Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.915
Filtrar
1.
Physiol Meas ; 45(5)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697205

RESUMEN

Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.


Asunto(s)
Desflurano , Electroencefalografía , Humanos , Desflurano/farmacología , Adulto , Persona de Mediana Edad , Anciano , Electroencefalografía/efectos de los fármacos , Adulto Joven , Masculino , Femenino , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Envejecimiento/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiología , Isoflurano/análogos & derivados , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Anestesia General
2.
BMC Anesthesiol ; 24(1): 167, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702608

RESUMEN

The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.


Asunto(s)
Anestésicos por Inhalación , Dexmedetomidina , Electroencefalografía , Ketamina , Propofol , Sevoflurano , Animales , Ratones , Ketamina/farmacología , Ketamina/administración & dosificación , Sevoflurano/farmacología , Sevoflurano/administración & dosificación , Dexmedetomidina/farmacología , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Propofol/farmacología , Propofol/administración & dosificación , Masculino , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/administración & dosificación , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología , Ratones Endogámicos C57BL , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/administración & dosificación , Anestésicos Intravenosos/farmacología , Anestésicos Intravenosos/administración & dosificación , Anestesia/métodos
3.
Zool Res ; 45(3): 663-678, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766748

RESUMEN

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Asunto(s)
Animales Recién Nacidos , Disfunción Cognitiva , Proteoma , Sevoflurano , Conducta Social , Animales , Sevoflurano/efectos adversos , Ratones , Disfunción Cognitiva/inducido químicamente , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/farmacología , Proteínas del Tejido Nervioso/metabolismo , Masculino , Conducta Animal/efectos de los fármacos
4.
Zool Res ; 45(3): 679-690, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766749

RESUMEN

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.


Asunto(s)
Anestésicos por Inhalación , Ratones Endogámicos C57BL , Neurotransmisores , Propofol , Sevoflurano , Sevoflurano/farmacología , Animales , Propofol/farmacología , Neurotransmisores/metabolismo , Ratones , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo
5.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583855

RESUMEN

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Síndrome de Dificultad Respiratoria , Sevoflurano , Cicatrización de Heridas , Sevoflurano/farmacología , Humanos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/patología , Cicatrización de Heridas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células A549 , Proliferación Celular/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Movimiento Celular/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Citocinas/metabolismo , Autofagia/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología
6.
Res Vet Sci ; 172: 105254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582048

RESUMEN

Two randomized crossover trials evaluated the effects of nicardipine constant rate infusion (CRI) on 1) the anesthetic potency of sevoflurane and 2) the ability to attenuate dexmedetomidine-induced cardiovascular depression in anesthetized dogs. First, six healthy Beagle dogs weighing 11.7 ± 0.9 kg were allocated to one of three treatments that administered a CRI of carrier (saline) or dexmedetomidine 0.5 or 3.0 µg/kg/h following a loading dose. The minimum alveolar concentration (MAC) of sevoflurane was determined utilizing electric stimuli before and after the loading dose of nicardipine (20 µg/kg intravenously for 10 min), followed by CRI at 40 µg/kg/h with 60 min of equilibration. Subsequently, cardiovascular and blood gas variables were evaluated in another trial under sevoflurane anesthesia at the individual 1.5 MAC. After baseline measurements, the dogs were assigned to two treatments (dexmedetomidine CRI at 0.5 or 3.0 µg/kg/h following a loading dose) with sevoflurane doses adjusted to 1.5 times of MAC equivalent, and the measurements were repeated every 15 min for 120 min. After 60 min, nicardipine CRI at 40 µg/kg/h with a loading dose was added to the dexmedetomidine CRI. Dexmedetomidine infusions significantly decreased the sevoflurane MAC but nicardipine did not significantly alter the MAC either with or without dexmedetomidine CRI in dogs. Dexmedetomidine dose-dependently decreased the cardiac index and increased the systemic vascular resistance index; these effects were fully counteracted by concomitant nicardipine CRI. Nicardipine CRI can be useful for controlling the cardiovascular depression elicited by dexmedetomidine in anesthetized dogs without affecting the anesthetic potency of sevoflurane.


