Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540368

RESUMEN

Neurodegenerative proteinopathies such as Alzheimer's Disease are characterized by abnormal protein aggregation and neurodegeneration. Neuroresilience or regenerative strategies to prevent neurodegeneration, preserve function, or restore lost neurons may have the potential to combat human proteinopathies; however, the adult human brain possesses a limited capacity to replace lost neurons. In contrast, axolotls (Ambystoma mexicanum) show robust brain regeneration. To determine whether axolotls may help identify potential neuroresilience or regenerative strategies in humans, we first interrogated whether axolotls express putative proteins homologous to human proteins associated with neurodegenerative diseases. We compared the homology between human and axolotl proteins implicated in human proteinopathies and found that axolotls encode proteins highly similar to human microtubule-binding protein tau (tau), amyloid precursor protein (APP), and ß-secretase 1 (BACE1), which are critically involved in human proteinopathies like Alzheimer's Disease. We then tested monoclonal Tau and BACE1 antibodies previously used in human and rodent neurodegenerative disease studies using immunohistochemistry and western blotting to validate the homology for these proteins. These studies suggest that axolotls may prove useful in studying the role of these proteins in disease within the context of neuroresilience and repair.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Adulto , Animales , Humanos , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide , Enfermedades Neurodegenerativas/genética , Ácido Aspártico Endopeptidasas , Proteínas tau/genética
2.
J Neurophysiol ; 131(1): 124-136, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116604

RESUMEN

Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H+ effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H+ fluxes were measured from individual cells using self-referencing H+-selective microelectrodes. The increased H+ efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H+ efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H+ efflux. ATP-initiated H+ fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H+ efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H+ efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H+ release from glia and the role this may play in modulating neuronal signaling.NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H+ efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na+/H+ exchange, and monocarboxylate transport, and suggest that such H+ release may play a key role in modulating neuronal transmission.


Asunto(s)
Ambystoma mexicanum , Células Ependimogliales , Animales , Células Ependimogliales/metabolismo , Ambystoma mexicanum/metabolismo , Calmodulina/metabolismo , Calcio/metabolismo , Amilorida/metabolismo , Adenosina Trifosfato/metabolismo , Neuroglía/metabolismo , Retina
3.
OMICS ; 27(11): 526-535, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943672

RESUMEN

Circular RNAs (circRNAs) are of relevance to regenerative medicine and play crucial roles in post-transcriptional and translational regulation of biological processes. circRNAs are a class of RNA molecules that are formed through a unique splicing process, resulting in a covalently closed-loop structure. Recent advancements in RNA sequencing technologies and specialized computational tools have facilitated the identification and functional characterization of circRNAs. These molecules are known to exhibit stability, developmental regulation, and specific expression patterns in different tissues and cell types across various organisms. However, our understanding of circRNA expression and putative function in model organisms for regeneration is limited. In this context, this study reports, for the first time, on the repertoire of circRNAs in axolotl, a widely used model organism for regeneration. We generated RNA-seq data from intact limb, wound, and blastema tissues of axolotl during limb regeneration. The analysis revealed the presence of 35,956 putative axolotl circRNAs, among which 5331 unique circRNAs exhibited orthology with human circRNAs. In silico data analysis underlined the potential roles of axolotl circRNAs in cell cycle, cell death, and cell senescence-related pathways during limb regeneration, suggesting the participation of circRNAs in regulation of diverse functions pertinent to regenerative medicine. These new observations help advance our understanding of the dynamic landscape of axolotl circRNAs, and by extension, inform future regenerative medicine research and innovation that harness this model organism.


Asunto(s)
MicroARNs , ARN Circular , Animales , Humanos , ARN Circular/genética , ARN/genética , ARN/metabolismo , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Medicina Regenerativa , Análisis de Secuencia de ARN/métodos , MicroARNs/genética
4.
Dev Biol ; 504: 98-112, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778717

RESUMEN

Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.


Asunto(s)
Ambystoma mexicanum , Tenascina , Animales , Humanos , Tenascina/genética , Tenascina/metabolismo , Ambystoma mexicanum/metabolismo , Matriz Extracelular/metabolismo , Músculos/metabolismo , Mamíferos/metabolismo , Músculo Esquelético/metabolismo
5.
Dev Cell ; 58(22): 2416-2427.e7, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37879337

RESUMEN

Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.


