of anesthetic inert gas and oxygen on venous blood partial pressure were analyzed. Simulation results demonstrate that the high solubility and diffusivity of anesthetic inert gas lead to its prolonged presence in blood and tissue, resulting in lower partial pressure in venous blood. These findings enhance our understanding of inert gas interaction with alveolar/venous blood, with potential implications for medical diagnostics and therapies.


Asunto(s)
Gases Nobles , Presión Parcial , Humanos , Alveolos Pulmonares/fisiología , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/metabolismo , Análisis de Elementos Finitos , Simulación por Computador , Oxígeno/sangre , Oxígeno/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Difusión
7.
Crit Care ; 28(1): 141, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679712

RESUMEN

Clinicians currently monitor pressure and volume at the airway opening, assuming that these observations relate closely to stresses and strains at the micro level. Indeed, this assumption forms the basis of current approaches to lung protective ventilation. Nonetheless, although the airway pressure applied under static conditions may be the same everywhere in healthy lungs, the stresses within a mechanically non-uniform ARDS lung are not. Estimating actual tissue stresses and strains that occur in a mechanically non-uniform environment must account for factors beyond the measurements from the ventilator circuit of airway pressures, tidal volume, and total mechanical power. A first conceptual step for the clinician to better define the VILI hazard requires consideration of lung unit tension, stress focusing, and intracycle power concentration. With reasonable approximations, better understanding of the value and limitations of presently used general guidelines for lung protection may eventually be developed from clinical inputs measured by the caregiver. The primary purpose of the present thought exercise is to extend our published model of a uniform, spherical lung unit to characterize the amplifications of stress (tension) and strain (area change) that occur under static conditions at interface boundaries between a sphere's surface segments having differing compliances. Together with measurable ventilating power, these are incorporated into our perspective of VILI risk. This conceptual exercise brings to light how variables that are seldom considered by the clinician but are both recognizable and measurable might help gauge the hazard for VILI of applied pressure and power.


Asunto(s)
Alveolos Pulmonares , Humanos , Modelos Biológicos , Alveolos Pulmonares/fisiología , Alveolos Pulmonares/fisiopatología , Respiración Artificial/métodos , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Estrés Mecánico
8.
Med Sci Sports Exerc ; 56(9): 1759-1769, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595212

RESUMEN

INTRODUCTION: Endurance exercise at altitude can increase cardiac output and pulmonary vascular pressure to levels that may exceed the stress tolerability of the alveolar-capillary unit. This study examined the effect of ultramarathon trail racing at different altitudes (ranging from <1000 m to between 1500 and 2700 m) on alveolar-capillary recruitment and lung diffusion. METHODS: Cardiac and lung function were examined before and after an ultramarathon in 67 runners (age: 41 ± 9 yr, body mass index: 23 ± 2 kg·m -2 , 10 females), and following 12-24 h of recovery in a subset ( n = 27). Cardiac biomarkers (cTnI and BNP) were assessed from whole blood, whereas lung fluid accumulation (comet tails), stroke volume (SV), and cardiac output ( Q ) were quantified via echocardiography. Lung diffusing capacity for carbon monoxide (DLco) and its components, alveolar membrane conductance (Dm) and capillary blood volume (Vc), were determined via a single-breath method at rest and during three stages of submaximal semirecumbent cycling (20, 30, and 40 W). RESULTS: Average race time was 25 ± 12 h. From pre- to post-race, there was an increase in cardiac biomarkers (cTnI: 0.04 ± 0.02 vs 0.13 ± 0.03 ng·mL -1 , BNP: 20 ± 2 vs 112 ± 21 pg·mL -1 ; P < 0.01) and lung comet tails (2 ± 1 vs 7 ± 6, P < 0.01), a decrease in resting and exercise SV (76 ± 2 vs 69 ± 2 mL, 40 W: 93 ± 2 vs 88 ± 2 mL; P < 0.01), and an elevation in Q at rest (4.1 ± 0.1 vs 4.6 ± 0.2 L·min -1 , P < 0.01; 40 W: 7.3 ± 0.2 vs 7.4 ± 0.3 L·min -1 , P = 0.899). Resting DLco and Vc decreased after the race ( P < 0.01), whereas Dm was unchanged ( P = 0.465); however, during the three stages of exercise, DLco, Vc, and Dm were all reduced from pre- to post-race (40 W: 36.3 ± 0.9 vs 33.0 ± 0.8 mL·min -1 ·mm Hg -1 , 83 ± 3 vs 73 ± 2 mL, 186 ± 6 vs 170 ± 7 mL·min -1 ·mm Hg -1 , respectively; P < 0.01). When corrected for alveolar volume and Q , DLco decreased from pre- to post-race ( P < 0.01), and changes in DLco were similar for all ultramarathon events ( P > 0.05). CONCLUSIONS: Competing in an ultramarathon leads to a transient increase in cardiac injury biomarkers, mild lung-fluid accumulation, and impairments in lung diffusion. Reductions in DLco are predominantly caused by a reduced Vc and possible pulmonary capillary de-recruitment at rest. However, impairments in alveolar-capillary recruitment and Dm both contribute to a fall in exertional DLco following an ultramarathon. Perturbations in lung diffusion were evident across a range of event distances and varying environmental exposures.


