Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
PLoS One ; 19(3): e0299961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483851

RESUMEN

In vivo noninvasive imaging of neurometabolites is crucial to improve our understanding of the underlying pathophysiological mechanism in neurodegenerative diseases. Abnormal changes in synaptic organization leading to synaptic degradation and neuronal loss is considered as one of the primary factors driving Alzheimer's disease pathology. Magnetic resonance based molecular imaging techniques such as chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) can provide neurometabolite specific information which may relate to underlying pathological and compensatory mechanisms. In this study, CEST and short echo time single voxel MRS was performed to evaluate the sensitivity of cerebral metabolites to beta-amyloid (Aß) induced synaptic deficit in the hippocampus of a mouse model of Alzheimer's disease. The CEST based spectra (Z-spectra) were acquired on a 9.4 Tesla small animal MR imaging system with two radiofrequency (RF) saturation amplitudes (1.47 µT and 5.9 µT) to obtain creatine-weighted and glutamate-weighted CEST contrasts, respectively. Multi-pool Lorentzian fitting and quantitative T1 longitudinal relaxation maps were used to obtain metabolic specific apparent exchange-dependent relaxation (AREX) maps. Short echo time (TE = 12 ms) single voxel MRS was acquired to quantify multiple neurometabolites from the right hippocampus region. AREX contrasts and MRS based metabolite concentration levels were examined in the ARTE10 animal model for Alzheimer's disease and their wild type (WT) littermate counterparts (age = 10 months). Using MRS voxel as a region of interest, group-wise analysis showed significant reduction in Glu-AREX and Cr-AREX in ARTE10, compared to WT animals. The MRS based results in the ARTE10 mice showed significant decrease in glutamate (Glu) and glutamate-total creatine (Glu/tCr) ratio, compared to WT animals. The MRS results also showed significant increase in total creatine (tCr), phosphocreatine (PCr) and glutathione (GSH) concentration levels in ARTE10, compared to WT animals. In the same ROI, Glu-AREX and Cr-AREX demonstrated positive associations with Glu/tCr ratio. These results indicate the involvement of neurotransmitter metabolites and energy metabolism in Aß-mediated synaptic degradation in the hippocampus region. The study also highlights the feasibility of CEST and MRS to identify and track multiple competing and compensatory mechanisms involved in heterogeneous pathophysiology of Alzheimer's disease in vivo.


Asunto(s)
Enfermedad de Alzheimer , Creatina , Ratones , Animales , Creatina/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales Salvajes/metabolismo , Ácido Glutámico , Receptores de Antígenos de Linfocitos T
2.
Gen Comp Endocrinol ; 345: 114390, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844650

RESUMEN

Wild animals have been increasingly exposed to a wide range of stressors, mainly due to the intensification of human activities and habitat modifications. Consequently, new tools in order to assess the physiological and health status of wild animals have been developed. In particular, glucocorticoids have received a special attention. Primarily metabolic hormones, they are also used to evaluate the stress level of organisms. While historically measured in blood samples, new less-invasive methods have been recently developed to measure glucocorticoids in matrices such as faeces, hairs/feathers, or saliva. To date, measurements in saliva are still in their infancy despite the numerous advantages of the matrix: non-invasive, reflects the biologically active portion of glucocorticoids, allows to measure both baseline and stress-induced levels. In addition, most studies using saliva have been performed on domestic and captive animals, and recent development in wild animals have focused on mammals. Here, we show, for the first time, that saliva could also be reliably used in free-ranging birds, as glucocorticoid levels in saliva strongly correlated with plasma levels. This promising result opens new avenues for a non-invasive sampling method to assess health status of wild birds in conservation biology and ecology.


Asunto(s)
Corticosterona , Glucocorticoides , Animales , Humanos , Glucocorticoides/metabolismo , Animales Salvajes/metabolismo , Aves/metabolismo , Plumas/metabolismo , Mamíferos/metabolismo
3.
Ecotoxicol Environ Saf ; 264: 115480, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716068

