Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.063
Filtrar
1.
Carbohydr Polym ; 338: 122213, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763715

RESUMEN

The present research studies the impact of apparent amylose content (AAC) on the quality of fortified rice kernels (FRK), a health food designed to combat iron deficiency anemia by fortifying with iron, folic acid, and vitamin B12. Five FRK formulations with varying AAC (0.46-23.89 %) were prepared, and AAC influence on the extruder-system parameter and physicochemical, cooking, and textural properties of FRK was investigated. The torque, die-pressure, length, redness, and cooking time increased with an increase in AAC and were in the range of 12.55-22.81 Nm, 58.31-88.96 bar, 4.58-5.09 mm, 0.35-1.15, and 6.1-11.2 min, respectively. The other parameters, such as the breadth, whiteness index, and cooking loss decreased with an increase in AAC. Except for cohesiveness, all other textural properties of cooked FRK increased with an increase in AAC. These correlations of the FRK properties with AAC were confirmed through multivariate analysis. SEM, XRD, FTIR, and rheology supported the observed AAC trends in FRK properties. SEM showed a reduction in pores and cracks with an increase in AAC. The XRD and FTIR showed an increase in crystallinity with an increase in AAC due to better gelatinization leading to rapid retrogradation. This leads to better physical, cooking, and textural properties of FRK.


Asunto(s)
Amilosa , Culinaria , Oryza , Oryza/química , Amilosa/análisis , Amilosa/química , Alimentos Fortificados/análisis , Reología
2.
Carbohydr Polym ; 338: 122208, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763729

RESUMEN

This study examines the impact and influence of amylose on the starch esterification reaction through partial extraction of amylose. Citric acid was added for the esterification reaction, and then the esterified starches' multiscale structure, physicochemical, and functional properties were evaluated. As the extraction time of amylose increased, the amylose content in the starch decreased. Higher concentrations of citric acid will lead to samples with a higher degree of substitution, with DS rising from 0.203 % (0 h) to 0.231 % (3.5 h) at CA3 treatment. While removing amylose had minimal effects on the crystal structure of starch granules, it did decrease the ratio of A and B1 chains and the molecular weight of amylose. Acid hydrolysis exacerbated these changes upon the addition of citric acid. Furthermore, removing amylose followed by citrate esterification resulted in lower pasting viscosity, enthalpy of gelatinization (from 13.37 J to 2.83 J), and degree of short-range ordering. Also, digestion shows a decrease caused by the increasing content of slow-digesting starch. The presence of amylose in starch granules does affect the formation of starch esters, and removing it before esterification modification may improve production efficiency and reduce costs to some extent.


Asunto(s)
Amilosa , Ácido Cítrico , Solanum tuberosum , Almidón , Amilosa/química , Esterificación , Ácido Cítrico/química , Solanum tuberosum/química , Almidón/química , Viscosidad , Hidrólisis , Peso Molecular
3.
Food Res Int ; 183: 114186, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760125

RESUMEN

The rise of pre-diabetes at the global level has created a significant interest in developing low glycaemic index food products. The pearl millet is a cheaper source of starch and its germ contains significant amount of protein and fat. The complexing of pearl millet starch and germ by dry heat treatment (PMSGH) resulted an increase in the resistant starch content upto 45.09 % due to formation of amylose-glutelin-linoleic acid complex. The resulting pearl millet starch germ complex was incorporated into wheat bread at 20, 25, and 30 %. The PMSGH incorporated into bread at 30 % reduced the glycaemic index to 52.31. The PMSGH incorporated bread had significantly (p < 0.05)increased in the hardness with a reduction in springiness and cohesiveness. The structural attributes of the 30 % PMSGH incorporated bread revealed a significant (p < 0.05)increase in 1040/1020 cm-1 ratio and relative crystallinity. The consumption of functional bread incorporated with pearl millet starch germ complex reduced blood glucose levels and in vivo glycaemic index in healthy and pre-diabetic participants when compared to white bread. Hence, the study showed that the incorporation of pearl millet starch-germ complex into food products could be a potential new and healthier approach for improving dietary options in pre-diabetes care.