Asunto(s)
Ambystoma mexicanum , Senescencia Celular , Animales , Ambystoma mexicanum/metabolismo , Vía de Señalización Wnt , Células Madre , Proliferación Celular , Extremidades
6.
Cell Transplant ; 32: 9636897231200059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724837

RESUMEN

The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.


Asunto(s)
Ambystoma mexicanum , Encéfalo , Animales , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Encéfalo/metabolismo , Electroporación , Neuronas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Expresión Génica
7.
Front Endocrinol (Lausanne) ; 14: 1208182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492199

RESUMEN

Thyroid hormones (THs) regulate tissue remodeling processes during early- and post-embryonic stages in vertebrates. The Mexican axolotl (Ambystoma mexicanum) is a neotenic species that has lost the ability to undergo metamorphosis; however, it can be artificially induced by exogenous administration of thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3). Another TH derivative with demonstrative biological effects in fish and mammals is 3,5-diiodo-L-thyronine (3,5-T2). Because the effects of this bioactive TH remains unexplored in other vertebrates, we hypothesized that it could be biologically active in amphibians and, therefore, could induce metamorphosis in axolotl. We performed a 3,5-T2 treatment by immersion and observed that the secondary gills were retracted, similar to the onset stage phenotype; however, tissue regeneration was observed after treatment withdrawal. In contrast, T4 and T3 immersion equimolar treatments as well as a four-fold increase in 3,5-T2 concentration triggered complete metamorphosis. To identify the possible molecular mechanisms that could explain the contrasting reversible or irreversible effects of 3,5-T2 and T3 upon gill retraction, we performed a transcriptomic analysis of differential expression genes in the gills of control, 3,5-T2-treated, and T3-treated axolotls. We found that both THs modify gene expression patterns. T3 regulates 10 times more genes than 3,5-T2, suggesting that the latter has a lower affinity for TH receptors (TRs) or that these hormones could act through different TR isoforms. However, both TH treatments regulated different gene sets known to participate in tissue development and cell cycle processes. In conclusion, 3,5-T2 is a bioactive iodothyronine that promoted partial gill retraction but induced full metamorphosis in higher concentrations. Differential effects on gill retraction after 3,5,-T2 or T3 treatment could be explained by the activation of different clusters of genes related with apoptosis, regeneration, and proliferation; in addition, these effects could be initially mediated by TRs that are expressed in gills. This study showed, for the first time, the 3,5,-T2 bioactivity in a neotenic amphibian.


Asunto(s)
Ambystoma mexicanum , Branquias , Animales , Ambystoma mexicanum/metabolismo , Branquias/metabolismo , Tiroxina/farmacología , Hormonas Tiroideas/metabolismo , Mamíferos/metabolismo
8.
PLoS Biol ; 21(6): e3002121, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37315073

RESUMEN

Pluripotency defines the unlimited potential of individual cells of vertebrate embryos, from which all adult somatic cells and germ cells are derived. Understanding how the programming of pluripotency evolved has been obscured in part by a lack of data from lower vertebrates; in model systems such as frogs and zebrafish, the function of the pluripotency genes NANOG and POU5F1 have diverged. Here, we investigated how the axolotl ortholog of NANOG programs pluripotency during development. Axolotl NANOG is absolutely required for gastrulation and germ-layer commitment. We show that in axolotl primitive ectoderm (animal caps; ACs) NANOG and NODAL activity, as well as the epigenetic modifying enzyme DPY30, are required for the mass deposition of H3K4me3 in pluripotent chromatin. We also demonstrate that all 3 protein activities are required for ACs to establish the competency to differentiate toward mesoderm. Our results suggest the ancient function of NANOG may be establishing the competence for lineage differentiation in early cells. These observations provide insights into embryonic development in the tetrapod ancestor from which terrestrial vertebrates evolved.


Asunto(s)
Proteínas de Homeodominio , Células Madre Pluripotentes , Animales , Proteínas de Homeodominio/metabolismo , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Pez Cebra/genética , Diferenciación Celular , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Regulación del Desarrollo de la Expresión Génica
9.
Genes (Basel) ; 14(4)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37107662