RESUMEN

Gut microbiota plays a critical role in regulating the health and adaptation of wildlife. However, our understanding of how exposure to environmental heavy metals influences the gut microbiota of wild birds, particularly during the vulnerable and sensitive nestling stage, remains limited. In order to investigate the relationship between heavy metals and the gut microbiota, we analyzed the characteristics of gut microbiota and heavy metals levels in tree sparrow nestlings at different ages (6, 9 and 12-day-old). The study was conducted in two distinct areas: Baiyin (BY), which is heavily contaminated with heavy metals, and Liujiaxia (LJX), a relatively unpolluted area. Our result reveled a decrease in gut microbiota diversity and increased inter-individual variation among nestlings in BY. However, we also observed an increase in the abundance of bacterial groups and an up-regulation of bacterial metabolic functions associated with resistance to heavy metals toxicity in BY. Furthermore, we identified a metal-associated shift in the relative abundance of microbial taxa in 12-day-old tree sparrow nestlings in BY, particularly involving Aeromonadaceae, Ruminococcaceae and Pseudomonadaceae. Moreover, a significant positive correlation was found between the body condition of tree sparrow nestlings and the abundance of Bifidobacteriaceae in BY. Collectively, our findings indicate that the gut microbiota of tree sparrow nestlings is susceptible to heavy metals during early development. However, the results also highlight the presence of adaptive responses that enable them to effectively cope with environmental heavy metal pollution.


Asunto(s)
Microbioma Gastrointestinal , Metales Pesados , Gorriones , Animales , Metales Pesados/análisis , Contaminación Ambiental/análisis , Animales Salvajes/metabolismo
4.
Environ Toxicol Chem ; 42(10): 2130-2142, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37431940

RESUMEN

Plastic-related contaminants in the environment have attracted increasing attention, with plastic pollution becoming a serious issue globally. The present study investigated the potential bioaccumulation and biotransfer of bisphenol (BP) compounds that are widely added in various products such as plastics and other products in a freshwater ecosystem, China. Among commonly applied 14 BP analogues, bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were predominant, representing 64%-100% of the total concentrations of BPs (ΣBPs) in freshwater wildlife. Both the concentrations and analogue profiles in the fish showed seasonal differences and species dependence. Higher BP concentrations were observed in fish collected during the dry season than the wet season. Higher percentages of non-BPA analogues (e.g., BPS and BPF) were observed in fish collected during the wet season. Pelagic species accumulated notably higher levels of BPs than midwater and bottom species. The liver generally contained the highest ΣBPs, followed successively by the swim bladder, belly fat, and dorsal muscle. The analogue profile also showed some differences among tissues, varying by species and season. Lower ΣBPs but higher percentages of non-BPA analogues were observed in female than male common carp. Time trends of the BPA concentration in fish varied by species, probably related to habitats and diets of the fish. Habitats, feeding behaviors, and trophic transfer may have significant impacts on exposure of wildlife to BPs in natural ecosystems. The BPs did not demonstrate strong potential for bioaccumulation. More research is warranted about metabolism and transgenerational transfer of BPs in wildlife to fully reveal the bioaccumulation and consequently ecological risks of these chemicals in the environment. Environ Toxicol Chem 2023;42:2130-2142. © 2023 SETAC.


Asunto(s)
Animales Salvajes , Ríos , Animales , Masculino , Femenino , Animales Salvajes/metabolismo , Ríos/química , Ecosistema , Distribución Tisular , Agua Dulce , China , Compuestos de Bencidrilo/metabolismo , Peces/metabolismo
5.
Environ Pollut ; 333: 122076, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336352

RESUMEN

Little is known about the ecologic fate of the neurotoxic rodenticide bromethalin, which is currently registered for use in the United States, Canada, and other countries including Australia. There is minimal research on bromethalin's potential to cause secondary toxicosis in nontarget wildlife. The aim of this study was to evaluate adipose tissue in four species of birds of prey presented to a wildlife clinic in Massachusetts, USA, for desmethylbromethalin (DMB), the active metabolite of bromethalin. Birds were also screened for anticoagulant rodenticides (ARs) in liver tissue to present a more complete picture of rodenticide exposures in this geographic area and to evaluate the impact of current mitigation measures in place during the time of sampling, 2021-2022. A total of 44 hawks and owls were included; DMB was found in 29.5% of birds and ARs were present in 95.5%. All birds with DMB detections also had residues of ARs. Among birds positive for ARs, 81% had two or more compounds. To the authors' knowledge the data presented here represent the first published monitoring study to document bromethalin/DMB bioaccumulation in obligate carnivores. As DMB is a more potent neurotoxicant than its parent compound, these results are cause for concern and an indication that further monitoring and study of the potential risk of bromethalin to wildlife species is needed. These findings have global implications as increasing concern regarding exposure to and toxicosis from ARs in nontarget wildlife worldwide leads to a search for alternatives and effective mitigation approaches.


