Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Viruses ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36680240

RESUMEN

Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably sensitive to drugs affecting fungal membranes (voriconazole, amphotericin) or cell wall glucan synthesis (micafungin, caspofungin). In contrast, forming biofilms of virus-free Af293 were much more resistant than AfuPmV-1-infected Af293 to nikkomycin Z (NikZ), a drug inhibiting chitin synthase. The IC50 for NikZ on biofilms was between 3.8 and 7.5 µg/mL for virus-free Af293 and 0.94-1.88 µg/mL for infected strains. The IC50 for the virus-free A. fumigatus strain 10AF was ~2 µg/mL in most experiments. NikZ also modestly affected the planktonic growth of infected Af293 more than the virus-free strain (MIC 50%, 2 and 4 µg/mL, respectively). Virus-free Af293 biofilm showed increased metabolism, and fungus growing as biofilm or planktonically showed increased growth compared to infected; these differences do not explain the resistance of the virus-free fungus to NikZ. In summary, AfuPmV-1 infection sensitized A. fumigatus to NikZ, but did not affect response to drugs commonly used against A. fumigatus infection. Virus infection had a greater effect on NikZ inhibition of biofilm than planktonic growth.


Asunto(s)
Antifúngicos , Virus ARN , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus fumigatus/fisiología , Aminoglicósidos/farmacología , Aminoglicósidos/metabolismo , Anfotericina B/metabolismo , Anfotericina B/farmacología
2.
J Biomol Struct Dyn ; 41(12): 5685-5695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35787240

RESUMEN

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to characterize the interactions of amphotericin B (AmB), miltefosine (MIL) and nerolidol (NER) with the plasma membrane of Paracoccidioides brasiliensis. Spin-labeled analogs of stearic acid and steroid androstane distributed into the plasma membrane of the fungus treated with AmB, showed strong interactions with putative AmB/sterol complexes. The observed increase in the EPR parameter 2A// caused by AmB can be interpreted as a remarkable reduction in the spin label mobility and/or an increase in the local polarity. The 2A// parameter reduced gradually as the concentration of MIL and NER increased. The membrane-water partition coefficient (KM/W) of the three compounds under study was estimated based on the minimum concentration of the compounds that causes a change in EPR spectrum. The KM/W values indicated that the affinity of the compounds for the P. brasiliensis membrane follows the order: AmB > MIL > NER. The minimum inhibitory concentration (MIC) values were lower than the respective minimum concentrations of the compounds to cause a change in the EPR spectrum, being ∼3.5-fold lower for AmB, 3.9-fold for MIL and ∼1.4-fold for NER. Taken together, the EPR spectroscopy results suggest that the anti-proliferative effects of the three compounds studied are associated with alterations in cell membranes. One of the most likely consequences of these changes would be electrolyte leakage.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Anfotericina B , Paracoccidioides , Espectroscopía de Resonancia por Spin del Electrón , Anfotericina B/farmacología , Anfotericina B/metabolismo , Membrana Celular/metabolismo , Marcadores de Spin
3.
Viruses ; 14(9)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146865

RESUMEN

Several flaviviruses such as Hepatitis C virus, West Nile virus, Dengue virus and Japanese Encephalitis virus exploit the raft platform to enter host cells whereas the involvement of lipid rafts in Zika virus-host cell interaction has not yet been demonstrated. Zika virus disease is caused by a flavivirus transmitted by Aedes spp. Mosquitoes, although other mechanisms such as blood transfusion, sexual and maternal-fetal transmission have been demonstrated. Symptoms are generally mild, such as fever, rash, joint pain and conjunctivitis, but neurological complications, including Guillain-Barré syndrome, have been associated to this viral infection. During pregnancy, it can cause microcephaly and other congenital abnormalities in the fetus, as well as pregnancy complications, representing a serious health threat. In this study, we show for the first time that Zika virus employs cell membrane lipid rafts as a portal of entry into Vero cells. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) hampers a microbe-host cell interaction through the disruption of lipid raft architecture. Here, we found that Amphotericin B by the same mechanism of action inhibits both Zika virus cell entry and replication. These data encourage further studies on the off-label use of Amphotericin B in Zika virus infections as a new and alternate antiviral therapy.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Anfotericina B/metabolismo , Anfotericina B/uso terapéutico , Animales , Antifúngicos/metabolismo , Antifúngicos/uso terapéutico , Antivirales/farmacología , Chlorocebus aethiops , Femenino , Humanos , Lípidos de la Membrana/metabolismo , Microdominios de Membrana , Embarazo , Células Vero
4.
Toxicon ; 217: 96-106, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35977615