Asunto(s)
Anestésicos por Inhalación , Dexmedetomidina , Nicardipino , Sevoflurano , Animales , Dexmedetomidina/farmacología , Dexmedetomidina/administración & dosificación , Perros , Sevoflurano/farmacología , Sevoflurano/administración & dosificación , Nicardipino/farmacología , Nicardipino/administración & dosificación , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/administración & dosificación , Masculino , Estudios Cruzados , Femenino , Alveolos Pulmonares/efectos de los fármacos , Infusiones Intravenosas/veterinaria , Frecuencia Cardíaca/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/administración & dosificación , Presión Sanguínea/efectos de los fármacos
7.
Mutat Res ; 828: 111857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603928

RESUMEN

Inhaled anesthetics, such as isoflurane, may cause side effects, including short-term immunosuppression and DNA damage. In contrast, low molecular weight fucoidan (LMF), derived from brown seaweed, exhibits promising immunomodulatory effects. In this study, we determined the effect of isoflurane on telomeres and examined the potential of LMF to ameliorate the harmful effects of isoflurane. Male Lewis rats, the mouse lymphoma cell line YAC-1, and the human nature killer cell line NK-92 MI were exposed to isoflurane. The relative telomere length (T/S) ratio and mRNA expression were determined by quantitative PCR. The viability assay was used to assess cell viability. In vivo, 2% isoflurane exposure, which is a clinically relevant concentration, reduced telomere length, and correlated with exposure frequency and duration. Isoflurane concentrations above 2% shortened YAC-1 telomeres, with minimal impact on cell viability. LMF pre-treatment enhanced NK-92 MI cell survival resulting from isoflurane exposure and exerted superior telomere protection compared with LMF post-treatment. Furthermore, adding LMF during isoflurane exposure resulted in a significant increase in IFN-γ, TNF-α, and IL-10 mRNA compared with the untreated group. LMF protected against isoflurane-induced telomere shortening, enhanced NK cell viability, and modulated cytokine expression, thus mitigating postoperative immune suppression and risk of tumor metastasis.


Asunto(s)
Isoflurano , Células Asesinas Naturales , Polisacáridos , Animales , Polisacáridos/farmacología , Isoflurano/farmacología , Isoflurano/toxicidad , Ratones , Masculino , Humanos , Ratas , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/farmacología , Supervivencia Celular/efectos de los fármacos , Telómero/efectos de los fármacos , Ratas Endogámicas Lew , Peso Molecular , Línea Celular Tumoral , Homeostasis del Telómero/efectos de los fármacos
8.
Exp Eye Res ; 243: 109914, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685338