Asunto(s)
Altitud , Biomarcadores , Capilares , Carrera de Maratón , Alveolos Pulmonares , Capacidad de Difusión Pulmonar , Humanos , Femenino , Masculino , Adulto , Capacidad de Difusión Pulmonar/fisiología , Capilares/fisiología , Alveolos Pulmonares/fisiología , Alveolos Pulmonares/metabolismo , Persona de Mediana Edad , Carrera de Maratón/fisiología , Biomarcadores/sangre , Gasto Cardíaco/fisiología , Pulmón/fisiología , Péptido Natriurético Encefálico/sangre , Péptido Natriurético Encefálico/metabolismo , Volumen Sistólico/fisiología , Troponina I/sangre , Troponina I/metabolismo , Resistencia Física/fisiología , Volumen Sanguíneo/fisiología
9.
Sci Rep ; 14(1): 8080, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582767

RESUMEN

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-ß1 (AdTGF-ß1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-ß1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-ß1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-ß1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-ß1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.


Asunto(s)
Atelectasia Pulmonar , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Respiración con Presión Positiva/métodos , Pulmón , Alveolos Pulmonares/fisiología
10.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R433-R445, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519253

RESUMEN

Identification of the breathing cycle forms the basis of any breath-by-breath gas exchange analysis. Classically, the breathing cycle is defined as the time interval between the beginning of two consecutive inspiration phases. Based on this definition, several research groups have developed algorithms designed to estimate the volume and rate of gas transferred across the alveolar membrane ("alveolar gas exchange"); however, most algorithms require measurement of lung volume at the beginning of the ith breath (VLi-1; i.e., the end-expiratory lung volume of the preceding ith breath). The main limitation of these algorithms is that direct measurement of VLi-1 is challenging and often unavailable. Two solutions avoid the requirement to measure VLi-1 by redefining the breathing cycle. One method defines the breathing cycle as the time between two equal fractional concentrations of lung expired oxygen (Fo2) (or carbon dioxide; Fco2), typically in the alveolar phase, whereas the other uses the time between equal values of the Fo2/Fn2 (or Fco2/Fn2) ratios [i.e., the ratio of fractional concentrations of lung expired O2 (or CO2) and nitrogen (N2)]. Thus, these methods identify the breathing cycle by analyzing the gas fraction traces rather than the gas flow signal. In this review, we define the traditional approach and two alternative definitions of the human breathing cycle and present the rationale for redefining this term. We also explore the strengths and limitations of the available approaches and provide implications for future studies.


Asunto(s)
Alveolos Pulmonares , Intercambio Gaseoso Pulmonar , Humanos , Intercambio Gaseoso Pulmonar/fisiología , Alveolos Pulmonares/fisiología , Respiración , Pulmón/fisiología , Pruebas Respiratorias , Dióxido de Carbono , Oxígeno
11.
Adv Healthc Mater ; 12(26): e2300850, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37288987