RESUMEN

The great diversity of color patterns observed among amphibians is largely explained by the differentiation of relatively few pigment cell types during development. Mexican axolotls present a variety of color phenotypes that span the continuum from leucistic to highly melanistic. The melanoid axolotl is a Mendelian variant characterized by large numbers of melanophores, proportionally fewer xanthophores, and no iridophores. Early studies of melanoid were influential in developing the single-origin hypothesis of pigment cell development, wherein it has been proposed that all three pigment cell types derive from a common progenitor cell, with pigment metabolites playing potential roles in directing the development of organelles that define different pigment cell types. Specifically, these studies identified xanthine dehydrogenase (XDH) activity as a mechanism for the permissive differentiation of melanophores at the expense of xanthophores and iridophores. We used bulked segregant RNA-Seq to screen the axolotl genome for melanoid candidate genes and identify the associated locus. Dissimilar frequencies of single-nucleotide polymorphisms were identified between pooled RNA samples of wild-type and melanoid siblings for a region on chromosome 14q. This region contains gephyrin (Gphn), an enzyme that catalyzes the synthesis of the molybdenum cofactor that is required for XDH activity, and leukocyte tyrosine kinase (Ltk), a cell surface signaling receptor that is required for iridophore differentiation in zebrafish. Wild-type Ltk crispants present similar pigment phenotypes to melanoid, strongly implicating Ltk as the melanoid locus. In concert with recent findings in zebrafish, our results support the idea of direct fate specification of pigment cells and, more generally, the single-origin hypothesis of pigment cell development.


Asunto(s)
Ambystoma mexicanum , Pez Cebra , Animales , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Pez Cebra/genética , Melanóforos/metabolismo , Diferenciación Celular/genética , Leucocitos
10.
Methods Mol Biol ; 2562: 321-333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36272085

RESUMEN

The axolotl (Ambystoma mexicanum ) has been widely used as an animal model for studying development and regeneration. In recent decades, the use of genetic engineering to alter gene expression has advanced our knowledge on the fundamental molecular and cellular mechanisms, pointing us to potential therapeutic targets. We present a detailed, step-by-step protocol for axolotl transgenesis using either I-SceI meganuclease or the mini Tol2 transposon system, by injection of purified DNA into one-cell stage eggs. We add useful tips on the site of injection and the viability of the eggs.


Asunto(s)
Ambystoma mexicanum , Desoxirribonucleasas de Localización Especificada Tipo II , Animales , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Técnicas de Transferencia de Gen , ADN/genética , Inyecciones
11.
Methods Mol Biol ; 2562: 407-415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36272090

RESUMEN

Deciphering how metabolic processes contribute to control of stem cell proliferation and differentiation is essential for understanding the mechanisms of regeneration. However, much is still unknown about axolotls' metabolism, which has not been studied in detail over their lifespan or under varied experimental conditions. We summarize the theoretical underpinnings of metabolism and respirometry, and describe a closed respirometry system to investigate metabolic energetics in axolotls as a specific aspect of metabolism. Placement of post-absorptive, fairly inactive animals in the multiple-probe respirometer for 24-48 h allows us to measure changes in concentrations of respiratory gases: oxygen (atmospheric and dissolved) and carbon dioxide, while monitoring the temperature and salinity (conductivity) of the chamber's water. Respirometry data are used to calculate oxygen intake and carbon dioxide output to estimate animal's metabolic energy dynamics during the observation periods. This method creates opportunities for study of potential fluctuations in axolotls' metabolic rate as it pertains to respiratory gases' dynamics during 24-h circadian cycle, as well as examination of changes in metabolic energy management during aging, under varied environmental temperatures, during post-amputation regeneration and many other circumstances.


Asunto(s)
Ambystoma mexicanum , Dióxido de Carbono , Animales , Ambystoma mexicanum/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo Basal , Oxígeno , Agua
12.
Front Endocrinol (Lausanne) ; 13: 820896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250878

RESUMEN

The Melanocortin-3 receptor (MC3R) and Melanocortin-4 receptor (MC4R), two members of the key hypothalamic neuropeptide signaling, function as complex mediators to control the central appetitive and energy homeostasis. The melanocortin 2 receptor accessory protein 2 (MRAP2) is well-known for its modulation on the trafficking and signaling of MC3R and MC4R in mammals. In this study, we cloned and elucidated the pharmacological profiles of MRAP2 on the regulation of central melanocortin signaling in a relatively primitive poikilotherm amphibian species, the Mexican axolotl (Ambystoma mexicanum). Our results showed the higher conservation of axolotl mc3r and mc4r across species than mrap2, especially the transmembrane regions in these proteins. Phylogenetic analysis indicated that the axolotl MC3R/MC4R clustered closer to their counterparts in the clawed frog, whereas MRAP2 fell in between the reptile and amphibian clade. We also identified a clear co-expression of mc3r, mc4r, and mrap2 along with pomc and agrp in the axolotl brain tissue. In the presence of MRAP2, the pharmacological stimulation of MC3R by α-MSH or ACTH significantly decreased. MRAP2 significantly decreased the cell surface expression of MC4R in a dose dependent manner. The co-localization and formation of the functional complex of axolotl MC3R/MC4R and MRAP2 on the plasma membrane were further confirmed in vitro. Dramatic changes of the expression levels of mc3r, mrap2, pomc, and agrp in the fasting axolotl hypothalamus indicated their critical roles in the metabolic regulation of feeding behavior and energy homeostasis in the poikilotherm aquatic amphibian.