RESUMEN

A-scan ultrasonography enables precise measurement of internal ocular structures. Historically, its use has underpinned fundamental studies of eye development and aberrant eye growth in animal models of myopia; however, the procedure typically requires anaesthesia. Since anaesthesia affects intra-ocular pressure (IOP), we investigated changes in internal ocular structures with isoflurane exposure and compared measurements with those taken in awake animals using optical coherence tomography (OCT). Continuous A-scan ultrasonography was undertaken in tri-coloured guinea pigs aged 21 (n = 5), 90 (n = 5) or 160 (n = 5) days while anaesthetised (up to 36 min) with isoflurane (5% in 1.5L/min O2). Peaks were selected from ultrasound traces corresponding to the boundaries of the cornea, crystalline lens, retina, choroid and sclera. OCT scans (Zeiss Cirrus Photo 800) of the posterior eye layers were taken in 28-day-old animals (n = 19) and compared with ultrasound traces, with choroid and scleral thickness adjusted for the duration of anaesthesia based on the changes modelled in 21-day-old animals. Ultrasound traces recorded sequentially in left and right eyes in 14-day-old animals (n = 30) were compared, with each adjusted for anaesthesia duration. The thickness of the cornea was measured in enucleated eyes (n = 5) using OCT following the application of ultrasound gel (up to 20 min). Retinal thickness was the only ultrasound internal measure unaffected by anaesthesia. All other internal distances rapidly changed and were well fitted by exponential functions (either rise-to-max or decay). After 10 and 20 min of anaesthesia, the thickness of the cornea, crystalline lens and sclera increased by 17.1% and 23.3%, 0.4% and 0.6%, and 5.2% and 6.5% respectively, whilst the anterior chamber, vitreous chamber and choroid decreased by 4.4% and 6.1%, 0.7% and 1.1%, and 10.7% and 11.8% respectively. In enucleated eyes, prolonged contact of the cornea with ultrasound gel resulted in an increase in thickness of 9.3% after 10 min, accounting for approximately half of the expansion observed in live animals. At the back of the eye, ultrasound measurements of the thickness of the retina, choroid and sclera were highly correlated with those from posterior segment OCT images (R2 = 0.92, p = 1.2 × 10-13, R2 = 0.55, p = 4.0 × 10-4, R2 = 0.72, p = 5.0 × 10-6 respectively). Furthermore, ultrasound measures for all ocular components were highly correlated in left and right eyes measured sequentially, when each was adjusted for anaesthetic depth. This study shows that the depth of ocular components can change dramatically with anaesthesia. Researchers should therefore be wary of these concomitant effects and should employ adjustments to better render 'true' values.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Tomografía de Coherencia Óptica , Ultrasonografía , Animales , Tomografía de Coherencia Óptica/métodos , Cobayas , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Coroides/efectos de los fármacos , Coroides/diagnóstico por imagen , Envejecimiento/fisiología , Presión Intraocular/efectos de los fármacos , Presión Intraocular/fisiología , Córnea/efectos de los fármacos , Córnea/diagnóstico por imagen , Retina/efectos de los fármacos , Retina/diagnóstico por imagen , Esclerótica/efectos de los fármacos , Esclerótica/diagnóstico por imagen , Factores de Tiempo , Ojo/diagnóstico por imagen , Ojo/efectos de los fármacos , Modelos Animales de Enfermedad , Cristalino/diagnóstico por imagen , Cristalino/efectos de los fármacos
9.
Medicine (Baltimore) ; 103(16): e37552, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640331

RESUMEN

Motor-evoked potential (MEP) monitoring is commonly used in children. MEP monitoring in infants is difficult due to smaller signals requiring higher stimulation voltages. There is limited information on the effect of different anesthetics on MEP monitoring in this age group. This case series describes the effect of different anesthetic regimens on MEP monitoring in infants. Patients <1 year of age who underwent spinal surgery with MEP monitoring between February 2022 and July 2023 at a single tertiary care children hospital were reviewed. The motor-evoked potential amplitudes were classified into 4 levels based on the voltage in the upper and lower limbs (none, responded, acceptable, sufficient). "Acceptable" or "sufficient" levels were defined as successful monitoring. A total of 19 infants were identified, involving 3 anesthesia regimens: 4/19 (21.1%) cases were anesthetized with propofol/remifentanil total intravenous anesthesia (TIVA), 3/19 (15.8%) with propofol/remifentanil/low-dose sevoflurane and another 12/19 (63.2%) cases who initially received propofol/remifentanil/sevoflurane and were converted to propofol/remifentanil anesthesia intraoperatively. The 4 cases with propofol/remifentanil showed 20/32 (62.5%) successful monitoring points. In contrast, 6/24 (25%) successful points were achieved with propofol/remifentanil intravenous anesthesia/0.5 age-adjusted minimum alveolar concentration sevoflurane. In 12 cases converted from propofol/remifentanil/low-dose inhalational anesthetics to TIVA alone, successful MEP monitoring points increased from 46/96 (47.9%) to 81/96 (84.4%). Adding low-dose inhalation anesthetic to propofol-based TIVA suppresses MEP amplitudes in infants. The optimal anesthetic regimen for infants requires further investigation.


Asunto(s)
Anestésicos por Inhalación , Propofol , Niño , Lactante , Humanos , Sevoflurano/farmacología , Remifentanilo , Anestésicos por Inhalación/farmacología , Potenciales Evocados Motores/fisiología , Anestesia General , Anestésicos Intravenosos/farmacología
10.
Vet Anaesth Analg ; 51(3): 253-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38580536

RESUMEN

OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.