RESUMEN

Alveolar microenvironmental models are important for studying the basic biology of the alveolus, therapeutic trials, and drug testing. However, a few systems can fully reproduce the in vivo alveolar microenvironment including dynamic stretching and the cell-cell interface. Here, a novel biomimetic alveolus-on-a-chip microsystem is presented suitable for visualizing physiological breathing for simulating the 3D architecture and function of human pulmonary alveoli. This biomimetic microsystem contains an inverse opal structured polyurethane membrane that achieves real-time observation of mechanical stretching. In this microsystem, the alveolar-capillary barrier is created by alveolar type 2 (ATII) cells cocultured with vascular endothelial cells (ECs) on this membrane. Based on this microsystem, the phenomena of flattening and the tendency of differentiation in ATII cells are observed. The synergistic effects of mechanical stretching and ECs on the proliferation of ATII cells are also observed during the repair process following lung injury. These features indicate the potential of this novel biomimetic microsystem for exploring the mechanisms of lung diseases, which can provide future guidance concerning drug targets for clinical therapies.


Asunto(s)
Biomimética , Células Endoteliales , Humanos , Alveolos Pulmonares/fisiología , Pulmón , Técnicas de Cocultivo
12.
PLoS Comput Biol ; 18(10): e1010153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36279309

RESUMEN

Early lung cancer lesions develop within a unique microenvironment that undergoes constant cyclic stretch from respiration. While tumor stiffening is an established driver of tumor progression, the contribution of stress and strain to lung cancer is unknown. We developed tissue scale finite element models of lung tissue to test how early lesions alter respiration-induced strain. We found that an early tumor, represented as alveolar filling, amplified the strain experienced in the adjacent alveolar walls. Tumor stiffening further increased the amplitude of the strain in the adjacent alveolar walls and extended the strain amplification deeper into the normal lung. In contrast, the strain experienced in the tumor proper was less than the applied strain, although regions of amplification appeared at the tumor edge. Measurements of the alveolar wall thickness in clinical and mouse model samples of lung adenocarcinoma (LUAD) showed wall thickening adjacent to the tumors, consistent with cellular response to strain. Modeling alveolar wall thickening by encircling the tumor with thickened walls moved the strain amplification radially outward, to the next adjacent alveolus. Simulating iterative thickening in response to amplified strain produced tracks of thickened walls. We observed such tracks in early-stage clinical samples. The tracks were populated with invading tumor cells, suggesting that strain amplification in very early lung lesions could guide pro-invasive remodeling of the tumor microenvironment. The simulation results and tumor measurements suggest that cells at the edge of a lung tumor and in surrounding alveolar walls experience increased strain during respiration that could promote tumor progression.


Asunto(s)
Neoplasias Pulmonares , Alveolos Pulmonares , Ratones , Animales , Análisis de Elementos Finitos , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiología , Pulmón , Neoplasias Pulmonares/patología , Carcinogénesis , Microambiente Tumoral
13.
Respir Physiol Neurobiol ; 302: 103900, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35367411

RESUMEN

The pulmonary acinus is the gas exchange unit in the lung and has a very complex microstructure. The structure model is essential to understand the relationship between structural heterogeneity and mechanical phenomena at the acinus level with computational approaches. We propose an acinus structure model represented by a cluster of truncated octahedra in conical, double-conical, inverted conical, or chestnut-like conical confinement to accommodate recent experimental information of rodent acinar shapes. The basis of the model is the combined use of Voronoi and Delaunay tessellations and the optimization of the ductal tree assuming the number of alveoli and the mean path length as quantities related to gas exchange. Before applying the Voronoi tessellation, controlling the seed coordinates enables us to model acinus with arbitrary shapes. Depending on the acinar shape, the distribution of path length varies. The lengths are more widely spread for the cone acinus, with a bias toward higher values, while most of the lengths for the inverted cone acinus primarily take a similar value. Longer pathways have smaller tortuosity and more generations, and duct length per generation is almost constant irrespective of generation, which agrees well with available experimental data. The pathway structure of cone and chestnut-like cone acini is similar to the surface acini's features reported in experiments. According to space-filling requirements in the lung, other conical acini may also be acceptable. The mathematical acinus structure model with various conical shapes can be a platform for computational studies on regional differences in lung functions along the lung surface, underlying respiratory physiology and pathophysiology.


Asunto(s)
Pulmón , Alveolos Pulmonares , Células Acinares/fisiología , Animales , Pulmón/fisiología , Modelos Biológicos , Alveolos Pulmonares/fisiología , Ratas
15.
Semin Fetal Neonatal Med ; 27(1): 101243, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33962890

RESUMEN

Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.


