Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.413
Filtrar
1.
Biomed Pharmacother ; 175: 116742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754265

RESUMEN

Chagasic chronic cardiomyopathy (CCC) is the primary clinical manifestation of Chagas disease (CD), caused by Trypanosoma cruzi. Current therapeutic options for CD are limited to benznidazole (Bz) and nifurtimox. Amiodarone (AMD) has emerged as most effective drug for treating the arrhythmic form of CCC. To address the effects of Bz and AMD we used a preclinical model of CCC. Female C57BL/6 mice were infected with T. cruzi and subjected to oral treatment for 30 consecutive days, either as monotherapy or in combination. AMD in monotherapy decreased the prolonged QTc interval, the incidence of atrioventricular conduction disorders and cardiac hypertrophy. However, AMD monotherapy did not impact parasitemia, parasite load, TNF concentration and production of reactive oxygen species (ROS) in cardiac tissue. Alike Bz therapy, the combination of Bz and AMD (Bz/AMD), improved cardiac electric abnormalities detected T. cruzi-infected mice such as decrease in heart rates, enlargement of PR and QTc intervals and increased incidence of atrioventricular block and sinus arrhythmia. Further, Bz/AMD therapy ameliorated the ventricular function and reduced parasite burden in the cardiac tissue and parasitemia to a degree comparable to Bz monotherapy. Importantly, Bz/AMD treatment efficiently reduced TNF concentration in the cardiac tissue and plasma and had beneficial effects on immunological abnormalities. Moreover, in the cardiac tissue Bz/AMD therapy reduced fibronectin and collagen deposition, mitochondrial damage and production of ROS, and improved sarcomeric and gap junction integrity. Our study underlines the potential of the Bz/AMD therapy, as we have shown that combination increased efficacy in the treatment of CCC.


Asunto(s)
Amiodarona , Cardiomiopatía Chagásica , Modelos Animales de Enfermedad , Quimioterapia Combinada , Ratones Endogámicos C57BL , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Nitroimidazoles/farmacología , Nitroimidazoles/administración & dosificación , Nitroimidazoles/uso terapéutico , Femenino , Trypanosoma cruzi/efectos de los fármacos , Amiodarona/farmacología , Amiodarona/administración & dosificación , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/parasitología , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Crónica , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Factor de Necrosis Tumoral alfa/metabolismo , Carga de Parásitos
2.
Antimicrob Agents Chemother ; 68(7): e0011424, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38780260

RESUMEN

Schistosomiasis, a widespread parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, primarily in developing countries. Praziquantel, the sole drug currently approved for schistosomiasis treatment, demonstrates effectiveness against patent infections. A recent study highlighted the antiparasitic properties of amiodarone, an anti-arrhythmic drug, exhibiting higher efficacy than praziquantel against prepatent infections. This study assessed the efficacy of amiodarone and praziquantel, both individually and in combination, against Schistosoma mansoni through comprehensive in vitro and in vivo experiments. In vitro experiments demonstrated synergistic activity (fractional inhibitory concentration index ≤0.5) for combinations of amiodarone with praziquantel. In a murine model of schistosomiasis featuring prepatent infections, treatments involving amiodarone (200 or 400 mg/kg) followed by praziquantel (200 or 400 mg/kg) yielded a substantial reduction in worm burden (60%-70%). Given the low efficacy of praziquantel in prepatent infections, combinations of amiodarone with praziquantel may offer clinical utility in the treatment of schistosomiasis.


Asunto(s)
Amiodarona , Praziquantel , Schistosoma mansoni , Esquistosomiasis mansoni , Amiodarona/farmacología , Amiodarona/uso terapéutico , Animales , Praziquantel/farmacología , Praziquantel/uso terapéutico , Schistosoma mansoni/efectos de los fármacos , Ratones , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología , Femenino , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Sinergismo Farmacológico , Quimioterapia Combinada , Masculino , Modelos Animales de Enfermedad
3.
Parasitol Res ; 123(5): 215, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771511