Asunto(s)
Ambystoma mexicanum , Melanocortinas , Proteína Relacionada con Agouti/genética , Ambystoma mexicanum/metabolismo , Animales , Mamíferos/metabolismo , Melanocortinas/metabolismo , Filogenia , Proopiomelanocortina/genética , Receptor de Melanocortina Tipo 2
13.
Genes (Basel) ; 13(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35205418

RESUMEN

The Mexican axolotl is one of the few vertebrates that is able to replace its lost body parts during lifespan. Due to its remarkable regenerative abilities, the axolotl emerged as a model organism especially for limb regeneration. Telomeres and the telomerase enzyme are crucial for regeneration and protection against aging processes and degenerating diseases. Despite its relevance for regeneration, the axolotl telomerase and telomere length have not yet been investigated. Therefore, in the present paper, we reveal the sequence of the axolotl telomerase reverse transcriptase gene (Tert) and protein (TERT). Multiple sequence alignment (MSA) showed the known conserved RT- and TERT-specific motifs and residues found in other TERTs. In addition, we establish methods to determine the Tert expression (RT-PCR) and telomerase activity (Q-TRAP) of adult axolotl and blastema tissues. We found that both differentiated forelimb tissue and regenerating blastema tissue express Tert and show telomerase activity. Furthermore, blastema tissue appears to exhibit a higher Tert expression and telomerase activity. The presence of active telomerase in adult somatic cells is a decisive difference to somatic cells of non-regenerating vertebrates, such as humans. These findings indicate that telomere biology may play a key role in the regenerative abilities of cells.


Asunto(s)
Ambystoma mexicanum , Telomerasa , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Animales , Secuencia de Bases , Humanos , Regeneración/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Vertebrados/genética
14.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156681

RESUMEN

Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3'UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced.


Asunto(s)
MicroARNs/metabolismo , Regeneración de la Medula Espinal/genética , Médula Espinal/metabolismo , Regiones no Traducidas 3' , Ambystoma mexicanum/metabolismo , Animales , Antagomirs/metabolismo , Diferenciación Celular , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/fisiología , Vía de Señalización Wnt , beta Catenina/antagonistas & inhibidores , beta Catenina/química , beta Catenina/metabolismo
15.
Cells ; 10(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34571821

RESUMEN

We know little about the control of positional information (PI) during axolotl limb regeneration, which ensures that the limb regenerates exactly what was amputated, and the work reported here investigates this phenomenon. Retinoic acid administration changes the PI in a proximal direction so that a complete limb can be regenerated from a hand. Rather than identifying all the genes altered by RA treatment of the limb, we have eliminated many off-target effects by using retinoic acid receptor selective agonists. We firstly identify the receptor involved in this respecification process as RARα and secondly, identify the genes involved by RNA sequencing of the RARα-treated blastemal mesenchyme. We find 1177 upregulated genes and 1403 downregulated genes, which could be identified using the axolotl genome. These include several genes known to be involved in retinoic acid metabolism and in patterning. Since positional information is thought to be a property of the cell surface of blastemal cells when we examine our dataset with an emphasis on this aspect, we find the top canonical pathway is integrin signaling. In the extracellular matrix compartment, we find a MMP and several collagens are upregulated; several cell membrane genes and secretory factors are also upregulated. This provides data for future testing of the function of these candidates in the control of PI during limb regeneration.


Asunto(s)
Ambystoma mexicanum/metabolismo , Extremidades/fisiología , Receptores de Ácido Retinoico/metabolismo , Regeneración/fisiología , Animales , Matriz Extracelular/metabolismo , Mesodermo/metabolismo , Mesodermo/fisiología , Transducción de Señal/fisiología , Tretinoina/metabolismo
16.
Dev Dyn ; 250(6): 807-821, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32864847

RESUMEN

BACKGROUND: Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS: We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION: The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.