Asunto(s)
Dexmedetomidina , Isoflurano , Metadona , Propofol , Pirazoles , Animales , Perros , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacología , Propofol/administración & dosificación , Propofol/farmacología , Metadona/administración & dosificación , Metadona/farmacología , Femenino , Isoflurano/administración & dosificación , Isoflurano/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Presión Sanguínea/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/administración & dosificación , Quinolizinas/farmacología , Quinolizinas/administración & dosificación , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/farmacología , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacología , Premedicación/veterinaria
11.
Eur J Pharmacol ; 970: 176494, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484926

RESUMEN

BACKGROUND: Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS: Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS: Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS: MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Éteres Metílicos , Ratones , Animales , Isoflurano/farmacología , Sevoflurano/farmacología , Desflurano/farmacología , Anestésicos por Inhalación/farmacología , Ácido gamma-Aminobutírico , Hipnóticos y Sedantes , Ratones Noqueados , Receptores de GABA-A , Éteres Metílicos/farmacología
12.
PLoS One ; 19(3): e0298264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547201

RESUMEN

Although sevoflurane is one of the most commonly used inhalational anesthetic agents, the popularity of desflurane is increasing to a level similar to that of sevoflurane. Inhalational anesthesia generally activates and represses the expression of genes related to xenobiotic metabolism and immune response, respectively. However, there has been no comprehensive comparison of the effects of sevoflurane and desflurane on the expression of these genes. Thus, we used a next-generation sequencing method to compare alterations in the global gene expression profiles in the livers of rats subjected to inhalational anesthesia by sevoflurane or desflurane. Our bioinformatics analyses revealed that sevoflurane and, to a greater extent, desflurane significantly activated genes related to xenobiotic metabolism. Our analyses also revealed that both anesthetic agents, especially sevoflurane, downregulated many genes related to immune response.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Éteres Metílicos , Animales , Ratas , Sevoflurano/farmacología , Desflurano , Isoflurano/farmacología , Éteres Metílicos/farmacología , Transcriptoma , Xenobióticos , Anestésicos por Inhalación/farmacología , Anestesia por Inhalación
13.
Vet Anaesth Analg ; 51(3): 244-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38555213

RESUMEN

OBJECTIVE: To evaluate the effect of oral tasipimidine on dog handling, ease of catheter placement and propofol and isoflurane requirements for anaesthesia. STUDY DESIGN: Placebo-controlled, randomized, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 13.1 ± 2.7 kg with a mean age of 18.6 ± 1 months. METHODS: The dogs underwent four treatments before induction of anaesthesia with propofol. PP: placebo orally (PO) 60 minutes before induction of anaesthesia followed by placebo (NaCl 0.9%) intravenously (IV). TP: tasipimidine 30 µg kg-1 (PO) 60 minutes before induction of anaesthesia followed by placebo (NaCl 0.9%) IV. TMP: tasipimidine 30 µg kg-1 PO 60 minutes before induction of anaesthesia followed by methadone 0.2 mg kg-1 IV. TMPD: tasipimidine 30 µg kg-1 PO 60 minutes before induction of anaesthesia followed by methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by a dexmedetomidine constant rate infusion of 1 µg kg-1 hour-1. Sedation, response to catheter placement, intubation quality, time to loss of consciousness, time to intubation, required dose of propofol and minimum alveolar isoflurane concentration preventing motor movement (MACNM) were determined. A mixed-model analysis or the Friedman and Mann-Whitney test were used; p-value < 0.05. RESULTS: Response to catheter placement did not differ between treatments. Tasipimidine alone reduced the propofol dose by 30%. Addition of methadone or methadone and dexmedetomidine reduced the propofol dose by 48% and 50%, respectively. Isoflurane MACNM was reduced by 19% in tasipimidine-medicated dogs, whereas in combination with methadone or methadone and dexmedetomidine, isoflurane MACNM was reduced by 35%. CONCLUSIONS AND CLINICAL RELEVANCE: An anxiolytic dose of tasipimidine induced mild signs of sedation in dogs and reduced propofol and isoflurane requirements to induce and maintain anaesthesia, which needs to be considered in an anaesthetic plan.