RESUMEN

Schistosomiasis is a neglected tropical disease associated with considerable morbidity. Praziquantel (PZQ) is effective against adult schistosomes, yet, it has little effect on juvenile stages, and PZQ resistance is emerging. Adopting the drug repurposing strategy as well as assuming enhancing the efficacy and lessening the doses and side effects, the present study aimed to investigate the in vivo therapeutic efficacy of the widely used antiarrhythmic, amiodarone, and diuretic, spironolactone, and combinations of them compared to PZQ. Mice were infected by Schistosoma mansoni "S. mansoni" cercariae (Egyptian strain), then they were divided into two major groups: Early- [3 weeks post-infection (wpi)] and late- [6 wpi] treated. Each group was subdivided into seven subgroups: positive control, PZQ, amiodarone, spironolactone, PZQ combined with amiodarone, PZQ combined with spironolactone, and amiodarone combined with spironolactone-treated groups. Among the early-treated groups, spironolactone had the best therapeutic impact indicated by a 69.4% reduction of total worm burden (TWB), 38.6% and 48.4% reduction of liver and intestine egg load, and a significant reduction of liver granuloma number by 49%. Whereas, among the late-treated groups, amiodarone combined with PZQ was superior to PZQ alone evidenced by 96.1% reduction of TWB with the total disappearance of female and copula in the liver and intestine, 53.1% and 84.9% reduction of liver and intestine egg load, and a significant reduction of liver granuloma number by 67.6%. Comparatively, spironolactone was superior to PZQ and amiodarone in the early treatment phase targeting immature stages, while amiodarone had a more potent effect when combined with PZQ in the late treatment phase targeting mature schistosomes.


Asunto(s)
Amiodarona , Modelos Animales de Enfermedad , Praziquantel , Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología , Ratones , Schistosoma mansoni/efectos de los fármacos , Praziquantel/uso terapéutico , Praziquantel/farmacología , Amiodarona/uso terapéutico , Amiodarona/farmacología , Femenino , Espironolactona/uso terapéutico , Espironolactona/farmacología , Esquistosomicidas/uso terapéutico , Esquistosomicidas/farmacología , Masculino , Antihelmínticos/uso terapéutico , Antihelmínticos/farmacología , Resultado del Tratamiento , Quimioterapia Combinada , Hígado/parasitología
4.
Biomed Pharmacother ; 174: 116513, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565056

RESUMEN

Amiodarone is a benzofuran-based class III antiarrhythmic agent frequently used for the treatment of atrial and ventricular arrhythmias. The primary target of class III antiarrhythmic drugs is the cardiac human ether-a-go-go-related gene (hERG) encoded channel, KCNH2, commonly known as HERG, that conducts the rapidly activating delayed rectifier potassium current (IKr). Like other class III antiarrhythmic drugs, amiodarone exerts its physiologic effects mainly through IKr blockade, delaying the repolarization phase of the action potential and extending the effective refractory period. However, while many class III antiarrhythmics, including sotalol and dofetilide, can cause long QT syndrome (LQTS) that can progress to torsade de pointes, amiodarone displays less risk of inducing this fatal arrhythmia. This review article discusses the arrhythmogenesis in LQTS from the aspects of the development of early afterdepolarizations (EADs) associated with Ca2+ current, transmural dispersion of repolarization (TDR), as well as reverse use dependence associated with class III antiarrhythmic drugs to highlight electropharmacological effects of amiodarone on the myocardium.


Asunto(s)
Amiodarona , Antiarrítmicos , Amiodarona/farmacología , Humanos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Animales , Potenciales de Acción/efectos de los fármacos , Canales Iónicos/metabolismo , Canales Iónicos/efectos de los fármacos , Miocardio/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/tratamiento farmacológico
5.
JACC Clin Electrophysiol ; 10(6): 1037-1049, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639701

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) isolated from human heart-derived cells have shown promise in suppressing inflammation and fibroblast proliferation. However, their precise benefits in atrial fibrillation (AF) prevention and the role of their antifibrotic/anti-inflammatory properties remain unclear. OBJECTIVES: The purpose of this study was to conduct a head-to-head comparison of antiarrhythmic strategies to prevent postoperative AF using a rat model of sterile pericarditis. Specifically, we aimed to assess the efficacy of amiodarone (a classic antiarrhythmic drug), colchicine (an anti-inflammatory agent), and EVs derived from human heart-derived cells, which possess anti-inflammatory and antifibrotic properties, on AF induction, inflammation, and fibrosis progression. METHODS: Heart-derived cells were cultured from human atrial appendages under serum-free xenogen-free conditions. Middle-aged Sprague Dawley rats were randomized into different groups, including sham operation, sterile pericarditis with amiodarone treatment, sterile pericarditis with colchicine treatment (2 dose levels), and sterile pericarditis with intra-atrial injection of EVs or vehicle. Invasive electrophysiological testing was performed 3 days after surgery before sacrifice. RESULTS: Sterile pericarditis increased the likelihood of inducing AF. Colchicine and EVs exhibited anti-inflammatory effects, but only EV treatment significantly reduced AF probability, whereas colchicine showed a positive trend without statistical significance. EVs and high-dose colchicine reduced atrial fibrosis by 46% ± 2% and 26% ± 2%, respectively. Amiodarone prevented AF induction but had no effect on inflammation or fibrosis. CONCLUSIONS: In this study, both amiodarone and EVs prevented AF, whereas treatment with colchicine was ineffective. The additional anti-inflammatory and antifibrotic effects of EVs suggest their potential as a comprehensive therapeutic approach for AF prevention, surpassing the effects of amiodarone or colchicine.