Asunto(s)
Rapaces , Rodenticidas , Animales , Estados Unidos , Rodenticidas/toxicidad , Rodenticidas/metabolismo , Anticoagulantes/toxicidad , Aves/metabolismo , New England , Animales Salvajes/metabolismo , Rapaces/metabolismo
6.
J Exp Zool A Ecol Integr Physiol ; 339(7): 625-632, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37058280

RESUMEN

The use of fecal corticosteroid metabolites (FCMs) has proven to be well suited to evaluate adrenocortical activity, a major component of the stress response, particularly in wildlife. As with any tools, confounding factors and drawbacks must be carefully considered. Among them, sample preservation and storage are of particular importance, as they can affect stability of FCMs and lead to biased results and interpretations. Arguably, immediate freezing of fecal samples upon collection is the best practice to preserve FCM integrity, however, for logistical reasons, this condition is rarely feasible in the field. It is generally argued that temporary storage of samples at low above-zero temperature is an acceptable way of preserving samples in the field before freezing them for long-term storage. However, to our knowledge, there is no empirical study that demonstrates the stability of fecal metabolites in samples stored at +4°C. In this study, we collected a fresh fecal sample from 20 captive roe deer, each of which was homogenized and split into three subsamples (60 subsamples in total) to investigate the effects on FCMs levels of temporary storage at +4°C for 24 h and 48 h before freezing versus immediate freezing at -20°C after feces collection. Compared to immediate freezing, mean FCMs levels decreased by 25% every 24 h when feces were stored at +4°C before freezing. The variance of FCMs levels followed the same pattern, leading to a clear reduction in the ability to detect biological effects. Minimizing the storage time at +4°C before freezing should therefore be seriously considered when establishing sampling and storage protocols for feces in the field for adequate hormonal profiling.


Asunto(s)
Ciervos , Glucocorticoides , Animales , Glucocorticoides/metabolismo , Congelación , Heces , Animales Salvajes/metabolismo
7.
J Zoo Wildl Med ; 54(1): 119-130, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36971636

RESUMEN

Narwhals (Monodon monoceros) are increasingly exposed to anthropogenic disturbances that may increase their stress levels with unknown consequences for the overall population dynamics. The validation and measurement of chronic stress biomarkers could contribute toward improved understanding and conservation efforts for this species. Dehydroepiandrosterone (DHEA) and its sulfated metabolite DHEA-S are collectively referred to as DHEA(S). Serum DHEA(S) concentrations combined in ratios with cortisol [cortisol/DHEA(S)] have been shown to be promising indicators of chronic stress in humans, domestic animals, and wildlife. During field tagging in 2017 and 2018 in Baffin Bay, Nunavut, Canada, 14 wild narwhals were sampled at the beginning and end of the capture-tagging procedures. Serum DHEA(S) were measured with commercially available competitive enzyme-linked immunosorbent assays (ELISA) developed for humans. A partial validation of the ELISA assays was performed by the determination of the intra-assay coefficient of variation, confirmation of the DHEA(S) dilutional linearity, and the calculation of the percentage of recovery. Mean values (nanograms per milliliter ± standard error of the mean) of narwhal serum cortisol, DHEA(S), and cortisol/DHEA(S) ratios, at the beginning and at the end of handling, respectively, are reported (cortisol = 30.74 ± 4.87 and 41.83 ± 4.83; DHEA = 1.01 ± 0.52 and 0.99 ± 0.50; DHEA-S = 8.72 ± 1.68 and 7.70 ± 1.02; cortisol/DHEA = 75.43 ± 24.35 and 84.41 ± 11.76, and cortisol/DHEA-S = 4.16 ± 1.07 and 6.14 ± 1.00). Serum cortisol and cortisol/DHEA-S were statistically higher at the end of the capture (P= 0.024 and P= 0.035, respectively). Moreover, serum cortisol at the end of handling was positively correlated to total body length (P = 0.042) and tended to be higher in males (P = 0.086). These assays proved easy to perform, rapid, and suitable for measuring serum DHEA(S) of narwhals and that calculated cortisol/DHEA(S) are potential biomarkers for chronic stress in narwhals and possibly other cetaceans.