Asunto(s)
Glucemia , Pan , Índice Glucémico , Pennisetum , Estado Prediabético , Almidón , Humanos , Pan/análisis , Pennisetum/química , Almidón/química , Masculino , Adulto , Femenino , Valor Nutritivo , Método Simple Ciego , Adulto Joven , Persona de Mediana Edad , Amilosa/química
4.
Food Res Int ; 183: 114226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760145

RESUMEN

Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and ß-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.


Asunto(s)
Amilosa , Harina , Manipulación de Alimentos , Hordeum , Almidón , Hordeum/química , Almidón/química , Harina/análisis , Viscosidad , Amilosa/química , Manipulación de Alimentos/métodos , Valor Nutritivo , Fibras de la Dieta/análisis , Solubilidad , beta-Glucanos/química , Fenómenos Químicos , Calor
5.
Int J Biol Macromol ; 268(Pt 2): 131996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697417

RESUMEN

This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.


Asunto(s)
Amilosa , Ácidos Láuricos , Lecitinas , Almidón , Zea mays , Ácidos Láuricos/química , Lecitinas/química , Almidón/química , Amilosa/química , Zea mays/química , Solanum tuberosum/química , Hidrólisis , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Rastreo Diferencial de Calorimetría
6.
Nat Commun ; 15(1): 4493, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802342

RESUMEN

Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Oryza , Latencia en las Plantas , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Latencia en las Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Amilosa/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , Plantas Modificadas Genéticamente
7.
Brief Funct Genomics ; 23(3): 193-213, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751352

RESUMEN

Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.


Asunto(s)
Productos Agrícolas , Almidón Sintasa , Productos Agrícolas/genética , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amilosa/metabolismo , Amilosa/genética , Amilopectina/metabolismo , Amilopectina/genética , Filogenia , Almidón/metabolismo , Almidón/genética , Almidón/biosíntesis
8.
Chirality ; 36(5): e23679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752268

RESUMEN

Each year, new psychoactive substances appear on the global drug market leading to constant changes. Most of these compounds with stimulating effect possess a chiral center, thus leading to two enantiomers with presumably different pharmacological properties. Among them, synthetic cathinones, often misleadingly traded as "bath salts," play an important role. There is little knowledge about the distinct effect of the enantiomers. The aim of this study was to test a commercially available Lux® i-Amylose-3 column by HPLC-UV for enantiorecognition of cathinone derivatives. Overall, 80 compounds were tested in normal phase mode, where 75 substances were separated under initial conditions. After method optimization, at least partial separation was achieved for the remaining compounds. The same set of substances was measured in polar-organic mode, where 63 analytes were resolved into their enantiomers under initial conditions with very short retention times. Both modes showed complementary results for the individual compounds. Furthermore, the tested methods proved to be suitable for differentiation of positional isomers, which can be useful for drug checking programs. All measurements were carried out under isocratic conditions, and intraday and interday repeatability tests were performed.


Asunto(s)
Alcaloides , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/química , Alcaloides/aislamiento & purificación , Amilosa/química , Amilosa/análogos & derivados , Pirrolidinas
9.
Food Res Int ; 186: 114381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729735

RESUMEN

Lipid has crucial applications in improving the quality of starchy products during heat processing. Herein, the influence of lipid modification and thermal treatment on the physicochemical properties and starch digestibility of cooked rice prepared with varied addition manipulations was investigated. Rice bran oil (RO) and medium chain triglyceride oil (MO) manipulations were performed either before (BC) or after cooking (AC). GC-MS was applied to determine the fatty acid profiles. Nutritional quality was analyzed by quantifying total phenolics, atherogenic, and thrombogenic indices. All complexes exhibited higher surface firmness, a soft core, and less adhesive. FTIR spectrum demonstrated that the guest component affected some of the dense structural attributes of V-amylose. The kinetic constant was in the range between 0.47 and 0.86 min-1 wherein before mode presented a higher value. The lowest glucose release was observed in the RO_BC sample, whereas the highest complexing index was observed in the RO_AC sample, indicating that the dense molecular configuration of complexes that could resist enzymatic digestion was more critical than the quantity of complex formation. Despite the damage caused by mass and heat transfer, physical barrier, intact granule forms, and strengthened dense structure were the central contributors affecting the digestion characteristics of lipid-starch complexes.


Asunto(s)
Culinaria , Digestión , Oryza , Aceite de Salvado de Arroz , Almidón , Triglicéridos , Oryza/química , Almidón/química , Aceite de Salvado de Arroz/química , Triglicéridos/química , Calor , Ácidos Grasos/análisis , Ácidos Grasos/química , Aceites de Plantas/química , Espectroscopía Infrarroja por Transformada de Fourier , Valor Nutritivo , Amilosa/química , Cromatografía de Gases y Espectrometría de Masas
10.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710564

RESUMEN

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Asunto(s)
Amilopectina , Amilosa , Almidón Sintasa , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biosíntesis , Amilosa/química , Amilosa/biosíntesis , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Almidón Sintasa/química , Almidón/química , Almidón/biosíntesis , Almidón/metabolismo , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Int J Biol Macromol ; 268(Pt 2): 131911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679263

RESUMEN

Starch is a common ingredient to improve gel property of freshwater fish surimi, but the function of natural starch to mask fishy odor compounds in surimi products has not been investigated systematacially. Therefore, this study aimed to determine which natural starch could effectively mask fishy odor compounds and clarify their interaction by GC-MS, FT-IR spectroscopy, raman spectroscopy, X-ray diffraction, scanning electron microscopy and 13C nuclear magnetic resonance. The results showed that when the concentration, crystal type, amylose content, and dispersion degree of starch was 1 %, type C, 48 % (w/v), and 200 mesh with 0.88 span, the starch had the strongest masking effect on typical fishy odor compounds, namely hexanal, 1-Octen-3-ol, (E,E)-2,4-Heptadienal and (E)-2-Octenal. It indicated that complexation and hydrogen bonding both occurred between the fishy odor compounds and starch.


Asunto(s)
Odorantes , Almidón , Odorantes/análisis , Almidón/química , Animales , Peces , Amilosa/química , Amilosa/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Aldehídos/química
12.
Int J Biol Macromol ; 268(Pt 1): 131615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631580

RESUMEN

This research was conducted to evaluate the effects of cold plasma (CP) on finger millet starch (FMS). FMS was exposed to partially ionized gas at varying voltages (170, 200, and 230 Volt) for varied time (10, 20, and 30 mins). The impact of treatment was studied using physico-chemical, and functional properties, and the mechanisms of starch modification occurring were stated. A significant reduction in the degree of polymerization was noticed based on parameters like reducing sugar, amylose content, solubility, and molecular weight. However, in certain voltage and time combinations, crosslinking was also confirmed by analysis such as XRD, FTIR, DSC, etc. The properties of starch were altered such as remarkable increase in water solubility by 6.7 times for highest voltage and longest time (230 V/30 min) was registered. NMR data suggested valuable findings- oxidation of OH group at C6 position of starch led to formation of carbonyl group followed by carboxyl group. NMR also showed a decrease in OH protons confirming crosslinking and hence all these analyses helped to conclude findings about the quality changes using CP. It was observed that the highest voltage and considerably longer exposure time of 20 and 30 min induced significant changes in the FMS.


Asunto(s)
Amilosa , Eleusine , Gases em Plasma , Solubilidad , Almidón , Almidón/química , Gases em Plasma/química , Eleusine/química , Amilosa/química , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier
13.
Int J Biol Macromol ; 268(Pt 1): 131576, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636764

RESUMEN

This work aimed to characterize and compare the physicochemical properties of four pulse starches: bean, chickpea, lentil, and pea. Chemical proximate analysis, elemental composition, morphological grain characterization, crystalline structure, thermal analysis, FTIR analysis, and pasting properties were conducted. The proximate analysis shows that these starches have low fat, mineral, and protein content but high amylose values ranging from 29 to 36 % determined by colorimetry. Despite the high amylose content, the starches did not exhibit the typical behavior of an amylose-rich starch, with high peak viscosity and low breakdown and setback. It was found that this behavior was likely due to the large granule size of the ellipsoidal, spherical, and kidney-shaped granules and the high content of some minerals such as Na, Mg, K, Fe, Mn, P, and Si. The study also found that all pulse starches simultaneously contain monoclinic and hexagonal crystals, making them C-type starches. The findings were verified through the Rietveld analyses of X-ray diffraction patterns and differential scanning calorimetry, in which bimodal endothermic peaks evidenced both types of crystals being gelatinized.


Asunto(s)
Amilosa , Reología , Almidón , Almidón/química , Amilosa/química , Amilosa/análisis , Fenómenos Químicos , Viscosidad , Difracción de Rayos X , Lens (Planta)/química , Productos Agrícolas/química , Cicer/química , Rastreo Diferencial de Calorimetría
14.
Int J Biol Macromol ; 268(Pt 1): 131699, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642689

RESUMEN

Starch and peanut oil (PO) were widely used to improve the gel properties of surimi, however, the impact mechanism of addition forms on the denaturation and aggregation behavior of myofibrillar protein (MP) is not clear. Therefore, the effect of starch, PO, starch/PO mixture, and starch-based emulsion on the physicochemical and gel properties of MP was investigated. The results showed that amylose could accelerate the aggregation of MP, while amylopectin was conducive to the improvement of gel properties. The addition of PO, starch/PO mixture, or starch-based emulsion increased the turbidity, solubility, sulfhydryl content of MP, and improved the gel strength, whiteness, and texture of MP gel. However, compared with starch/PO mixture group, the gel strength of MP with waxy, normal and high amylose corn starch-based emulsion increased by 22.68 %, 10.27 %, and 32.89 %, respectively. The MP containing emulsion had higher storage modulus than MP with starch/PO mixture under the same amylose content. CLSM results indicated that the oil droplets aggregated in PO or starch/PO mixture group, while emulsified oil droplets filled the protein gel network more homogeneously. Therefore, the addition of starch and PO in the form of emulsion could effectively play the filling role to improve the gel properties of MP.


Asunto(s)
Amilosa , Emulsiones , Geles , Aceite de Cacahuete , Almidón , Amilosa/química , Amilosa/análisis , Aceite de Cacahuete/química , Almidón/química , Geles/química , Emulsiones/química , Proteínas Musculares/química , Fenómenos Químicos , Solubilidad , Miofibrillas/química
15.
Carbohydr Polym ; 335: 122086, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616071

RESUMEN

Recently, attention has been paid to cellulose nanofibers, such as 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers (TOCN), as new bio-based materials. In addition, hydrophobized surface on TOCNs can be expected to provide new applications. Based on our previous finding that partially 2-deoxygenated (P2D)-amylose, which was synthesized by GP-catalyzed enzymatic copolymerization of D-glucal with α-d-glucose 1-phosphate (Glc-1-P) as comonomers, was hydrophobic, in this study, hydrophobization of surfaces on TOCNs was investigated by the GP-catalyzed enzymatic grafting of P2D-amylose chains on TOCNs. After maltooligosaccharide primers were modified on TOCNs, the GP-catalyzed enzymatic copolymerization of D-glucal with Glc-1-P was performed for grafting of P2D-amylose chains. 1H NMR spectroscopic analysis confirmed the production of P2D-amylose-grafted TOCNs with different 2-deoxyglucose/Glc unit ratios. The powder X-ray diffraction profiles of the products indicated that the entire crystalline structures were strongly affected by the unit ratios and chain lengths of the grafted polysaccharides. The SEM images observed differences in nanofiber diameter in the reaction solutions and surface morphology after film formation, due to grafting of P2D-amylose chains from TOCNs. The water contact angle measurement of a cast film prepared from the product indicated its hydrophobicity.


Asunto(s)
Celulosa Oxidada , Nanofibras , Celulosa , Amilosa , Gluconato de Calcio
16.
Carbohydr Polym ; 335: 122070, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616092

RESUMEN

Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.