Asunto(s)
Amiodarona , Antiarrítmicos , Fibrilación Atrial , Colchicina , Fibrosis , Ratas Sprague-Dawley , Fibrilación Atrial/tratamiento farmacológico , Colchicina/farmacología , Colchicina/uso terapéutico , Amiodarona/farmacología , Amiodarona/uso terapéutico , Animales , Ratas , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Humanos , Masculino , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Inflamación/tratamiento farmacológico , Complicaciones Posoperatorias/prevención & control , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pericarditis/tratamiento farmacológico , Vesículas Extracelulares/efectos de los fármacos , Modelos Animales de Enfermedad , Células Cultivadas
6.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38619735

RESUMEN

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Asunto(s)
Potenciales de Acción , Amiodarona , Antiarrítmicos , Arritmias Cardíacas , Atrios Cardíacos , Miocitos Cardíacos , Ratas Wistar , Animales , Amiodarona/farmacología , Antiarrítmicos/farmacología , Masculino , Humanos , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Potenciales de Acción/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Concentración de Iones de Hidrógeno , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/inducido químicamente , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Células HEK293 , Sodio/metabolismo , Técnicas de Placa-Clamp , Venenos de Cnidarios/farmacología
7.
Sci Rep ; 14(1): 6280, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491077

RESUMEN

Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.


Asunto(s)
Amiodarona , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Amiodarona/farmacología , Amiodarona/uso terapéutico , Reposicionamiento de Medicamentos , Microfluídica , Liposomas/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
8.
Biochem Biophys Res Commun ; 708: 149801, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38531219

RESUMEN

Toll-like receptor (TLR) agonists or pro-inflammatory cytokines converge to activate the nuclear factor κB (NF-κB) signaling pathway, which provokes inflammatory responses. In the present study, we identified amiodarone hydrochloride as a selective inhibitor of the TLR3-mediated NF-κB signaling pathway by screening the RIKEN NPDepo Chemical Library. In human umbilical vein endothelial cells (HUVEC), amiodarone selectively inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by polyinosinic-polycytidylic acid (Poly(I:C)), but not tumor necrosis factor-α, interleukin-1α, or lipopolysaccharide. In response to a Poly(I:C) stimulation, amiodarone at 20 µM reduced the up-regulation of mRNA expression encoding ICAM-1, vascular cell adhesion molecule-1, and E-selectin. The nuclear translocation of the NF-κB subunit RelA was inhibited by amiodarone at 15-20 µM in Poly(I:C)-stimulated HUVEC. Amiodarone diminished the fluorescent dots of LysoTracker® Red DND-99 scattered over the cytoplasm of HUVEC. Therefore, the present study revealed that amiodarone selectively inhibited the TLR3-mediated NF-κB signaling pathway by blocking the acidification of intracellular organelles.


Asunto(s)
Amiodarona , FN-kappa B , Humanos , FN-kappa B/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Receptor Toll-Like 3/metabolismo , Células Endoteliales/metabolismo , Amiodarona/farmacología , Amiodarona/metabolismo , Células Cultivadas , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/metabolismo , Orgánulos/metabolismo , Concentración de Iones de Hidrógeno
9.
J Pharmacol Exp Ther ; 389(2): 229-242, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38453526