Asunto(s)
Deshidroepiandrosterona , Hidrocortisona , Humanos , Masculino , Animales , Ballenas/metabolismo , Animales Salvajes/metabolismo , Biomarcadores
8.
Sci Immunol ; 8(80): eade6364, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36763635

RESUMEN

Passive transfer of broadly neutralizing anti-HIV-1 antibodies (bNAbs) protects against infection, and therefore, eliciting bNAbs by vaccination is a major goal of HIV-1 vaccine efforts. bNAbs that target the CD4 binding site (CD4bs) on HIV-1 Env are among the most broadly active, but to date, responses elicited against this epitope in vaccinated animals have lacked potency and breadth. We hypothesized that CD4bs bNAbs resembling the antibody IOMA might be easier to elicit than other CD4bs antibodies that exhibit higher somatic mutation rates, a difficult-to-achieve mechanism to accommodate Env's N276gp120 N-glycan, and rare five-residue light chain complementarity-determining region 3. As an initial test of this idea, we developed IOMA germline-targeting Env immunogens and evaluated a sequential immunization regimen in transgenic mice expressing germline-reverted IOMA. These mice developed CD4bs epitope-specific responses with heterologous neutralization, and cloned antibodies overcame neutralization roadblocks, including accommodating the N276gp120 glycan, with some neutralizing selected HIV-1 strains more potently than IOMA. The immunization regimen also elicited CD4bs-specific responses in mice containing polyclonal antibody repertoires as well as rabbits and rhesus macaques. Thus, germline targeting of IOMA-class antibody precursors represents a potential vaccine strategy to induce CD4bs bNAbs.


Asunto(s)
Animales Salvajes , VIH-1 , Animales , Conejos , Ratones , Animales Salvajes/metabolismo , Anticuerpos ampliamente neutralizantes , Macaca mulatta , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Sitios de Unión , Antígenos CD4/metabolismo , Animales Modificados Genéticamente , Epítopos , Moléculas de Adhesión Celular , Polisacáridos
9.
Behav Brain Res ; 444: 114335, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36804441

RESUMEN

The NAD(+)-dependent deacetylase SIRT3 is a proven mitochondrial metabolic stress sensor. It has been linked to the regulation of the mitochondrial acetylome and activation of several metabolic enzymes (e.g., manganese superoxide dismutase [MnSOD]) to protect mitochondrial function and redox homeostasis, which are vital for survival, excitability, and synaptic signaling of neurons mediating short- and long-term memory formation as well as retention. Eighteen-month-old male and female wild-type (WT) and Sirt3-/- mice were behaviorally tested for hippocampus-dependent cognitive performance in a Morris water maze paradigm. Cognitive impairment was displayed during the probe trial by female and male Sirt3-/- mice but not WT mice. Upon sacrifice, brains were fixed, and morphological assessments were conducted on hippocampal tissues. Both female and male Sirt3-/- mice demonstrated impaired spatial memory retention implying that SIRT3 plays a role in long-term memory function. Golgi-staining studies revealed decreased dendritic arborization and dendritic length in the hippocampi of male Sirt3-/- compared to WT animals. Sirt3 deletion significantly increased NR1, NR2A, and NR2B expression in the hippocampus of female mice only. Enzymatic activity of MnSOD, a major mitochondrial deacetylation target of SIRT3, was significantly decreased in both female and male Sirt3-/- mice. Similarly, both female and male Sirt3-/- mice demonstrated a significant decrease in their respiratory control ratio during Complex I-driven respiration, which was apparent only in female Sirt3-/- mice during Complex II-driven respiration.


Asunto(s)
Sirtuina 3 , Ratones , Masculino , Femenino , Animales , Sirtuina 3/metabolismo , Estrés Oxidativo/fisiología , Modelos Animales de Enfermedad , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Hipocampo/metabolismo , Cognición , Animales Salvajes/metabolismo , Mitocondrias/metabolismo
10.
J Environ Manage ; 331: 117320, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696759

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants being widely distributed and harmful to human health and wildlife, and the development of sustainable rehabilitation strategies including microbial degradation is of great concern. Although the increasing number of bacteria, especially the broad-spectrum and potent aerobes have been isolated for the efficient removal of PBDEs, the external influences and the corresponding influential mechanism on biodegradation are not fully understood yet. Given the wide-spectrum biodegradability of aerobic bacterial isolate, B. xenovorans LB400 for PBDEs, the dual impacts of many pivotal factors including pH, temperature, presence of dissolved organic matter (DOM) and cadmium ion etc. were comprehensively revealed on biodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Due to the structural resemblance and stimulation of specific enzyme activity in bacteria, the biphenyl as substrates showed the greater capacity than non-aromatic compounds in improving biodegradation. The individual adaptation to neutrality and cultivation at about 30 °C was beneficial for biodegradation since the bacterial cellular viability and enzyme activity was mostly preserved. Although it was possibly good for the induction of hormesis and favorable to enhance the permeability or bioavailability of pollutant, the exceeding increase of Cd2+ or DOM may not give the profitable increase of biodegradation yet for the detrimental effect. For biodegradation, the mechanistic relationship that took account of the integrative correlation with the influential factors was artfully developed using partial least square (PLS) regression technique. Relative to the most significant influence of culture time and initial concentration of BDE-47, the larger relevance of other factors primarily marked as pH and DOM was consecutively shown after the quantitative prioritization. This may not only help understand the influential mechanism but provide a prioritizing regulation strategy for biodegradation of BDE-47. The PLS-derived relationship was validated with the certain predictability in biodegradation, and could be used as an alternative to accelerate a priori evaluation of suitability or improve the feasibility of such bacteria in remediation of PBDEs in the environment.