RESUMEN

OBJECTIVE: To investigate the in vitro activity, synergism, cytotoxicity and cellular immunological response, as well as the molecular affinity between amphotericin B (AmB) and crotamine (CTA), derived from Crotalus durissus terrificus venom against Leishmania amazonensis. METHODS: This study performed the inhibition of promastigotes and amastigotes' growth under different concentrations of the drug and pharmacological combinations (AmB + CTA) based on the Berimbaum method (synergism study). The lactate dehydrogenase (LDH) quantification method was used to determine the cytotoxicity of the drug and combinations employing four cell lines (J774, HepG2, VERO, and C2C12). Following, the levels of Tumour Necrose Factor-alpha (TNF-α) and Interleukin-12 (IL-12) cytokines, using enzyme-linked immunosorbent assay (ELISA) and nitrites, as an indirect measure of Nitric Oxide (NO), using the Griess reaction were assessed in the supernatants of infected macrophages. In silico approach (molecular docking and dynamics) and binding affinity (surface plasmon resonance) between the drug and toxin were also investigated. RESULTS: CTA enhanced AmB effect against promastigote and amastigote forms of L. amazonensis, decreased the drug toxicity in different cell lines and induced the production of important Th1-like cytokines and NO by infected macrophages. The pharmacological combination also displayed consistent molecular interactions with low energy of coupling and a concentration-dependent profile. CONCLUSION: Our data suggest that this pharmacological approach is a promising alternative treatment against L. amazonensis infection due to the improved activity (synergistic effect) achieved against the parasites' forms and to the decreased cytotoxic effect.


Asunto(s)
Antiprotozoarios , Venenos de Crotálidos , Anfotericina B/metabolismo , Anfotericina B/toxicidad , Animales , Antiprotozoarios/farmacología , Venenos de Crotálidos/química , Crotalus/metabolismo , Citocinas/metabolismo , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo
5.
Microbiol Spectr ; 10(4): e0077622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35867406

RESUMEN

Candida glabrata is increasingly isolated from blood cultures, and multidrug-resistant isolates have important implications for therapy. This study describes a cholesterol-dependent clinical C. glabrata isolate (ML72254) that did not grow without blood (containing cholesterol) on routine mycological media and that showed azole and amphotericin B (AmB) resistance. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and whole-genome sequencing (WGS) were used for species identification. A modified Etest method (Mueller-Hinton agar supplemented with 5% sheep blood) was used for antifungal susceptibility testing. WGS data were processed via the Galaxy platform, and the genomic variations of ML72254 were retrieved. A computational biology workflow utilizing web-based applications (PROVEAN, AlphaFold Colab, and Missense3D) was constructed to predict possible deleterious effects of these missense variations on protein functions. The predictive ability of this workflow was tested with previously reported missense variations in ergosterol synthesis genes of C. glabrata. ML72254 was identified as C. glabrata sensu stricto with MALDI-TOF, and WGS confirmed this identification. The MICs of fluconazole, voriconazole, and amphotericin B were >256, >32, and >32 µg/mL, respectively. A novel frameshift mutation in the ERG1 gene (Pro314fs) and many missense variations were detected in the ergosterol synthesis genes. None of the missense variations in the ML72254 ergosterol synthesis genes were deleterious, and the Pro314fs mutation was identified as the causative molecular change for a cholesterol-dependent and multidrug-resistant phenotype. This study verified that web-based computational biology solutions can be powerful tools for examining the possible impacts of missense mutations in C. glabrata. IMPORTANCE In this study, a cholesterol-dependent C. glabrata clinical isolate that confers azole and AmB resistance was investigated using artificial intelligence (AI) technologies and cloud computing applications. This is the first of the known cholesterol-dependent C. glabrata isolate to be found in Turkey. Cholesterol-dependent C. glabrata isolates are rarely isolated in clinical samples; they can easily be overlooked during routine laboratory procedures. Microbiologists therefore need to be alert when discrepancies occur between microscopic examination and growth on routine media. In addition, because these isolates confer antifungal resistance, patient management requires extra care.