RESUMEN

The drug-drug interaction (DDI) between amiodarone (AMIO) and sofosbuvir (SOF), a direct-acting hepatitis-C NS5B nucleotide polymerase inhibitor, has been associated with severe bradyarrhythmia in patients. Recent cryo-EM data has revealed that this DDI occurs at the α-subunit of L-type Cav channels, with AMIO binding at the fenestration site and SOF [or MSD nucleotide inhibitor #1 (MNI-1): analog of SOF] binding at the central cavity of the conductance pathway. In this study, we investigated the DDI between 21 AMIO analogs, including dronedarone (DRON) and MNI-1 (or SOF) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hCav1.2 models. Our findings indicate that among the tested AMIO analogs in hiPSC-CMs at clinically relevant concentrations, only three analogs (AA-9, AA-10, and AA-17) were able to effectively substitute for AMIO in this DDI with 1 µM MNI-1. This highlights the importance of the diethyl amino group of AMIO for interacting with MNI-1. In the hCav1.2 model, desethylamiodarone (AA-12) demonstrated synergy with 90 µM MNI-1, while three other analogs with modifications to the position of the diethyl amino group or removal of iodo groups showed weaker synergy with 90 µM MNI-1. Interestingly, DRON did not exhibit any interaction with 270 µM SOF or 90 µM MNI-1, suggesting that it could safely replace AMIO in patients requiring SOF treatment, other clinically relevant differences considered. Overall, our functional data align with the cryo-EM data, highlighting that this DDI is dependent on the structure of AMIO and cardiomyocyte resting membrane potential. SIGNIFICANCE STATEMENT: Our findings point to specific residues in the AMIO molecule playing a critical role in the DDI between AMIO and MNI-1 (SOF analog), confirming cryo-EM results. Applied at clinically relevant AMIO's concentrations or projected MNI-1's concentrations at the resting potentials mimicking the sinoatrial node, this DDI significantly slowed down or completely inhibited the beating of hiPSC-CMs. Finally, these in vitro results support the safe replacement of AMIO (Cordarone) with DRON (Multaq) for patients requiring SOF treatment, other clinical caveats considered.


Asunto(s)
Amiodarona , Células Madre Pluripotentes Inducidas , Humanos , Amiodarona/farmacología , Amiodarona/metabolismo , Nucleótidos/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Interacciones Farmacológicas , Relación Estructura-Actividad
10.
Pflugers Arch ; 476(3): 323-335, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063872

RESUMEN

Kv10.1 is a voltage-dependent K channel whose ectopic expression is associated with several human cancers. Additionally, Kv10.1 has structure-function properties which are not yet well understood. We are using drugs of clinical importance in an attempt to gain insight on the relationship between pharmacology and characteristic functional properties of this channel. Herein, we report the interaction of desethylamiodarone (desAd), the active metabolic product of the antiarrhythmic amiodarone with Kv10.1: desAd binds to both closed and open channels, with most inhibition taking place from the open state, with affinity ~ 5 times smaller than that of amiodarone. Current inhibition by desAd and amiodarone is not synergistic. Upon repolarization desAd becomes trapped in Kv10.1 and thereafter dissociates slowly from closed-and-blocked channels. The addition of the Cole-Moore shift plus desAd open-pore-block time courses yields an increasing phase on the steady-state inhibition curve (H∞) at hyperpolarized holding potentials. In contrast to amiodarone, desAd does not inhibit the Kv10.1 Cole-Moore shift, suggesting that a relevant hydrophobic interaction between amiodarone and Kv10.1 participates in the inhibition of the Cole-Moore shift, which is lost with desAd.


Asunto(s)
Amiodarona , Neoplasias , Humanos , Canales de Potasio Éter-A-Go-Go/metabolismo , Amiodarona/farmacología , Antiarrítmicos/farmacología
11.
Eur Rev Med Pharmacol Sci ; 27(23): 11211-11221, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38095371