Asunto(s)
Contaminantes Ambientales , Éteres Difenilos Halogenados , Animales , Humanos , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/metabolismo , Biodegradación Ambiental , Animales Salvajes/metabolismo
11.
Sci Total Environ ; 860: 160526, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36471522

RESUMEN

Urban-adapted gulls can be exposed to flame retardants while foraging in landfills where elevated concentrations of polybrominated diphenyl ethers (PBDEs) and other halogenated flame retardants (HFRs) have frequently been measured in air. However, the contribution of atmospheric exposure has largely been overlooked compared to dietary exposure in birds and other wildlife. The overall objective of this study was to investigate the contribution of atmospheric exposure pathways relative to diet for PBDEs and other HFRs in ring-billed gulls (Larus delawarensis) nesting in the densely populated Montreal area (QC, Canada). Miniature passive air samplers (PASs) were deployed on the back of wild-caught ring-billed gulls for ten days. Concentrations of PBDEs and other HFRs were determined in PASs carried by ring-billed gulls as well as their lungs, stomach content, liver, preen oil, and onto the surface of their feathers. We evaluated the atmospheric and dietary exposure routes for the most abundant HFRs in samples using a structural equation model implemented in a Bayesian framework. Results indicated that lung concentrations of BDE-28 increased with its levels in air determined using bird-borne PASs. No association was found between BDE-28 concentrations in lungs and liver, whereas BDE-209 concentrations in liver increased with those in lungs. Moreover, BDE-28 and -47 concentrations in liver increased with those on feather surface, while liver BDE-47 concentrations were also positively related with those in stomach content. These findings suggested that, in addition to dietary exposure, atmospheric exposure pathways through inhalation and co-ingestion during feather maintenance (preening) significantly contribute to the accumulation of PBDEs in liver of ring-billed gulls. Atmospheric exposure to HFRs should therefore be considered in future landfill-foraging wildlife species as a potential exposure route compared to the traditional dietary exposure pathway.


Asunto(s)
Charadriiformes , Retardadores de Llama , Animales , Charadriiformes/metabolismo , Éteres Difenilos Halogenados/análisis , Retardadores de Llama/análisis , Teorema de Bayes , Aves/metabolismo , Animales Salvajes/metabolismo , Monitoreo del Ambiente
12.
Gen Comp Endocrinol ; 330: 114141, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272446

RESUMEN

Living in variable and unpredictable environments, organisms face recurrent stressful situations. The endocrine stress response, which includes the secretion of glucocorticoids, helps organisms to cope with these perturbations. Although short-term elevations of glucocorticoid levels are often associated with immediate beneficial consequences for individuals, long-term glucocorticoid elevation can compromise key physiological functions such as immunity. While laboratory works highlighted the immunosuppressive effect of long-term elevated glucocorticoids, it remains largely unknown, especially in wild animals, whether this relationship is modulated by individual and environmental characteristics. In this study, we explored the co-variation between integrated cortisol levels, assessed non-invasively using faecal cortisol metabolites (FCMs), and 12 constitutive indices of innate, inflammatory, and adaptive immune functions, in wild roe deer living in three populations with previously known contrasting environmental conditions. Using longitudinal data on 564 individuals, we further investigated whether age and spatio-temporal variations in the quantity and quality of food resources modulate the relationship between FCMs and immunity. Negative covariation with glucocorticoids was evident only for innate and inflammatory markers of immunity, while adaptive immunity appeared to be positively or not linked to glucocorticoids. In addition, the negative covariations were generally stronger in individuals facing harsh environmental constraints and in old individuals. Therefore, our results highlight the importance of measuring multiple immune markers of immunity in individuals from contrasted environments to unravel the complex relationships between glucocorticoids and immunity in wild animals. Our results also help explain conflicting results found in the literature and could improve our understanding of the link between elevated glucocorticoid levels and disease spread, and its consequences on population dynamics.


Asunto(s)
Ciervos , Animales , Ciervos/metabolismo , Animales Salvajes/metabolismo , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Inmunidad Adaptativa
13.
Environ Pollut ; 314: 120269, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162558

RESUMEN

Second generation anticoagulant rodenticides (SGARs) are widely used to control rodents around the world. However, contamination by SGARs is detectable in many non-target species, particularly carnivorous mammals or birds-of-prey that hunt or scavenge on poisoned rodents. The SGAR trophic transfer pathway via rodents and their predators/scavengers appears widespread, but little is known of other pathways of SGAR contamination in non-target wildlife. This is despite the detection of SGARs in predators that do not eat rodents, such as specialist bird-eating hawks. We used a Bayesian modelling framework to examine the extent and spatio-temporal trends of SGAR contamination in the livers of 259 Eurasian Sparrowhawks, a specialist bird-eating raptor, in regions of Britain during 1995-2015. SGARs, predominantly difenacoum, were detected in 81% of birds, with highest concentrations in males and adults. SGAR concentrations in birds were lowest in Scotland and higher or increasing in other regions of Britain, which had a greater arable or urban land cover where SGARs may be widely deployed for rodent control. However, there was no overall trend for Britain, and 97% of SGAR residues in Eurasian Sparrowhawks were below 100 ng/g (wet weight), which is a potential threshold for lethal effects. The results have potential implications for the population decline of Eurasian Sparrowhawks in Britain. Fundamentally, the results indicate an extensive and persistent contamination of the avian trophic transfer pathway on a national scale, where bird-eating raptors and, by extension, their prey appear to be widely exposed to SGARs. Consequently, these findings have implications for wildlife contamination worldwide, wherever these common rodenticides are deployed, as widespread exposure of non-target species can apparently occur via multiple trophic transfer pathways involving birds as well as rodents.


Asunto(s)
Águilas , Halcones , Rapaces , Rodenticidas , Masculino , Animales , Rodenticidas/metabolismo , Halcones/metabolismo , Anticoagulantes/metabolismo , Reino Unido , Teorema de Bayes , Monitoreo del Ambiente , Rapaces/metabolismo , Águilas/metabolismo , Animales Salvajes/metabolismo , Mamíferos/metabolismo
14.
Sci Total Environ ; 828: 154452, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278569

RESUMEN

In many regions of the world, large populations of native wildlife have declined or been replaced by livestock grazing areas and farmlands, with consequences for terrestrial-aquatic ecosystem connectivity and trophic resources supporting food webs in aquatic ecosystems. The river continuum concept (RCC) and the riverine productivity model (RPM) predict a shift of energy supplying aquatic food webs along rivers: from terrestrial inputs in low-order streams to autochthonous production in mid-sized rivers. In Afromontane-savanna landscapes, the shifting numbers of large mammalian wildlife present a physical continuum whose ecological implications for rivers is not clearly understood. Here, we studied the influence of replacing large wildlife (mainly hippos) with livestock on the fractional contribution of C3 vegetation, C4 grasses and periphyton on macroinvertebrates in the Mara River, which is an African montane-savanna river known to receive large subsidy fluxes of terrestrial organic matter and nutrients mediated by large mammalian herbivores (LMH), both wildlife and livestock, in its middle and lower reaches. Using stable carbon (δ13C) and nitrogen (δ15N) isotopes, we identified spatial patterns in the fractional contribution of allochthonous organic matter from C3 and C4 plants (woody vegetation and grasses, respectively) and autochthonous energy from periphyton for macroinvertebrates at various sites of the Mara River and its tributaries. Potential energy sources and invertebrates were sampled at 80 sites spanning stream orders 1 to 7, various catchment land uses (forest, agriculture and grasslands) and different loading rates of organic matter and nutrients by LMH (livestock and wildlife, i.e., hippopotamus). The fractional contribution of different sources of energy for macroinvertebrates along the river did not follow predictions of the RCC and RPM. First, the fractional contribution of C3 and C4 carbon was not related to river order or location along the fluvial continuum but to the loading of organic matter (dung) by both wildlife and livestock. Notably, C4 carbon was important for macroinvertebrates even in large river sections inhabited by hippos. Second, even in small 1st -3rd order forested streams, periphyton was a major source of energy for macroinvertebrates, and this was fostered by livestock inputs fuelling aquatic primary production throughout the river network. Importantly, our results show that replacing wildlife (hippos) with livestock shifts river systems towards greater reliance on autochthonous sources of energy through an algae-grazer pathway as opposed to reliance on allochthonous inputs of C4 carbon through a detrital pathway.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Animales Salvajes/metabolismo , Carbono/metabolismo , Ecosistema , Femenino , Cadena Alimentaria , Herbivoria , Humanos , Ganado , Masculino , Mamíferos/metabolismo , Plantas/metabolismo
15.
Sci Rep ; 12(1): 1681, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102175

RESUMEN

Most birds, unlike reptiles, lay eggs successively to form a full clutch. During egg-laying, birds are highly secretive and prone to disturbance and predation. Using multisensor data loggers, we show that average daily body temperature during egg-laying is significantly increased (1 °C) in wild eider ducks (Somateria mollissima). Strikingly, this increase corresponds to the annual maximum body temperature (40.7 °C), representing a severe annual thermogenic challenge. This egg-laying-induced rise in body temperature may prove to be a common feature of wild birds and could be caused by habitat-related thermoregulatory adjustments and hormonal modulation of reproduction. We conclude our findings with new perspectives of the benefits of high body temperature associated with egg-laying of birds and the potential effect of heat stress that may occur with the future advent of heatwaves.


Asunto(s)
Animales Salvajes/fisiología , Regulación de la Temperatura Corporal , Patos/fisiología , Oviposición , Animales , Animales Salvajes/metabolismo , Evolución Biológica , Patos/metabolismo , Femenino , Frecuencia Cardíaca , Hormonas/metabolismo , Factores de Tiempo
16.
Sci Rep ; 12(1): 2605, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173201

RESUMEN

The gut microbiome impacts host health and fitness, in part through the diversification of gut metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a negative consequence of increased GCs. However, given that ecological factors like food availability and population density may independently influence both GCs and microbial diversity, understanding how these factors structure the GC-microbiome relationship is crucial to interpreting its significance in wild populations. Here, we used an ecological framework to investigate the relationship between GCs and gut microbiome diversity in wild North American red squirrels (Tamiasciurus hudsonicus). As expected, higher GCs predicted lower gut microbiome diversity and an increase in metabolic taxa. Surprisingly, but in line with prior empirical studies on wild animals, gastrointestinal pathogens decreased as GCs increased. Both dietary heterogeneity and an upcoming food pulse exhibited direct effects on gut microbiome diversity, whereas conspecific density and reproductive activity impacted diversity indirectly via changes in host GCs. Our results provide evidence of a gut-brain axis in wild red squirrels and highlight the importance of situating the GC-gut microbiome relationship within an ecological framework.


Asunto(s)
Animales Salvajes/metabolismo , Animales Salvajes/microbiología , Microbioma Gastrointestinal/fisiología , Glucocorticoides/metabolismo , Sciuridae/metabolismo , Sciuridae/microbiología , Animales , Animales Salvajes/fisiología , Biodiversidad , Eje Cerebro-Intestino/fisiología , Ecología , Interacciones Microbiota-Huesped , Microbiota , América del Norte , Reproducción , Sciuridae/fisiología
17.
Sci Rep ; 11(1): 16381, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385546

RESUMEN

Hunting can easily be linked to stress in wildlife. Drive hunts performed two to three times in one area during the respective hunting period, are thought to decrease the pressure hunting places on wildlife. Nevertheless, the expression of cortisol-one of the main mammalian stress hormones-is considered to have negative impacts on animals' well-being if expressed excessively, which may occur during some (especially repeated) hunting events. We explored the effect of drive hunts on cortisol levels in wild boar in Lower Saxony, Germany, compared these cortisol levels to reference values given by a similar study, and investigated the effect of age, sex, and pregnancy. Blood collected from wild boar shot on drive hunts was analysed using a radioimmunoassay. As expected, we observed elevated cortisol levels in all samples, however, we still found significant differences between age groups and sexes, as well as an influence of pregnancy on cortisol levels. The effect of drive hunts on cortisol levels appears to be weaker than predicted, while the effects of other variables, such as sex, are distinct. Only half of the evaluated samples showed explicitly increased cortisol levels and no significant differences were found between sampling months and locations. Group living animals and pregnant females showed significantly higher cortisol levels. The impact of hunting is measurable but is masked by natural effects such as pregnancy. Thus, we need more information on stress levels in game species.


Asunto(s)
Animales Salvajes/metabolismo , Animales Salvajes/fisiología , Hidrocortisona/metabolismo , Estrés Fisiológico/fisiología , Sus scrofa/metabolismo , Sus scrofa/fisiología , Animales , Femenino , Alemania , Masculino
18.
Biomed Mater ; 16(6)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34428758

RESUMEN

The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.


Asunto(s)
Materiales Biocompatibles , Bombyx , Seda , Ingeniería de Tejidos , Animales , Animales Salvajes/metabolismo , Animales Salvajes/fisiología , Bombyx/metabolismo , Bombyx/fisiología , Células Cultivadas , Humanos , India , Medicina Regenerativa
19.
Microbiol Spectr ; 9(1): e0009721, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431703

RESUMEN

The prevalence of antibiotic resistance genes (ARGs) can be driven by direct selection from antibiotic use and indirect selection from substances such as heavy metals (HMs). While significant progress has been made to characterize the influence of HMs on the enrichment and dissemination of ARGs in the environment, there is still much we do not know. To fill this knowledge gap, we present a comprehensive analysis of gut bacteria associated with wild cotton mice (Peromyscus gossypinus) trapped from several areas affected by legacies of HM and radionuclide contamination. We explore how these contaminants affect gut microbial community (GMC) composition and diversity and the enrichment of antibiotic, biocide, and metal resistance genes. Although we were able to identify that a myriad of co-occurring antimicrobial and HM resistance genes appear in mice from all areas, including those without a history of contamination, the proportions of co-occurring ARGs and metal resistance genes (MRGs) are higher in sites with radionuclide contamination. These results support those from several previous studies and enhance our understanding of the coselection process, while providing new insights into the ubiquity of antimicrobial resistance in the resistome of wild animals. IMPORTANCE Antimicrobial resistance is a serious global public health concern because of its prevalence and ubiquitous distribution. The rapid dissemination of antibiotic resistance genes is thought to be the result of the massive overuse of antibiotics in agriculture and therapeutics. However, previous studies have demonstrated that the spread of antibiotic resistance genes can also be influenced by heavy metal contamination. This coselection phenomenon, whereby different resistance determinants are genetically linked on the same genetic element (coresistance) or a single genetic element provides resistance to multiple antimicrobial agents (cross-resistance), has profound clinical and environmental implications. In contrast to antibiotics, heavy metals can persist in the environment as a selection pressure for long periods of time. Thus, it is important to understand how antibiotic resistance genes are distributed in the environment and to what extent heavy metal contaminants may be driving their selection, which we have done in one environmental setting.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/genética , Microbioma Gastrointestinal , Metales Pesados/farmacología , Peromyscus/microbiología , Radioisótopos/farmacología , Animales , Animales Salvajes/metabolismo , Animales Salvajes/microbiología , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Ecosistema , Femenino , Masculino , Metales Pesados/análisis , Ratones , Radioisótopos/análisis , Sudeste de Estados Unidos
20.
Sci Rep ; 11(1): 5245, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664285

RESUMEN

Dingoes occupy a wide range of the Australian mainland and play a crucial role as an apex predator with a generalist omnivorous feeding behaviour. Dingoes are ecologically, phenotypically and behaviourally distinct from modern breed dogs and have not undergone artificial selection since their arrival in Australia. In contrast, humans have selected breed dogs for novel and desirable traits. First, we examine whether the distinct evolutionary histories of dingoes and domestic dogs has lead to differences in plasma metabolomes. We study metabolite composition differences between dingoes (n = 15) and two domestic dog breeds (Basenji n = 9 and German Shepherd Dog (GSD) n = 10). Liquid chromatography mass spectrometry, type II and type III ANOVA with post-hoc tests and adjustments for multiple comparisons were used for data evaluation. After accounting for within group variation, 62 significant metabolite differences were detected between dingoes and domestic dogs, with the majority of differences in protein (n = 14) and lipid metabolites (n = 12), mostly lower in dingoes. Most differences were observed between dingoes and domestic dogs and fewest between the domestic dog breeds. Next, we collect a second set of data to investigate variation between pure dingoes (n = 10) and dingo-dog hybrids (n = 10) as hybridisation is common in regional Australia. We detected no significant metabolite differences between dingoes and dingo-dog hybrids after Bonferroni correction. However, power analysis showed that increasing the sample size to 15 could result in differences in uridine 5'-diphosphogalactose (UDPgal) levels related to galactose metabolism. We suggest this may be linked to an increase in Amylase 2B copy number in hybrids. Our study illustrates that the dingo metabolome is significantly different from domestic dog breeds and hybridisation is likely to influence carbohydrate metabolism.


Asunto(s)
Animales Salvajes/genética , Canidae/genética , Metabolómica , Filogenia , Animales , Animales Domésticos/genética , Animales Domésticos/metabolismo , Animales Salvajes/metabolismo , Australia , Cruzamiento , Canidae/metabolismo , Perros , Humanos , Metabolismo de los Lípidos/genética , Lípidos , Lobos/genética , Lobos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...