Asunto(s)
Anfotericina B , Candida glabrata , Anfotericina B/metabolismo , Anfotericina B/farmacología , Animales , Antifúngicos/farmacología , Inteligencia Artificial , Azoles/metabolismo , Azoles/farmacología , Candida glabrata/genética , Colesterol/metabolismo , Colesterol/farmacología , Biología Computacional , Farmacorresistencia Fúngica/genética , Resistencia a Múltiples Medicamentos , Ergosterol/metabolismo , Pruebas de Sensibilidad Microbiana , Ovinos
6.
J Biol Chem ; 298(4): 101746, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189143

RESUMEN

AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can "pull" substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.


Asunto(s)
Anfotericina B , Proteínas Bacterianas , Streptomyces , Anfotericina B/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Streptomyces/química , Streptomyces/enzimología , Especificidad por Sustrato
7.
Biotechnol Appl Biochem ; 69(4): 1489-1501, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34252982

RESUMEN

Streptomyces nodosus is known as the main manufacturer of amphotericin B (AmB), which is an effective antifungal drug. It is verified that the optimization of fermentation conditions and key growth factors have a great impact on the yield of AmB. The AmB production of S. nodosus in cotton-seed meal (CM) medium was 1.6 times than that of beef-paste medium. The transcriptome analysis was used to analyze the effects of different nitrogen media and calcium on S. nodosus. Related genes of the EMP and TCA pathways, such as phosphofructokinase, pyruvate dehydrogenase, and citrate synthase, were upregulated in CM medium. The expression level of the PKS modules of the amphotericin synthesis gene cluster in beef-paste medium was higher. Other functional genes, such as amphGH and amphRIV, have the advantage of expressing in CM medium. Ca2+ promoted the upregulation of genes in metabolic pathways such as EMP pathway (pyruvate dehydrogenase), TCA pathway (citrate synthase), and amphotericin synthesis genes (PKS modules). The expression of WhiB family genes SNOD_RS 13310 and SNOD_RS 17625 was positively correlated with Ca2+ concentration. In addition, in the presence of calcium, the expression level of Sec transport system genes of S. nodosus was lower.


Asunto(s)
Anfotericina B , Calcio , Anfotericina B/metabolismo , Anfotericina B/farmacología , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Bovinos , Citrato (si)-Sintasa/metabolismo , Nitrógeno , Oxidorreductasas/metabolismo , Piruvatos , Streptomyces , Transcriptoma
8.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622715