RESUMEN

OBJECTIVE: Amiodarone (AMD), a drug of choice to treat cardiac arrhythmias, has a narrow therapeutic index (NTI). It inhibits CYP3A4, CYP2C9, and CYP2D6 enzymes. Quercetin (QUE), a pharmacologically important bioflavonoid in vegetables and fruits, is important in treating cardiovascular comorbidities. QUE alters the bioavailability of drugs used concurrently by dual inhibition of P-glycoproteins (P-gp) and cytochrome (CYP) enzyme systems. The current study aimed to investigate the pre-treatment and co-administration effect of QUE on AMD pharmacokinetics in rats. MATERIALS AND METHODS: Two separate animal trials (I and II) were planned to probe the effect of QUE on AMD pharmacokinetics by following previously cited studies. The pre-treatment group received oral doses of QUE for 14 days, and a single dose of AMD on the 15th day. Rats were administered single doses of QUE (20 mg/kg) and AMD (50 mg/kg) concurrently in a carboxymethylcellulose (CMC) in the co-administration study. Blood was collected at pre-determined time points. AMD was quantified by HPLC, and data was analyzed by PK solver software. RESULTS: In the pre-treated group, peak plasma concentration (Cmax) and area under the curve (AUC0-∞) of AMD were increased by 45.52% and 13.70%, respectively, while time to achieve maximum concentration (tmax), half-life (t1/2) and clearance (CL) were declined by 35.72%, 16.75%, and 11.0% respectively compared to the control. In the co-administered group, compared to controls, Cmax and AUC0-∞ were elevated to 12.90% and 7.80%, respectively, while tmax, t1/2, and CL declined by 16.70%, 2.35%, and 13.40%. Further, AMD was increased in lung tissue of both treated groups, relative to the respective controls. CONCLUSIONS: A notable pharmacokinetic drug interaction between QUE and AMD was observed in rats and warrants possible drug interaction study in humans, suggesting AMD dose adjustment specifically in patients with arrhythmia having a pre-treatment history and simultaneous administration of QUE-containing products.


Asunto(s)
Amiodarona , Quercetina , Humanos , Ratas , Animales , Quercetina/farmacología , Amiodarona/farmacología , Distribución Tisular , Interacciones Farmacológicas , Disponibilidad Biológica , Área Bajo la Curva
12.
Eur J Pharmacol ; 960: 176127, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37858835

RESUMEN

INTRODUCTION: Amiodarone (AMD) is a clinically used drug to treat arrhythmias with significant effect upon the cardiac sodium channel Nav1.5. AMD has a pKa of 6.56, and changes in extracellular pH (pHe) may alter its pharmacological properties. Here we explored how changes in pHe impacts the pharmacological properties of AMD upon human-Nav1.5-sodium-current (INa) and in ex vivo rat hearts. METHODS: Embryonic-human-kidney-cells (HEK293) were used to transiently express the human alpha-subunit of NaV1.5 channels and the isolated heart of Wistar rats were used. Patch-Clamp technique was deployed to study INa and for electrocardiogram (ECG) evaluation the ex vivo heart preparation in the Langendorff system was applied. RESULTS: The potency of AMD upon peak INa was ∼25x higher in pHe 7.0 when compared to pHe 7.4. Voltage dependence for activation did not differ among all groups. AMD shifted the steady-state inactivation curve to more hyperpolarized potentials, with similar magnitudes for both pHes. The recovery from INa inactivation was delayed in the presence of AMD with similar profile in both pHes. Interestingly, the use-dependent properties of AMD was distinct at pHe 7.0 and 7.4. Finally, AMD was able to change the ex vivo ECG profile, however at pHe 7.0+AMD a larger increase in the RR and QRS duration and in the QT interval when compared to pHe 7.4 was found. CONCLUSIONS: The pharmacological properties of AMD upon NaV1.5 and isolated heart preparation depends on the pHe and its use in vivo during extracellular acidosis may cause a distinct biological response in the heart tissue.


Asunto(s)
Amiodarona , Animales , Ratas , Humanos , Amiodarona/farmacología , Antiarrítmicos/farmacología , Células HEK293 , Ratas Wistar , Canales de Sodio , Concentración de Iones de Hidrógeno , Canal de Sodio Activado por Voltaje NAV1.5
13.
Gut Microbes ; 15(2): 2256695, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37749884

RESUMEN

The intestinal pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans. The symptoms of C. difficile-associated diseases (CDADs) are directly associated with the pathogen's toxins TcdA and TcdB, which enter host cells and inactivate Rho and/or Ras GTPases by glucosylation. Membrane cholesterol is crucial during the intoxication process of TcdA and TcdB, and likely involved during pore formation of both toxins in endosomal membranes, a key step after cellular uptake for the translocation of the glucosyltransferase domain of both toxins from endosomes into the host cell cytosol. The licensed drug amiodarone, a multichannel blocker commonly used in the treatment of cardiac dysrhythmias, is also capable of inhibiting endosomal acidification and, as shown recently, cholesterol biosynthesis. Thus, we were keen to investigate in vitro with cultured cells and human intestinal organoids, whether amiodarone preincubation protects from TcdA and/or TcdB intoxication. Amiodarone conferred protection against both toxins independently and in combination as well as against toxin variants from the clinically relevant, epidemic C. difficile strain NAP1/027. Further mechanistic studies suggested that amiodarone's mode-of-inhibition involves also interference with the translocation pore of both toxins. Our study opens the possibility of repurposing the licensed drug amiodarone as a novel pan-variant antitoxin therapeutic in the context of CDADs.


Asunto(s)
Amiodarona , Toxinas Bacterianas , Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Antiarrítmicos/farmacología , Amiodarona/farmacología , Anticuerpos Antibacterianos
14.
Am J Physiol Heart Circ Physiol ; 325(5): H952-H964, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656133

RESUMEN

Amiodarone (AM) is an antiarrhythmic drug whose chronic use has proved effective in preventing ventricular arrhythmias in a variety of patient populations, including those with heart failure (HF). AM has both class III [i.e., it prolongs the action potential duration (APD) via blocking potassium channels) and class I (i.e., it affects the rapid sodium channel) properties; however, the specific mechanism(s) by which it prevents reentry formation in patients with HF remains unknown. We tested the hypothesis that AM prevents reentry induction in HF during programmed electrical stimulation (PES) via its ability to induce postrepolarization refractoriness (PRR) via its class I effects on sodium channels. Here we extend our previous human action potential model to represent the effects of both HF and AM separately by calibrating to human tissue and clinical PES data, respectively. We then combine these models (HF + AM) to test our hypothesis. Results from simulations in cells and cables suggest that AM acts to increase PRR and decrease the elevation of takeoff potential. The ability of AM to prevent reentry was studied in silico in two-dimensional sheets in which a variety of APD gradients (ΔAPD) were imposed. Reentrant activity was induced in all HF simulations but was prevented in 23 of 24 HF + AM models. Eliminating the AM-induced slowing of the recovery of inactivation of the sodium channel restored the ability to induce reentry. In conclusion, in silico testing suggests that chronic AM treatment prevents reentry induction in patients with HF during PES via its class I effect to induce PRR.NEW & NOTEWORTHY This work presents a new model of the action potential of the human, which reproduces the complex dynamics during premature stimulation in heart failure patients with and without amiodarone. A specific mechanism of the ability of amiodarone to prevent reentrant arrhythmias is presented.


Asunto(s)
Amiodarona , Insuficiencia Cardíaca , Humanos , Amiodarona/farmacología , Amiodarona/uso terapéutico , Arritmias Cardíacas , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Canales de Sodio , Potenciales de Acción
15.
J Physiol ; 601(18): 4013-4032, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37475475

RESUMEN

The best pharmacological treatment for each atrial fibrillation (AF) patient is unclear. We aim to exploit AF simulations in 800 virtual atria to identify key patient characteristics that guide the optimal selection of anti-arrhythmic drugs. The virtual cohort considered variability in electrophysiology and low voltage areas (LVA) and was developed and validated against experimental and clinical data from ionic currents to ECG. AF sustained in 494 (62%) atria, with large inward rectifier K+ current (IK1 ) and Na+ /K+ pump (INaK ) densities (IK1 0.11 ± 0.03 vs. 0.07 ± 0.03 S mF-1 ; INaK 0.68 ± 0.15 vs. 0.38 ± 26 S mF-1 ; sustained vs. un-sustained AF). In severely remodelled left atrium, with LVA extensions of more than 40% in the posterior wall, higher IK1 (median density 0.12 ± 0.02 S mF-1 ) was required for AF maintenance, and rotors localized in healthy right atrium. For lower LVA extensions, rotors could also anchor to LVA, in atria presenting short refractoriness (median L-type Ca2+ current, ICaL , density 0.08 ± 0.03 S mF-1 ). This atrial refractoriness, modulated by ICaL and fast Na+ current (INa ), determined pharmacological treatment success for both small and large LVA. Vernakalant was effective in atria presenting long refractoriness (median ICaL density 0.13 ± 0.05 S mF-1 ). For short refractoriness, atria with high INa (median density 8.92 ± 2.59 S mF-1 ) responded more favourably to amiodarone than flecainide, and the opposite was found in atria with low INa (median density 5.33 ± 1.41 S mF-1 ). In silico drug trials in 800 human atria identify inward currents as critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics. KEY POINTS: Atrial fibrillation (AF) maintenance is facilitated by small L-type Ca2+ current (ICaL ) and large inward rectifier K+ current (IK1 ) and Na+ /K+ pump. In severely remodelled left atrium, with low voltage areas (LVA) covering more than 40% of the posterior wall, sustained AF requires higher IK1 and rotors localize in healthy right atrium. For lower LVA extensions, rotors can also anchor to LVA, if the atria present short refractoriness (low ICaL ) Vernakalant is effective in atria presenting long refractoriness (high ICaL ). For short refractoriness, atria with fast Na+ current (INa ) up-regulation respond more favourably to amiodarone than flecainide, and the opposite is found in atria with low INa . The inward currents (ICaL and INa ) are critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics.