Asunto(s)
Ambystoma mexicanum/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Mutación , Factores de Transcripción/genética , Ambystoma mexicanum/metabolismo , Animales , Desarrollo Embrionario/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo
17.
Gen Comp Endocrinol ; 299: 113592, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858041

RESUMEN

The aryl hydrocarbon receptor (AHR) plays pleiotropic roles in the development and physiology of vertebrates in conjunction with xenobiotic and endogenous ligands. It is best known for mediating the toxic effects of dioxin-like pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While most vertebrates possess at least one AHR that binds TCDD tightly, amphibian AHRs bind TCDD with very low affinity. Previous analyses of AHRs from Xenopus laevis (a frog; order Anura) and Ambystoma mexicanum (a salamander; order Caudata) identified three amino acid residues in the ligand-binding domain (LBD) that underlie low-affinity binding. In X. laevis AHR1ß, these are A354, A370, and N325. Here we extend the analysis of amphibian AHRs to the caecilian Gymnopis multiplicata, representing the remaining extant amphibian order, Gymnophiona. G. multiplicata AHR groups with the monophyletic vertebrate AHR/AHR1 clade. The LBD includes all three signature residues of low TCDD affinity, and a structural homology model suggests that its architecture closely resembles those of other amphibians. In transactivation assays, the EC50 for reporter gene induction by TCDD was 17.17 nM, comparable to X. laevis AhR1ß (26.23 nM) and Ambystoma AHR (34.09 nM) and dramatically higher than mouse AhR (0.13 nM), a trend generally reflected in direct measures of TCDD binding. These shared properties distinguish amphibian AHRs from the high-affinity proteins typical of both vertebrate groups that diverged earlier (teleost fish) and those that appeared more recently (other tetrapods). These findings suggest the hypothesis that AHRs with low TCDD affinity represent a characteristic that evolved in a common ancestor of all three extant amphibian groups.


Asunto(s)
Ambystoma mexicanum/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Ligandos , Filogenia , Dibenzodioxinas Policloradas/química , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/genética , Homología de Secuencia
18.
Development ; 147(14)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32665245

RESUMEN

Amputation of a salamander limb triggers a regeneration process that is perfect. A limited number of genes have been studied in this context and even fewer have been analyzed functionally. In this work, we use the BMP signaling inhibitor LDN193189 on Ambystoma mexicanum to explore the role of BMPs in regeneration. We find that BMP signaling is required for proper expression of various patterning genes and that its inhibition causes major defects in the regenerated limbs. Fgf8 is downregulated when BMP signaling is blocked, but ectopic injection of either human or axolotl protein did not rescue the defects. By administering LDN193189 treatments at different time points during regeneration, we show clearly that limb regeneration progresses in a proximal to distal fashion. This demonstrates that BMPs play a major role in patterning of regenerated limbs and that regeneration is a progressive process like development.


Asunto(s)
Ambystoma mexicanum/metabolismo , Proteínas Anfibias/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Extremidades/fisiología , Regeneración/fisiología , Transducción de Señal , Ambystoma mexicanum/crecimiento & desarrollo , Proteínas Anfibias/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular/efectos de los fármacos , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
19.
Biochem Biophys Res Commun ; 522(2): 428-434, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31767146

RESUMEN

The axolotl (Ambystoma mexicanum) salamander, a urodele amphibian, has an exceptional regenerative capacity to fully restore an amputated limb throughout the life-long lasting neoteny. By contrast, when axolotls are experimentally induced to metamorphosis, attenuation of the limb's regenerative competence is noticeable. Here, we sought to discern the proteomic profiles of the early stages of blastema formation of neotenic and metamorphic axolotls after limb amputation by employing LC-MS/MS technology. We quantified a total of 714 proteins and qRT-PCR for selected genes was performed to validate the proteomics results and provide evidence for the putative link between immune system activity and regenerative potential. This study provides new insights for examination of common and distinct molecular mechanisms in regeneration-permissive neotenic and regeneration-deficient metamorphic stages at the proteome level.


Asunto(s)
Ambystoma mexicanum/crecimiento & desarrollo , Ambystoma mexicanum/metabolismo , Extremidades/fisiología , Metamorfosis Biológica , Proteoma/metabolismo , Regeneración/fisiología , Ambystoma mexicanum/genética , Ambystoma mexicanum/inmunología , Animales , Regulación de la Expresión Génica , Ontología de Genes , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...