RESUMEN

Invasive fungal diseases cause millions of deaths each year. There are currently approximately 300,000 acute cases of aspergillosis, most of which result from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus Patients are treated with antifungal drugs, such as amphotericin B (AmB). However, AmB has serious limitations due to human organ toxicity. AmB is slightly less toxic if loaded in liposomes, such as AmBisome or AmB-loaded liposomes (AmB-LLs). Even with antifungal therapy, recurrent infections are common, and 1-year fatality rates may exceed 50%. We have previously shown that coating AmB-LLs with the extracellular oligomannan-binding domain of the C-type lectin receptor Dectin-2 (DEC2-AmB-LLs) effectively targets DEC2-AmB-LLs to cell walls, exopolysaccharide matrices, and biofilms of fungal pathogens in vitroIn vitro, DEC2-AmB-LLs reduce the effective dose of AmB for 95% inhibition and killing of A. fumigatus 10-fold compared to that of untargeted AmB-LLs. Herein we tested the antifungal activity of DEC2-AmB-LLs relative to that of untargeted AmB-LLs in immunosuppressed mice with pulmonary aspergillosis. Remarkably, DEC2-AmB-LLs bound 30-fold more efficiently to A. fumigatus at sites of infection in the lungs. Furthermore, Dectin-2-targeted liposomes delivering AmB at a dose of 0.2 mg/kg of body weight significantly reduced the fungal burden in lungs compared to results with untargeted AmB-LLs at 0.2 mg/kg and micellar voriconazole at 20 mg/kg and prolonged mouse survival. By dramatically increasing the efficacy of antifungal drugs at low doses, targeted liposomes have the potential to create a new clinical paradigm to treat diverse fungal diseases.IMPORTANCE Invasive aspergillosis (IA) generally results from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus The susceptible population has expanded rapidly due to the increased number of cancer patients with immunocompromising chemotherapy and transplant patients taking immunosuppressants. Patients are treated with antifungals, such as liposomal amphotericin B, with per-patient costs exceeding $50,000 in the United States. However, AmB has serious side effects due to host toxicity, which limits its usage and contributes to the lack of fungal clearance in patients at safe doses. Fifty percent of IA patients die within a year. Herein, we employed liposomal amphotericin B coated with the innate immune receptor Dectin-2 to direct antifungals specifically to the fungal pathogen. Using two mouse models of pulmonary aspergillosis, we demonstrate that Dectin-2-targeted delivery of amphotericin B to A. fumigatus resulted in remarkably higher efficacy than that of the untargeted antifungal formulations.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergillus fumigatus/efectos de los fármacos , Pared Celular/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/uso terapéutico , Liposomas/química , Aspergilosis Pulmonar/tratamiento farmacológico , Anfotericina B/metabolismo , Anfotericina B/uso terapéutico , Animales , Pared Celular/efectos de los fármacos , Femenino , Lectinas Tipo C/genética , Liposomas/uso terapéutico , Ratones , Neutropenia
9.
Chem Commun (Camb) ; 57(23): 2895-2898, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33606865

RESUMEN

Amphotericin B incorporating 2,2'-bipyridine (bpy-AmB) forms a membrane channel exhibiting pH-dependent Ca2+ ion permeability with a selective response to Cu2+ ions. The coordination structure at bpy sites depends on the pH and metal ions can control the association state of bpy-AmB in the membrane.


Asunto(s)
Anfotericina B/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , 2,2'-Dipiridil/química , Calcio/química , Calcio/metabolismo , Cobre/química , Cobre/metabolismo , Concentración de Iones de Hidrógeno , Permeabilidad , Relación Estructura-Actividad
10.
Proteins ; 89(5): 558-568, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33389775

RESUMEN

Polyene polyketides amphotericin B (AMB) and nystatin (NYS) are important antifungal drugs. Thioesterases (TEs), located at the last module of PKS, control the release of polyketides by cyclization or hydrolysis. Intrigued by the tiny structural difference between AMB and NYS, as well as the high sequence identity between AMB TE and NYS TE, we constructed four systems to study the structural characteristics, catalytic mechanism, and product release of AMB TE and NYS TE with combined MD simulations and quantum mechanics/molecular mechanics calculations. The results indicated that compared with AMB TE, NYS TE shows higher specificity on its natural substrate and R26 as well as D186 were proposed to a key role in substrate recognition. The energy barrier of macrocyclization in AMB-TE-Amb and AMB-TE-Nys systems were calculated to be 14.0 and 22.7 kcal/mol, while in NYS-TE-Nys and NYS-TE-Amb systems, their energy barriers were 17.5 and 25.7 kcal/mol, suggesting the cyclization with their natural substrates were more favorable than that with exchanged substrates. At last, the binding free energy obtained with the MM-PBSA.py program suggested that it was easier for natural products to leave TE enzymes after cyclization. And key residues to the departure of polyketide product from the active site were highlighted. We provided a catalytic overview of AMB TE and NYS TE including substrate recognition, catalytic mechanism and product release. These will improve the comprehension of polyene polyketide TEs and benefit for broadening the substrate flexibility of polyketide TEs.


Asunto(s)
Anfotericina B/química , Proteínas Bacterianas/química , Nistatina/química , Streptomyces/enzimología , Tioléster Hidrolasas/química , Anfotericina B/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , Ciclización , Enlace de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Nistatina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Teoría Cuántica , Streptomyces/química , Especificidad por Sustrato , Termodinámica , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...