Asunto(s)
Amiodarona , Fibrilación Atrial , Humanos , Fibrilación Atrial/tratamiento farmacológico , Flecainida/farmacología , Flecainida/uso terapéutico , Atrios Cardíacos , Amiodarona/farmacología , Amiodarona/uso terapéutico , Potenciales de Acción/fisiología
16.
Acta Chim Slov ; 70(1): 131-138, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37005613

RESUMEN

Amiodarone (AMD) is a powerful antiarrhythmic drug preferred for treatments of tachycardias. Brain can be affected negatively when some drugs are used, including antiarrhythmics. S-methyl methionine sulfonium chloride (MMSC) is a well-known sulfur containing substance and a novel powerful antioxidant. It was intended to investigate the protective effects of MMSC on amiodarone induced brain damage. Rats were divided to four groups as follows, control (given corn oil), MMSC (50 mg/kg per day), AMD (100 mg/kg per day), AMD (100 mg/kg per day) + MMSC (50 mg/kg per day). The brain glutathione and total antioxidant levels, catalase, superoxide dismutase, glutathione peroxidase, paraoxonase, and Na+/K+-ATPase activities were decreased, lipid peroxidation and protein carbonyl, total oxidant status, oxidative stress index and reactive oxygen species levels, myeloperoxidase, acetylcholine esterase and lactate dehydrogenase activities were increased after AMD treatment. Administration of MMSC reversed these results. We can conclude that MMSC ameliorated AMD induced brain injury probably due to its antioxidant and cell protective effect.


Asunto(s)
Amiodarona , Lesiones Encefálicas , Vitamina U , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Amiodarona/farmacología , Amiodarona/metabolismo , Vitamina U/metabolismo , Vitamina U/farmacología , Ratas Wistar , Estrés Oxidativo , Glutatión/metabolismo , Encéfalo , Superóxido Dismutasa/metabolismo , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo
17.
Cell ; 185(25): 4801-4810.e13, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36417914

RESUMEN

Drug-drug interaction of the antiviral sofosbuvir and the antiarrhythmics amiodarone has been reported to cause fatal heartbeat slowing. Sofosbuvir and its analog, MNI-1, were reported to potentiate the inhibition of cardiomyocyte calcium handling by amiodarone, which functions as a multi-channel antagonist, and implicate its inhibitory effect on L-type Cav channels, but the molecular mechanism has remained unclear. Here we present systematic cryo-EM structural analysis of Cav1.1 and Cav1.3 treated with amiodarone or sofosbuvir alone, or sofosbuvir/MNI-1 combined with amiodarone. Whereas amiodarone alone occupies the dihydropyridine binding site, sofosbuvir is not found in the channel when applied on its own. In the presence of amiodarone, sofosbuvir/MNI-1 is anchored in the central cavity of the pore domain through specific interaction with amiodarone and directly obstructs the ion permeation path. Our study reveals the molecular basis for the physical, pharmacodynamic interaction of two drugs on the scaffold of Cav channels.


Asunto(s)
Amiodarona , Sofosbuvir , Sofosbuvir/efectos adversos , Amiodarona/farmacología , Antivirales/farmacología , Miocitos Cardíacos/metabolismo , Sitios de Unión , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo
18.
Physiol Res ; 71(6): 869-875, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36426888

RESUMEN

Amiodarone seems to exhibit some antiviral activity in the disease caused by SARS-CoV-2. Here we have examined the SARS-CoV-2 disease course in the entire population of the Czech Republic and compared it with the course of the disease in patients treated with amiodarone in two major Prague's hospitals. In the whole population of the Czech Republic SARS-CoV-2 infected 1665070 persons (15.6 %) out of 10694000 (100 %) between 1 April 2020 and 30 June 2021. In the same time period only 35 patients (3.4 %) treated with amiodarone were infected with SARS-CoV-2 virus out of 1032 patients (100 %) who received amiodarone. It appears that amiodarone can prevent SARS-CoV-2 virus infection by multiple mechanisms. In in-vitro experiments it exhibits SARS-CoV-2 virus replication inhibitions. Due to its anti-inflammatory and antioxidant properties, it may have beneficial effect on the complications caused by SARS-CoV-2 as well. Additionally, inorganic iodine released from amiodarone can be converted to hypoiodite (IO-), which has antiviral and antibacterial activity, and thus can affect the life cycle of the virus.


Asunto(s)
Amiodarona , COVID-19 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Amiodarona/farmacología , Amiodarona/uso terapéutico , Antibacterianos
19.
Mycopathologia ; 187(5-6): 517-526, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36219382

RESUMEN

Aspergillus spp. is the most common clinical pathogen of invasive fungal infection with high mortality. Existing treatments for Aspergillus spp. infection are still inefficient and accompanied by drug resistance, so it is still urgent to find new treatment approaches. The antiarrhythmic drug amiodarone (AMD) has demonstrated antifungal activity against a range of fungi. This study evaluated the efficacy of AMD in combination with triazoles for Aspergillus spp. infection. We tested the combined effect of AMD and three triazole drugs, namely, itraconazole (ITR), voriconazole (VRC), and posaconazole (POS), on the planktonic cells and biofilms of 20 strains of Aspergillus spp. via a checkerboard microdilution assay derived from 96-well plate-based method. Our results reveal that the combination of AMD with ITR or POS against Aspergillus biofilms has synergistic fungicidal effects. By contrast, the combination of AMD with VRC exhibits no antagonistic and synergistic effects. In this way, the use of AMD in combination with ITR or POS could be an effective adjunctive treatment for Aspergillus spp. infection.


Asunto(s)
Amiodarona , Aspergilosis , Azoles/farmacología , Azoles/uso terapéutico , Plancton , Amiodarona/farmacología , Amiodarona/uso terapéutico , Pruebas de Sensibilidad Microbiana , Aspergillus , Voriconazol/farmacología , Voriconazol/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Itraconazol/farmacología , Itraconazol/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Biopelículas
20.
Int Immunopharmacol ; 113(Pt A): 109298, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252485

RESUMEN

Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disease, that eventually lead to hypothyroidism. XBP1s is an endoplasmic reticulum stress related protein and participates in the pathogenesis of several diseases. Nevertheless, the potential role of XBP1s in amiodarone (AMIO)-treated HT patients remains unknown. In this study, AMIO aggravated the endoplasmic reticulum stress responses in HT patients and thyroid epithelial follicular cells. Moreover, MTT assay and flow cytometry analysis revealed that knockdown of XBP1s suppressed AMIO-induced thyroid epithelial follicular cells apoptosis. Mechanically, the Chromatin Immunoprecipitation (ChIP) and luciferase activity assay proved that XBP1s enhanced LINC00842 expression in HT patients and thyroid epithelial follicular cells via binding to LINC00842 promoter. LINC00842 functioned as a miR-214 sponge in HT patients and thyroid epithelial follicular cells. Besides, LINC00842 up-regulated Fas ligand (FASL) expression via inhibition of miR-214. In rescue experiments, overexpression of FASL reversed shXBP1s-induced suppression of cell apoptosis in AMIO-treated thyroid epithelial follicular cells. These findings concluded that AMIO-drove XBP1s aggravated endoplasmic reticulum stress and apoptosis in HT via modulating LINC00842/miR-214/FASL axis, providing a new sight for the therapeutic strategy of AMIO-induced HT.


Asunto(s)
Amiodarona , Enfermedad de Hashimoto , MicroARNs , ARN Largo no Codificante , Proteína 1 de Unión a la X-Box , Humanos , Amiodarona/farmacología , Amiodarona/uso terapéutico , Apoptosis , Estrés del Retículo Endoplásmico/genética , Proteína Ligando Fas/metabolismo , Receptor fas/metabolismo , Enfermedad de Hashimoto/metabolismo , MicroARNs/genética , Proteína 1 de Unión a la X-Box/genética , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...