Asunto(s)
Ansiolíticos , Imidazoles , Propofol , Animales , Perros , Masculino , Ansiolíticos/administración & dosificación , Ansiolíticos/farmacología , Propofol/administración & dosificación , Propofol/farmacología , Femenino , Isoflurano/administración & dosificación , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/farmacología , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacología , Quinolizinas/administración & dosificación , Quinolizinas/farmacología , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacología
14.
PeerJ ; 12: e16848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371374

RESUMEN

Background: The Index of Consciousness (IoC) is a new monitoring index of anesthesia depth reflecting the state of consciousness of the brain independently developed by China. The research on monitoring the depth of anesthesia mainly focuses on propofol, and bispectral index (BIS) is a sensitive and accurate objective index to evaluate the state of consciousness at home and abroad. This study mainly analyzed the effect of IoC on monitoring the depth of sevoflurane anesthesia and the consistency and accuracy with BIS when monitoring sevoflurane maintenance anesthesia. Objective: To investigate the monitoring value of the Index of Consciousness (IoC) for the depth of sevoflurane anesthesia in laparoscopic surgery. Methods: The study population consisted of 108 patients who experienced elective whole-body anesthesia procedures within the timeframe of April 2020 to June 2023 at our hospital. Throughout the anesthesia process, which encompassed induction and maintenance using inhaled sevoflurane, all patients were diligently monitored for both the Bispectral Index (BIS) and the Index of Consciousness (IoC). We conducted an analysis to assess the correlation between IoC and BIS throughout the anesthesia induction process and from the maintenance phase to the regaining of consciousness. To evaluate the predictive accuracy of IoC and BIS for the onset of unconsciousness during induction and the return of consciousness during emergence, we employed receiver operating characteristic (ROC) curve analysis. Results: The mean difference between BIS and IoC, spanning from the pre-anesthesia induction phase to the completion of propofol induction, was 1.3 (95% Limits of Agreement [-53.4 to 56.0]). Similarly, during the interval from the initiation of sevoflurane inhalation to the point of consciousness restoration, the average difference between BIS and IoC was 0.3 (95% LOA [-10.8 to 11.4]). No statistically significant disparities were observed in the data acquired from the two measurement methodologies during both the anesthesia induction process and the journey from maintenance to the regaining of consciousness (P > 0.05). The outcomes of the ROC curve analysis disclosed that the areas under the curve (AUC) for prognosticating the occurrence of loss of consciousness were 0.967 (95% CI [0.935-0.999]) for BIS and 0.959 (95% CI [0.924-0.993]) for IoC, with optimal threshold values set at 81 (sensitivity: 88.10%, specificity: 92.16%) and 77 (sensitivity: 79.55%, specificity: 95.45%) correspondingly. For the prediction of recovery of consciousness, the AUCs were 0.995 (95% CI [0.987-1.000]) for BIS and 0.963 (95% CI [0.916-1.000]) for IoC, each associated with optimal cutoff values of 76 (sensitivity: 92.86%, specificity: 100.00%) and 72 (sensitivity: 86.36%, specificity: 100.00%) respectively. Conclusion: The monitoring of sevoflurane anesthesia maintenance using IoC demonstrates a level of comparability to BIS, and its alignment with BIS during the maintenance phase of sevoflurane anesthesia is robust. IoC displays promising potential for effectively monitoring the depth of anesthesia.


Asunto(s)
Anestésicos por Inhalación , Laparoscopía , Éteres Metílicos , Propofol , Humanos , Sevoflurano , Propofol/farmacología , Estado de Conciencia , Anestésicos por Inhalación/farmacología , Éteres Metílicos/farmacología , Monitoreo Intraoperatorio/métodos , Anestesia General/métodos
15.
Microvasc Res ; 153: 104655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38232898