Asunto(s)
Almidón , alfa-Glucosidasas , Humanos , Animales , Hidrólisis , Amilosa , Rastreo Diferencial de Calorimetría , Ceras , Zea mays , Mamíferos
17.
Food Res Int ; 184: 114254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609232

RESUMEN

Polysaccharides have a significant impact on the physicochemical properties of starch, and the objective of this study was to examine the effect of incorporating soluble soybean polysaccharide (SSPS) on the gelatinization and retrogradation of corn starches (CS) with varying amylose content. In contrast to high-amylose corn starch (HACS), the degree of gelatinization of waxy corn starch (WCS) and normal corn starch (NCS) decreased with the addition of SSPS. The inclusion of SSPS resulted in reduced swelling power in all CS, and led to a decrease in gel hardness of the starches. The intermolecular forces between SSPS and CS were primarily hydrogen bonding, and a gel network structure was formed, thereby retarding the short-term and long-term retrogradation of CS. Scanning electron microscopy results revealed that the addition of SSPS in starches led to a loose network structure with larger poles and a reduced ordered structure after retrogradation, as observed from the cross-section of formed gels. These findings suggested that SSPS has great potential for applications in starchy foods, as it can effectively retard both gelatinization and retrogradation of starches.


Asunto(s)
Amilosa , Glycine max , Zea mays , Almidón , Polisacáridos , Amilopectina
18.
Food Res Int ; 184: 114267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609244

RESUMEN

Hot extrusion is utilized for starch modification due to its high mechanical input and product output. Amylose recrystallization commences and primarily depends on intermolecular interactions after conventional extrusion. Hence, the design of a new component based on the existed extrusion system was aimed at facilitating molecular aggregation, potentially accelerating starch recrystallization. In this study, a nozzle sheet comprising 89 holes was integrated into the cooling die. The impact of the multihole nozzle on the structure and in vitro digestibility of extruded maize starches after retrogradation was examined at varying cooling die temperatures. The results showed that the nozzle-assembled extrusion system operated effectively without additional mechanical or yield losses. At 50 °C, the crystallinity of nozzle-produced starch was approximately 70 % higher than that of conventionally extruded starch, predominantly owing to the B-type allomorph of the amylose double helix. Recrystallized amylopectin was also found in these nozzle-produced starches, indicating that multihole nozzle-induced uniaxial elongational flow resulted in the rapid starch crystallization. The increased formation of recrystallized amylose led to improved molecular order in starch structures while reducing their digestibility. These findings revealed a new approach to improve starch crystallinity by incorporating a nozzle sheet in the extrusion process.


Asunto(s)
Amilosa , Zea mays , Temperatura , Frío , Almidón
19.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656412

RESUMEN

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Asunto(s)
Amilosa , Edición Génica , Hordeum , Proteínas de Plantas , Almidón Sintasa , Amilosa/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edición Génica/métodos , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , beta-Glucanos/metabolismo , Plantas Modificadas Genéticamente , Solubilidad
20.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612852

RESUMEN

Salinity is an environmental stress that severely impacts rice grain yield and quality. However, limited information is available on the molecular mechanism by which salinity reduces grain quality. In this study, we investigated the milling, appearance, eating and cooking, and nutritional quality among three japonica rice cultivars grown either under moderate salinity with an electrical conductivity of 4 dS/m or under non-saline conditions in a paddy field in Dongying, Shandong, China. Moderate salinity affected rice appearance quality predominantly by increasing chalkiness rate and chalkiness degree and affected rice eating and cooking and nutritional quality predominantly by decreasing amylose content and increasing protein content. We compared the expression levels of genes determining grain chalkiness, amylose content, and protein content in developing seeds (0, 5, 10, 15, and 20 days after flowering) of plants grown under saline or non-saline conditions. The chalkiness-related gene Chalk5 was up-regulated and WHITE-CORE RATE 1 was repressed. The genes Nuclear factor Y and Wx, which determine amylose content, were downregulated, while protein-content-associated genes OsAAP6 and OsGluA2 were upregulated by salinity in the developing seeds. These findings suggest some target genes that may be utilized to improve the grain quality under salinity stress conditions via gene-pyramiding breeding approaches.


Asunto(s)
Metanfetamina , Oryza , Oryza/genética , Amilosa , Fitomejoramiento , Estrés Salino , Semillas/genética , Carbonato de Calcio , Grano Comestible/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA