RESUMEN
Clindamycin phosphate (CP) exhibits good enantioselectivity for many basic drugs, but its separation effect for most amino alcohol drugs is not satisfactory. In this work, a deep eutectic solvent (DES) chiral selector based on CP was prepared for the first time and utilized as a single chiral selector in nonaqueous capillary electrophoresis (NACE) to separate twelve amino alcohol drugs. Compared with unmodified CP, the separations of model drugs in the DES chiral selector system were significantly improved. Most amino alcohol drugs could be completely separated, and the peak shapes were good. In addition, we used infrared spectroscopy and nuclear magnetic resonance method to study the specific separation mechanism and explored the reasons why DES chiral selector has better enantioselectivity. This work is the first to directly modify antibiotic chiral selector into DES, indicating a direction for us to develop novel chiral recognition materials.
Asunto(s)
Amino Alcoholes , Clindamicina , Electroforesis Capilar , Solventes , Estereoisomerismo , Electroforesis Capilar/métodos , Clindamicina/química , Clindamicina/análogos & derivados , Clindamicina/aislamiento & purificación , Amino Alcoholes/química , Amino Alcoholes/aislamiento & purificación , Solventes/químicaRESUMEN
The primary challenge of implementing DNA nanostructures in biomedical applications lies in their vulnerability to nuclease degradation and variations in ionic strength. Furthermore, the size minimization of DNA and RNA nanostructures is limited by the stability of the DNA and RNA duplexes. This study presents a solution to these problems through the use of acyclic (l)-threoninol nucleic acid (aTNA), an artificial acyclic nucleic acid, which offers enhanced resilience under physiological conditions. The high stability of homo aTNA duplexes enables the design of durable nanostructures with dimensions below 5 nm, previously unattainable due to the inherent instability of DNA structures. The assembly of a stable aTNA-based 3D cube and pyramid that involves an i-motif formation is demonstrated. In particular, the cube outperforms its DNA-based counterparts in terms of stability. We furthermore demonstrate the successful attachment of a nanobody to the aTNA cube using the favorable triplex formation of aTNA with ssDNA. The selective in vitro binding capability to human epidermal growth factor receptor 2 is demonstrated. The presented research presents the use of aTNA for the creation of smaller durable nanostructures for future medical applications. It also introduces a new method for attaching payloads to these structures, enhancing their utility in targeted therapies.
Asunto(s)
Amino Alcoholes , Humanos , Amino Alcoholes/química , Ácidos Nucleicos/química , Nanoestructuras/química , Conformación de Ácido Nucleico , ADN/química , Butileno Glicoles/química , TemperaturaRESUMEN
The chiral H8-BINOL derivatives R-1 and R-2 were efficiently synthesized via a Suzuki coupling reaction, and they can be used as novel dialdehyde fluorescent probes for the enantioselective recognition of R/S-2-amino-1-phenylethanol. In addition, R-1 is much more effective than R-2. Scanning electron microscope images and X-ray analyses show that R-1 can form supramolecular vesicles through the self-assembly effect of the π-π force and strong hydrogen bonding. As determined via analysis, the fluorescence of the probe was significantly enhanced by mixing a small amount of S-2-amino-1-phenylethanol into R-1, with a redshift of 38 nm, whereas no significant fluorescence response was observed in R-2-amino-1-phenylethanol. The enantioselective identification of S-2-amino-1-phenylethanol by the probe R-1 was further investigated through nuclear magnetic titration and fluorescence kinetic experiments and DFT calculations. The results showed that this mechanism was not only a simple reactive probe but also realized object recognition through an ICT mechanism. As the intramolecular hydrogen bond activated the carbonyl group on the probe R-1, the carbonyl carbon atom became positively charged. As a strong nucleophile, the amino group of S-2-amino-1-phenylethanol first transferred the amino electrons to a carbonyl carbocation, resulting in a significantly enhanced fluorescence of the probe R-1 and a 38 nm redshift. Similarly, S-2-amino-1-phenylethanol alone caused severe damage to the self-assembled vesicle structure of the probe molecule itself due to its spatial structure, which made R-1 highly enantioselective towards it.