RESUMEN

OBJECTIVE: This study aimed to explore the effects of sedative doses of propofol and isoflurane on microcirculation in septic mice compared to controls. Isoflurane, known for its potential as a sedation drug in bedside applications, lacks clarity regarding its impact on the microcirculation system. The hypothesis was that propofol would exert a more pronounced influence on the microvascular flow index, particularly amplified in septic conditions. MATERIAL AND METHODS: Randomized study was conducted from December 2020 to October 2021 involved 60 BALB/c mice, with 52 mice analyzed. Dorsal skinfold chambers were implanted, followed by intraperitoneal injections of either sterile 0.9 % saline or lipopolysaccharide for the control and sepsis groups, respectively. Both groups received propofol or isoflurane treatment for 120 min. Microcirculatory parameters were obtained via incident dark-field microscopy videos, along with the mean blood pressure and heart rate at three time points: before sedation (T0), 30 min after sedation (T30), and 120 min after sedation (T120). Endothelial glycocalyx thickness and syndecan-1 concentration were also analyzed. RESULTS: In healthy controls, both anesthetics reduced blood pressure. However, propofol maintained microvascular flow, differing significantly from isoflurane at T120 (propofol, 2.8 ± 0.3 vs. isoflurane, 1.6 ± 0.9; P < 0.001). In the sepsis group, a similar pattern occurred at T120 without statistical significance (propofol, 1.8 ± 1.1 vs. isoflurane, 1.2 ± 0.7; P = 0.023). Syndecan-1 levels did not differ between agents, but glycocalyx thickness index was significantly lower in the isoflurane-sepsis group than propofol (P = 0.001). CONCLUSIONS: Propofol potentially offers protective action against microvascular flow deterioration compared to isoflurane, observed in control mice. Furthermore, a lower degree of sepsis-induced glycocalyx degradation was evident with propofol compared to isoflurane.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Propofol , Sepsis , Animales , Ratones , Propofol/farmacología , Isoflurano/farmacología , Microcirculación , Sindecano-1 , Anestésicos por Inhalación/farmacología , Sepsis/tratamiento farmacológico , Anestésicos Intravenosos/farmacología
16.
BMC Anesthesiol ; 24(1): 28, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233786

RESUMEN

BACKGROUND: During arthroscopic rotator cuff repair (ARCR), clear surgical field visibility (SFV) is the basis of successful surgery, but the choice of anesthesia maintenance drugs may have different effects on SFV. In this study, we aimed to compare the effects of propofol- and sevoflurane-based general anesthesia on SFV in patients undergoing ARCR. METHODS: Patients (n = 130) undergoing elective ARCR in the lateral decubitus position were randomized into either the propofol group or sevoflurane group (65 per group). The duration of surgery and increased pressure irrigation (IPI), Boezaart score, rocuronium consumption and usage of remifentanil were recorded. The time of both spontaneous respiration recovery and extubation and the incidences of postoperative nausea and vomiting and agitation were also recorded. RESULTS: The Boezaart score, duration of IPI and ratio of the duration of IPI to the duration of surgery (IPI/S ratio) were similar between the groups (P > 0.05). Rocuronium consumption, number of patients requiring remifentanil infusion and total remifentanil consumption were significantly lower in the sevoflurane group (P < 0.05). The spontaneous respiration recovery time was significantly longer in the propofol group (P < 0.05), but there were no differences in the extubation time between the groups(P > 0.05). CONCLUSIONS: Compared with propofol, sevoflurane provides equally clear SFV while improving the convenience of anesthesia maintenance in ARCR patients with interscalene plexus (ISB) combined with general anesthesia. TRIAL REGISTRATION: This single-center, prospective, RCT was retrospective registered at Chinese Clinical Trial Registry with the registration number ChiCTR2300072110 (02/06/2023).


Asunto(s)
Anestésicos por Inhalación , Éteres Metílicos , Propofol , Humanos , Propofol/farmacología , Sevoflurano , Remifentanilo , Rocuronio , Estudios Prospectivos , Manguito de los Rotadores/cirugía , Estudios Retrospectivos , Éteres Metílicos/farmacología , Piperidinas/farmacología , Anestesia General , Anestésicos Intravenosos/farmacología , Anestésicos por Inhalación/farmacología
17.
Anesthesiology ; 140(5): 890-905, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207324