Asunto(s)
Displasia Broncopulmonar , Displasia Broncopulmonar/etiología , Humanos , Recién Nacido , Recien Nacido Prematuro , Pulmón , Alveolos Pulmonares/fisiología , Regeneración
16.
PLoS One ; 16(11): e0257349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34748555

RESUMEN

Pulmonary acini represent the functional gas-exchanging units of the lung. Due to technical limitations, individual acini cannot be identified on microscopic lung sections. To overcome these limitations, we imaged the right lower lobes of instillation-fixed rat lungs from postnatal days P4, P10, P21, and P60 at the TOMCAT beamline of the Swiss Light Source synchrotron facility at a voxel size of 1.48 µm. Individual acini were segmented from the three-dimensional data by closing the airways at the transition from conducting to gas exchanging airways. For a subset of acini (N = 268), we followed the acinar development by stereologically assessing their volume and their number of alveoli. We found that the mean volume of the acini increases 23 times during the observed time-frame. The coefficients of variation dropped from 1.26 to 0.49 and the difference between the mean volumes of the fraction of the 20% smallest to the 20% largest acini decreased from a factor of 27.26 (day 4) to a factor of 4.07 (day 60), i.e. shows a smaller dispersion at later time points. The acinar volumes show a large variation early in lung development and homogenize during maturation of the lung by reducing their size distribution by a factor of 7 until adulthood. The homogenization of the acinar sizes hints at an optimization of the gas-exchange region in the lungs of adult animals and that acini of different size are not evenly distributed in the lungs. This likely leads to more homogeneous ventilation at later stages in lung development.


Asunto(s)
Pulmón/ultraestructura , Alveolos Pulmonares/ultraestructura , Intercambio Gaseoso Pulmonar/fisiología , Respiración , Células Acinares/fisiología , Células Acinares/ultraestructura , Animales , Animales Recién Nacidos/fisiología , Humanos , Pulmón/fisiología , Alveolos Pulmonares/fisiología , Ratas
17.
Respir Physiol Neurobiol ; 294: 103767, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34329768

RESUMEN

A computational model of the transport of gases involved in spontaneous breathing, from the trachea inlet to the alveoli was developed for healthy patients. Convective and diffusive transport mechanisms were considered simultaneously, using a diffusion coefficient (D) that has considered the four main species of gases present in the exchange carried out by the human lung, nitrogen (N2), oxygen (O2), carbon dioxide (CO2) and water vapor (H2O). A Matlab® script was programmed to simulate the trachea-alveolus gas exchange model under three respiratory frequencies: 12, 24 and 40 breaths per minute (BPM), each with three diaphragmatic movements of 2 cm, 4 cm, and 6 cm. During the simulations, the CO2 inlet concentrations in the alveoli and the O2 concentration at the inlet of the trachea were kept constant. A simplified but stable model of mass transport between the trachea and alveoli was obtained, allowing the concentrations to be determined dynamically at the selected test points in the airway.


Asunto(s)
Modelos Teóricos , Alveolos Pulmonares/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Respiración , Tráquea/fisiología , Humanos
18.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941687

RESUMEN

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Asunto(s)
Dispositivos Laboratorio en un Chip , Modelos Biológicos , Alveolos Pulmonares/fisiología , Células Epiteliales Alveolares , Antivirales/farmacología , Fumar Cigarrillos/efectos adversos , Dimetilpolisiloxanos/química , Gelatina/química , Humanos , Hidrogeles/química , Metacrilatos/química , Porosidad , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología , Respiración , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
19.
Exp Clin Transplant ; 19(5): 462-472, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33736584

RESUMEN

OBJECTIVES: Prolonged surgical retraction may cause atelectasis. We aimed to recruit collapsed alveoli, stepwise, monitored by lung dynamic compliance and observe effects on arterial oxygenation and systemic and graft hemodynamics. Secondarily, we observed alveolar recruitment effects on postoperative mechanical ventilation, international normalized ratio, and pulmonary complications. MATERIALS AND METHODS: For 58 recipients (1 excluded), randomized with optimal positive end-expiratory pressure (n = 28) versus control (fixed positive end-expiratory pressure, 5 cm H2O; n = 29), alveolar recruitment was initiated (pressure-controlled ventilation guided by lung dynamic compliance) to identify optimal conditions. Ventilation shifted to volume-control mode with 0.4 fraction of inspired oxygen, 6 mL/kg tidal volume, and 1:2 inspiratory-to-expiratory ratio. Alveolar recruitment was repeated postretraction and at intensive care unit admission. Primary endpoints were changes in lung dynamic compliance, arterial oxygenation, and hemodynamics (cardiac output, invasive arterial and central venous pressures, graft portal and hepatic vein flows). Secondary endpoints were mechanical ventilation period and postoperative international normalized ratio, aspartate/alanine aminotransferases, lactate, and pulmonary complications. RESULTS: Alveolar recruitment increased positive end-expiratory pressure, lung dynamic compliance, and arterial oxygenation (P < .01) and central venous pressure (P = .004), without effects on corrected flow time (P = .7). Cardiac output and invasive arterial pressure were stable with (P = .11) and without alveolar recruitment (P = .1), as were portal (P = .27) and hepatic vein flow (P = .30). Alveolar recruitment reduced postoperative pulmonary complications (n = 0/28 vs 8/29; P = .001), without reduction in postoperative mechanical ventilation period (P = .08). International normalization ratio, aspartate/alanine aminotransferases, and lactate were not different from control (P > .05). CONCLUSIONS: Stepwise alveolar recruitment identified the optimal positive end-expiratory pressure to improve lung mechanics and oxygenation with minimal hemodynamic changes, without liver graft congestion/dysfunction, and was associated with significant reduction in postoperative pulmonary complications.


Asunto(s)
Hemodinámica , Trasplante de Hígado , Pulmón/fisiología , Alveolos Pulmonares/fisiología , Alanina Transaminasa , Aspartato Aminotransferasas , Humanos , Lactatos , Trasplante de Hígado/efectos adversos
20.
Crit Care ; 25(1): 81, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627160

RESUMEN

BACKGROUND: There is a paucity of data concerning the optimal ventilator management in patients with COVID-19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 pneumonia. METHODS: A single-center cohort study was conducted in a 39-bed intensive care unit at a university-affiliated hospital in Genoa, Italy. Chest computed tomography (CT) was performed to quantify aeration at 8 and 16 cmH2O PEEP. The primary endpoint was the amount of alveolar recruitment, defined as the change in the non-aerated compartment at the two PEEP levels on CT scan. RESULTS: Forty-two patients were included in this analysis. Alveolar recruitment was median [interquartile range] 2.7 [0.7-4.5] % of lung weight and was not associated with excess lung weight, PaO2/FiO2 ratio, respiratory system compliance, inflammatory and thrombophilia markers. Patients in the upper quartile of recruitment (recruiters), compared to non-recruiters, had comparable clinical characteristics, lung weight and gas volume. Alveolar recruitment was not different in patients with lower versus higher respiratory system compliance. In a subgroup of 20 patients with available gas exchange data, increasing PEEP decreased respiratory system compliance (median difference, MD - 9 ml/cmH2O, 95% CI from - 12 to - 6 ml/cmH2O, p < 0.001) and the ventilatory ratio (MD - 0.1, 95% CI from - 0.3 to - 0.1, p = 0.003), increased PaO2 with FiO2 = 0.5 (MD 24 mmHg, 95% CI from 12 to 51 mmHg, p < 0.001), but did not change PaO2 with FiO2 = 1.0 (MD 7 mmHg, 95% CI from - 12 to 49 mmHg, p = 0.313). Moreover, alveolar recruitment was not correlated with improvement of oxygenation or venous admixture. CONCLUSIONS: In patients with severe COVID-19 pneumonia, higher PEEP resulted in limited alveolar recruitment. These findings suggest limiting PEEP strictly to the values necessary to maintain oxygenation, thus avoiding the use of higher PEEP levels.


Asunto(s)
COVID-19/complicaciones , Neumonía Viral/terapia , Respiración con Presión Positiva , Alveolos Pulmonares/fisiología , Anciano , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , COVID-19/fisiopatología , Estudios de Cohortes , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/virología , Alveolos Pulmonares/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...