Asunto(s)
Amino Alcoholes , Enlace de Hidrógeno , Estereoisomerismo , Amino Alcoholes/química , Colorantes Fluorescentes/química , Cinética , Estructura Molecular , Modelos Moleculares , NaftolesRESUMEN
Toehold-mediated strand displacement (TMSD) reaction, one of the DNA nanotechnologies, has great potential as s biological programmable platform in the cellular environment. Various artificial nucleic acids have been developed to improve stability and affinity for biological applications. However, the lack of understanding of the kinetics of TMSD reaction among artificial nucleic acids has limited their applications. We herein systematically characterized the kinetics of TMSD reactions with acyclic xeno nucleic acids (XNAs): serinol nucleic acid (SNA), acyclic D-threoninol nucleic acid (D-aTNA), and acyclic L-threoninol nucleic acid (L-aTNA). We found that the strand displacement reactions by D-aTNA and by L-aTNA were highly dependent on temperature. D-aTNA and L-aTNA systems were orthogonal to each other, and chirality of the input can be switched by using SNA as an interface. We also applied TMSD reactions of XNAs to a seesaw gate amplification system which utilizes the orthogonality. This work will contribute to the developments of thermoresponsive and bioorthogonal nucleic acid circuits.
Asunto(s)
Ácidos Nucleicos , Cinética , Ácidos Nucleicos/química , Amino Alcoholes/química , Butileno Glicoles/química , Temperatura , ADN/química , Glicoles de Propileno , PropanolaminasRESUMEN
We report a general and functional-group-tolerant method for the Cu-catalyzed amination of base-sensitive aryl bromides including substrates possessing acidic functional groups and small five-membered heteroarenes. The results presented herein substantially expand the scope of Cu-catalyzed C-N coupling reactions. The combination of L8, an anionic N1,N2-diarylbenzene-1,2-diamine ligand, along with the mild base NaOTMS leads to the formation of a stable yet reactive catalyst that resists deactivation from coordination to heterocycles or charged intermediates. This system enables the use of low catalyst and ligand loadings. Exploiting the differences in nucleophile deprotonation in C-O and C-N coupling reactions catalyzed by Cu·L8 we developed a method to chemoselectively N- and O-arylate a variety of amino alcohol substrates. Employing NaOt-Bu as the base resulted exclusively in C-O coupling when the amino alcohols featured primary alcohols and more hindered amines or aniline groups. Utilizing NaOTMS enabled the ability to override the steric-based selectivity of these reactions completely and exclusively promoted C-N coupling regardless of the structure of the amino alcohol. The ability to invert the observed chemoselectivity is distinct from previously described methods that require protecting group manipulations or rely entirely on steric effects to control reactivity. These results substantially improve the scope of Cu-catalyzed C-N coupling reactions using N1,N2-diarylbenzene-1,2-diamine ligands and introduce a new chemoselective method to arylate amino alcohols.
Asunto(s)
Amino Alcoholes , Cobre , Cobre/química , Catálisis , Aminación , Amino Alcoholes/química , Estructura Molecular , Bromuros/química , Hidrocarburos Bromados/química , LigandosRESUMEN
BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.
Asunto(s)
Antibacterianos , Estilbenos , Factores de Virulencia , Xanthomonas , Xanthomonas/efectos de los fármacos , Xanthomonas/patogenicidad , Estilbenos/farmacología , Estilbenos/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Oryza/microbiología , Amino Alcoholes/farmacología , Amino Alcoholes/química , Biopelículas/efectos de los fármacosRESUMEN
Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps. We identified a facile synthetic protocol via a highly enantioselective one-step process for epinephrine and a two-step process for norepinephrine starting from unprotected α-ketoamines 1b and 1a, respectively. This newly developed enantioselective ruthenium-catalyzed asymmetric transfer hydrogenation was extended to the synthesis of many 1,2-amino alcohol-containing drug molecules such as phenylephrine, denopamine, norbudrine, and levisoprenaline, with enantioselectivities of >99% ee and high isolated yields.
Asunto(s)
Amino Alcoholes , Rutenio , Hidrogenación , Catálisis , Amino Alcoholes/química , Amino Alcoholes/síntesis química , Rutenio/química , Estereoisomerismo , Estructura Molecular , Aminas/químicaRESUMEN
A library of regioisomeric monoterpene-based aminodiols was synthesised and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The synthesis of the first type of aminodiols was achieved starting from (-)-8,9-dihydroperillaldehyde via reductive amination, followed by Boc protection and dihydroxylation with the OsO4/NMO system. Separation of formed stereoisomers resulted in a library of aminodiol diastereoisomers. The library of regioisomeric analogues was obtained starting from (-)-8,9-dihydroperillic alcohol, which was transformed into a mixture of allylic trichloroacetamides via Overman rearrangement. Changing the protecting group to a Boc function, the protected enamines were subjected to dihydroxylation with the OsO4/NMO system, leading to a 71:16:13 mixture of diastereoisomers, which were separated, affording the three isomers in isolated form. The obtained primary aminodiols were transformed into secondary derivatives. The regioselectivity of the ring closure of the N-benzyl-substituted aminodiols with formaldehyde was also investigated, resulting in 1,3-oxazines in an exclusive manner. To explain the stability difference between diastereoisomeric 1,3-oxazines, a series of comparative theoretical modelling studies was carried out. The obtained potential catalysts were applied in the reaction of aromatic aldehydes and diethylzinc with moderate to good enantioselectivities (up to 94% ee), whereas the opposite chiral selectivity was observed between secondary aminodiols and their ring-closed 1,3-oxazine analogues.
Asunto(s)
Monoterpenos , Compuestos Organometálicos , Estereoisomerismo , Catálisis , Monoterpenos/química , Benzaldehídos/química , Amino Alcoholes/química , Amino Alcoholes/síntesis química , Estructura Molecular , Aldehídos/químicaRESUMEN
Homopurine strands are known to form antiparallel triplexes stabilized by G*G and A*A Hoogsteen pairs, which have two hydrogen bonds. But there has been no report on the parallel triplex formation of homopurine involving both adenosine and guanosine to the duplex. In this paper, we first report parallel triplex formation between a homopurine serinol nucleic acid (SNA) strand and an RNA/SNA duplex. Melting profiles revealed that the parallel SNA:RNA*SNA triplex was remarkably stable, even though the A*A pair has a single hydrogen bond. An L-acyclic threoninol nucleic acid (L-aTNA) homopurine strand also formed a stable parallel triplex with an L-aTNA/RNA duplex.
Asunto(s)
Butileno Glicoles , Ácidos Nucleicos , Propanolaminas , Glicoles de Propileno , Ácidos Nucleicos/química , ARN/química , Amino Alcoholes/química , Conformación de Ácido NucleicoRESUMEN
Previously, nonenzymatic primer extension reaction of acyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence of N-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.
Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/química , ADN/química , Amino Alcoholes/química , ARN/química , Conformación de Ácido NucleicoRESUMEN
The synthesis of 5-chloro-8-nitro-1-naphthoyl chloride and its use as a protective group for amines is described. Protection is carried out with an auxiliary amine or under mild Schotten-Baumann conditions in high yield (>86%), while deprotection can be achieved easily under gentle reducing conditions due to the large steric tension between C-1 and C-8 naphthalene substituents. The reaction has been successfully tested in dipeptide synthesis and amino alcohols protection, and it has proved selective for the ε-amine group of lysine.
Asunto(s)
Aminas , Aminoácidos , Aminas/química , Amino Alcoholes/química , Lisina/química , DipéptidosRESUMEN
For the first time, monoterpene trifluoromethylated ß-hydroxy-benzyl-O-oximes were synthesized in 81-95% yields by nucleophilic addition of the Ruppert-Prakash reagent (TMSCF3) to the corresponding ß-keto-benzyl-O-oximes based on (+)-nopinone, (-)-verbanone and (+)-camphoroquinone. Trifluoromethylation has been determined to entirely proceed chemo- and stereoselective at the C=O rather than C=N bond. Trifluoromethylated benzyl-O-oximes were reduced to the corresponding α-trifluoromethyl-ß-amino alcohols in 82-88% yields. The structure and configuration of the compounds obtained have been established.
Asunto(s)
Amino Alcoholes , Monoterpenos , Amino Alcoholes/química , Estructura Molecular , Indicadores y Reactivos , OximasRESUMEN
Biocatalytic cascades are uniquely powerful for the efficient, asymmetric synthesis of bioactive compounds. However, high substrate specificity can hinder the scope of biocatalytic cascades because the constituent enzymes may have non-complementary activity. In this study, we implemented a substrate multiplexed screening (SUMS) based directed evolution approach to improve the substrate scope overlap between a transaldolase (ObiH) and a decarboxylase for the production of chiral 1,2-amino alcohols. To generate a promiscuous cascade, we engineered a tryptophan decarboxylase to act efficiently on ß-OH amino acids while avoiding activity on l-threonine, which is needed for ObiH activity. We leveraged this exquisite selectivity with matched substrate scope to produce a variety of enantiopure 1,2-amino alcohols in a one-pot cascade from aldehydes or styrene oxides. This demonstration shows how SUMS can be used to guide the development of promiscuous, C-C bond forming cascades.
Asunto(s)
Aldehídos , Amino Alcoholes , Amino Alcoholes/química , Aldehídos/química , Aminas , Biocatálisis , Especificidad por SustratoRESUMEN
A highly flexible pyrrole-bridged Zn(II)porphyrin dimer has been successfully utilized as an efficient host which enables an accurate determination of the absolute configuration directly for a large number of chiral amino alcohols and 1,2-diols. The addition of substrates resulted in the formation of 1 : 1 sandwich complexes which, after the addition of excess substrates, produced 1 : 2 host-guest complexes. In principle, the 1 : 2 host-guest complexes can be stabilized in three possible conformations, viz. exo-exo, exo-endo, and endo-endo based on how a substrate binds to the metal. The endo-endo conformation is stabilized by two strong interligand H-bonds [O-Hâ¯O(H)] between encapsulated diols which thereby interlock the stereochemistry. In the absence of such interligand H-bonding interactions, exo-endo binding is preferred as it is indeed observed for amino alcohols which show weaker CD couplets due to the free movement of substrates. The sandwich complexes with amino alcohols show a more intense CD couplet compared to the diols due to the stronger binding of the amine functionality (-NH2) towards a Zn-atom over an alcoholic moiety (-OH). The CD amplitude showed linear dependence with a binding constant for the 1 : 1 sandwich complex upon varying the substrates. Spectroscopic investigations, single crystal X-ray structure determination of four such host-guest complexes and DFT studies have enabled us to rationalize systematically the origin of optical activity unambiguously in the 1 : 1 and 1 : 2 host-guest complexes, which lead to an absolute stereochemical determination of a large number of chiral substrates. The larger vertical and horizontal flexibility of a diethyl pyrrole spacer induces stronger binding of the substrates to form the 1 : 1 complex with a much larger torsional angle along with intense CD couplets. In contrast, a rigid dibenzothiophene-bridged tweezer, due to its limited horizontal and vertical flexibility, facilitates 1 : 2 complexation more as compared to the highly flexible pyrrole-bridged host which results in stronger binding of the substrate with the intense CD couplet for the former.
Asunto(s)
Metaloporfirinas , Porfirinas , Aminas/química , Amino Alcoholes/química , Metaloporfirinas/química , Modelos Moleculares , Porfirinas/química , Racionalización , Zinc/químicaRESUMEN
A sterically encumbered aminoborane sensor is introduced and used for quantitative stereochemical analysis of monoalcohols, diols and amino alcohols. The small-molecule probe exhibits a rigid ortho-substituted arene scaffold with a proximate boron binding site and a triarylamine circular dichroism (CD) reporter unit which proved to be crucial for the observed chiroptical signal induction. Coordination of the chiral target molecule produces strong Cotton effects and UV changes that are readily correlated to its absolute configuration, enantiomeric composition and concentration to achieve comprehensive stereochemical analysis within a 5 % absolute error margin. The sensing method was successfully applied in the chromatography-free analysis of less than one milligram of a crude asymmetric reaction mixture and the advantages of this chiroptical sensing approach, which is amenable to high-throughput experimentation equipment and automation, over traditional methods is discussed.
Asunto(s)
Amino Alcoholes , Boro , Estereoisomerismo , Amino Alcoholes/química , Dicroismo Circular , Indicadores y ReactivosRESUMEN
Herein, we demonstrate the applicability of the 2,5-dimethylpyrrolo unit as a complementary N-protecting group in the highly diastereoselective synthesis of more than 20 different anti-amino alcohols (63-90% yields with up to 20 : 1 dr). Cleavage of the pyrrolo-N-protecting group was accomplished, e.g. in the presence of NH2OH under microwave conditions with yields exceeding 80%. The applicability of the protecting groups was further demonstrated by a short total synthesis of the sphinganine-like natural product clavaminol A. The introduction of the N-pyrrolo protecting group also offers the possibility to analyse product mixtures by NMR measurements due to the absence of conformational isomers, which are otherwise common for N-protecting groups.
Asunto(s)
Aldehídos , Amino Alcoholes , Aldehídos/química , Amino Alcoholes/química , EstereoisomerismoRESUMEN
A new racemic naphthyl-coumarin-based probe was found to bind covalently with amino acids in MeOH-KOH system and thereby generates distinct CD responses. The induced strong CD signals allowed quantitative enantiomeric excess analysis of amino acids and enantioselective sensing of amines and amino alcohols. The mechanism for the reaction of the coumarin-aldehyde probe with an amino acid was investigated by CD, UV-Vis, NMR, ESI-MS analyses and ECD calculation.
Asunto(s)
Aminas , Amino Alcoholes , Aminas/química , Aminoácidos/química , Amino Alcoholes/química , Cumarinas , EstereoisomerismoRESUMEN
Oligonucleotides are increasingly being used as a programmable connection material to assemble molecules and proteins in well-defined structures. For the application of such assemblies for in vivo diagnostics or therapeutics it is crucial that the oligonucleotides form highly stable, non-toxic, and non-immunogenic structures. Only few oligonucleotide derivatives fulfil all of these requirements. Here we report on the application of acyclic l-threoninol nucleic acid (aTNA) to form a four-way junction (4WJ) that is highly stable and enables facile assembly of components for in vivo treatment and imaging. The aTNA 4WJ is serum-stable, shows no non-targeted uptake or cytotoxicity, and invokes no innate immune response. As a proof of concept, we modify the 4WJ with a cancer-targeting and a serum half-life extension moiety and show the effect of these functionalized 4WJs in vitro and in vivo, respectively.
Asunto(s)
Ácidos Nucleicos , Amino Alcoholes/química , Butileno Glicoles , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleótidos , ARN/químicaRESUMEN
We have synthesized acyclic allo-threoninol nucleic acids (allo-aTNAs), artificial xeno-nucleic acids (XNAs) that are diastereomers of acyclic threoninol nucleic acids (aTNAs), and have investigated their supramolecular properties. The allo-aTNAs formed homo-duplexes in an antiparallel manner but with lower thermal stability than DNA, whereas aTNAs formed extremely stable homo-duplexes. The allo-aTNAs formed duplexes with complementary aTNAs and serinol nucleic acid (SNA). The affinities of L-allo-aTNA were the highest for L-aTNA and the lowest for D-aTNA, with SNA being intermediate. The affinities of D-allo-aTNA were the reverse. Circular dichroism measurements revealed that L- and D-allo-aTNAs had weak right-handed and left-handed helicities, respectively. The weak helicity of allo-aTNAs likely explains the poor chiral discrimination of these XNAs, which is in contrast to aTNAs that have strong helical orthogonality. Energy-minimized structures of L-allo-aTNA/RNA and L-allo-aTNA/L-allo-aTNA indicated that the methyl group on the allo-aTNA strand is unfavourable for duplex formation. In contrast, the methyl group on L-aTNA likely stabilizes the duplex structure via hydrophobic effects and van der Waals interactions. Thus, the configuration of the methyl group on the XNA scaffold had an unexpectedly large impact on the hybridization ability and structure.
Asunto(s)
Amino Alcoholes , Ácidos Nucleicos , Amino Alcoholes/química , Butileno Glicoles/química , Dicroismo Circular , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , ARN/químicaRESUMEN
Herein, a new strategy for the direct synthesis of functionalized pyrroles from ß-amino alcohols and ynones via ruthenium-catalyzed acceptorless dehydrogenative coupling has been demonstrated. This developed methodology proceeds in an atom- and step-economic fashion together with the merits of broad substrate scope, operational simplicity, and water and hydrogen gas as the sole by-products, which provides an alternative and sustainable way to access functionalized pyrroles. Further, this method was applied to the rapid synthesis of the COX-1/COX-2 inhibitor and boron dipyrromethene derivative successfully.