RESUMEN

BACKGROUND: High-density electroencephalographic (EEG) monitoring remains underutilized in clinical anesthesia, despite its obvious utility in unraveling the profound physiologic impact of these agents on central nervous system functioning. In school-aged children, the routine practice of rapid induction with high concentrations of inspiratory sevoflurane is commonplace, given its favorable efficacy and tolerance profile. However, few studies investigate topographic EEG during the critical timepoint coinciding with loss of responsiveness-a key moment for anesthesiologists in their everyday practice. The authors hypothesized that high initial sevoflurane inhalation would better precipitate changes in brain regions due to inhomogeneities in maturation across three different age groups compared with gradual stepwise paradigms utilized by other investigators. Knowledge of these changes may inform strategies for agent titration in everyday clinical settings. METHODS: A total of 37 healthy children aged 5 to 10 yr underwent induction with 4% or greater sevoflurane in high-flow oxygen. Perturbations in anesthetic state were investigated in 23 of these children using 64-channel EEG with the Hjorth Laplacian referencing scheme. Topographical maps illustrated absolute, relative, and total band power across three age groups: 5 to 6 yr (n = 7), 7 to 8 yr (n = 8), and 9 to 10 yr (n = 8). RESULTS: Spectral analysis revealed a large shift in total power driven by increased delta oscillations. Well-described topographic patterns of anesthesia, e.g., frontal predominance, paradoxical beta excitation, and increased slow activity, were evident in the topographic maps. However, there were no statistically significant age-related changes in spectral power observed in a midline electrode subset between the groups when responsiveness was lost compared to the resting state. CONCLUSIONS: High initial concentration sevoflurane induction causes large-scale topographic effects on the pediatric EEG. Within the minute after unresponsiveness, this dosage may perturb EEG activity in children to an extent where age-related differences are not discernible.


Asunto(s)
Anestésicos por Inhalación , Éteres Metílicos , Niño , Humanos , Preescolar , Sevoflurano , Anestésicos por Inhalación/farmacología , Electroencefalografía , Anestesia General , Encéfalo
18.
Anesth Analg ; 138(1): 198-209, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753442

RESUMEN

BACKGROUND: General anesthetics (eg, propofol and volatile anesthetics) enhance the slow-delta oscillations of the cortical electroencephalogram (EEG), which partly results from the enhancement of (γ-aminobutyric acid [GABA]) γ-aminobutyric acid-ergic (GABAergic) transmission. There is a GABAergic excitatory-inhibitory shift during postnatal development. Whether general anesthetics can enhance slow-delta oscillations in the immature brain has not yet been unequivocally determined. METHODS: Perforated patch-clamp recording was used to confirm the reversal potential of GABAergic currents throughout GABAergic development in acute brain slices of neonatal rats. The power density of the electrocorticogram and the minimum alveolar concentrations (MAC) of isoflurane and/or sevoflurane were measured in P4-P21 rats. Then, the effects of bumetanide, an inhibitor of the Na + -K + -2Cl - cotransporter (NKCC1) and K + -Cl - cotransporter (KCC2) knockdown on the potency of volatile anesthetics and the power density of the EEG were determined in vivo. RESULTS: Reversal potential of GABAergic currents were gradually hyperpolarized from P4 to P21 in cortical pyramidal neurons. Bumetanide enhanced the hypnotic effects of volatile anesthetics at P5 (for MAC LORR , isoflurane: 0.63% ± 0.07% vs 0.81% ± 0.05%, 95% confidence interval [CI], -0.257 to -0.103, P < .001; sevoflurane: 1.46% ± 0.12% vs 1.66% ± 0.09%, 95% CI, -0.319 to -0.081, P < .001); while knockdown of KCC2 weakened their hypnotic effects at P21 in rats (for MAC LORR , isoflurane: 0.58% ± 0.05% to 0.77% ± 0.20%, 95% CI, 0.013-0.357, P = .003; sevoflurane: 1.17% ± 0.04% to 1.33% ± 0.04%, 95% CI, 0.078-0.244, P < .001). For cortical EEG, slow-delta oscillations were the predominant components of the EEG spectrum in neonatal rats. Isoflurane and/or sevoflurane suppressed the power density of slow-delta oscillations rather than enhancement of it until GABAergic maturity. Enhancement of slow-delta oscillations under volatile anesthetics was simulated by preinjection of bumetanide at P5 (isoflurane: slow-delta changed ratio from -0.31 ± 0.22 to 1.57 ± 1.15, 95% CI, 0.67-3.08, P = .007; sevoflurane: slow-delta changed ratio from -0.46 ± 0.25 to 0.95 ± 0.97, 95% CI, 0.38-2.45, P = .014); and suppressed by KCC2-siRNA at P21 (isoflurane: slow-delta changed ratio from 16.13 ± 5.69 to 3.98 ± 2.35, 95% CI, -18.50 to -5.80, P = .002; sevoflurane: slow-delta changed ratio from 0.13 ± 2.82 to 3.23 ± 2.49, 95% CI, 3.02-10.79, P = .003). CONCLUSIONS: Enhancement of cortical EEG slow-delta oscillations by volatile anesthetics may require mature GABAergic inhibitory transmission during neonatal development.


Asunto(s)
Anestesia , Anestésicos Generales , Anestésicos por Inhalación , Isoflurano , Éteres Metílicos , Simportadores , Ratas , Animales , Isoflurano/farmacología , Sevoflurano/farmacología , Animales Recién Nacidos , Bumetanida/farmacología , Ácido gamma-Aminobutírico/farmacología , Electroencefalografía , Hipnóticos y Sedantes , Anestésicos por Inhalación/farmacología
19.
Br J Anaesth ; 132(2): 220-223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000931

RESUMEN

Building on their known ability to influence sleep and arousal, Li and colleagues show that modulating the activity of glutamatergic pedunculopontine tegmental neurones also alters sevoflurane-induced hypnosis. This finding adds support for the shared sleep-anaesthesia circuit hypothesis. However, the expanding recognition of many neuronal clusters capable of modulating anaesthetic hypnosis raises the question of how disparate and anatomically distant sites ultimately interact to coordinate global changes in the state of the brain. Understanding how these individual sites work in concert to disrupt cognition and behaviour is the next challenge for anaesthetic mechanisms research.


Asunto(s)
Anestésicos por Inhalación , Hipnosis , Humanos , Sevoflurano/farmacología , Sueño/fisiología , Anestésicos por Inhalación/farmacología , Encéfalo
20.
J Anesth ; 38(1): 10-18, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37741919

RESUMEN

PURPOSE: Volatile anesthetics affect the circadian rhythm of mammals, although the effects of different types of anesthetics are unclear. Here, we anesthetized mice using several volatile anesthetics at two different times during the day. Our objective was to compare the effects of these anesthetics on circadian rhythm. METHODS: Male adult C57BL/6 J mice were divided into eight groups (n = 8 each) based on the anesthetic (sevoflurane, desflurane, isoflurane, or no anesthesia) and anesthesia time (Zeitgeber time [ZT] 6-12 or ZT18-24). Mice were anesthetized for 6 h using a 0.5 minimum alveolar concentration (MAC) dose under constant dark conditions. The difference between the start of the active phase before and after anesthesia was measured as a phase shift. Clock genes were measured by polymerase chain reaction in suprachiasmatic nucleus (SCN) samples removed from mouse brain after anesthesia (n = 8-9 each). RESULTS: Phase shift after anesthesia at ZT6-12 using sevoflurane (- 0.49 h) was smaller compared with desflurane (- 1.1 h) and isoflurane (- 1.4 h) (p < 0.05). Clock mRNA (ZT6-12, p < 0.05) and Per2 mRNA (ZT18-24, p < 0.05) expression were different between the groups after anesthesia. CONCLUSION: 0.5 MAC sevoflurane anesthesia administered during the late inactive to early active phase has less impact on the phase shift of circadian rhythm than desflurane and isoflurane. This may be due to differences in the effects of volatile anesthetics on the expression of clock genes in the SCN, the master clock of the circadian rhythm.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Éteres Metílicos , Masculino , Animales , Ratones , Isoflurano/farmacología , Sevoflurano/farmacología , Desflurano , Anestésicos por Inhalación/farmacología , Ratones Endogámicos C57BL , Ritmo Circadiano , ARN Mensajero , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA