Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
1.
Methods Mol Biol ; 2838: 17-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126622

RESUMEN

Epizootic hemorrhagic disease virus (EHDV) is an arthropod-borne RNA virus in the genus Orbivirus, family Sedoreoviridae. Globally, seven known EHDV serotypes circulate among ruminant hosts and Culicoides species vectors. A variety of domestic and wild ruminant species are susceptible to EHDV infection, but infection outcome is highly variable between species, as well as between individuals of the same species. Thus, this disease system inherently operates at the wildlife-livestock interface. Domestic cattle are important hosts for EHDV, and while inapparent infection is the most common outcome, reports of clinical disease have increased in some parts of the world. However, fatal infection of cattle is rare. Among wildlife, white-tailed deer (Odocoileus virginianus) are highly susceptible to severe and often fatal disease. Considering the paucity of data and poorly characterized pathology of EHD in cattle, white-tailed deer represent a case study for describing the field signs and necropsy lesions associated with EHD. Here we describe the field signs that commonly define EHD outbreaks in North America, a basic approach to a gross necropsy examination of white-tailed deer, description of the gross lesions that may be present, and diagnostic sample collection. Field investigations of large-scale EHD outbreaks are common in North America. The necropsy examination is an essential tool in the study of disease and when coupled with other disciplines (e.g., virology, immunology, epidemiology) has been fundamentally important to understanding EHD in North America.


Asunto(s)
Ciervos , Virus de la Enfermedad Hemorrágica Epizoótica , Infecciones por Reoviridae , Animales , Virus de la Enfermedad Hemorrágica Epizoótica/genética , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Ciervos/virología , Autopsia/veterinaria , Bovinos , Animales Salvajes/virología
2.
Virol J ; 21(1): 153, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972989

RESUMEN

Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus. MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3' UTR of MP22-196 is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.


Asunto(s)
Infecciones por Astroviridae , Aves , Heces , Variación Genética , Genoma Viral , Filogenia , Animales , Hong Kong , Aves/virología , Heces/virología , Infecciones por Astroviridae/veterinaria , Infecciones por Astroviridae/virología , Animales Salvajes/virología , Enfermedades de las Aves/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Avastrovirus/genética , Avastrovirus/clasificación , Avastrovirus/aislamiento & purificación , ARN Viral/genética , Sistemas de Lectura Abierta , Astroviridae/genética , Astroviridae/aislamiento & purificación , Astroviridae/clasificación
3.
Emerg Infect Dis ; 30(8): 1609-1620, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043403

RESUMEN

SARS-CoV-2 can infect wildlife, and SARS-CoV-2 variants of concern might expand into novel animal reservoirs, potentially by reverse zoonosis. White-tailed deer and mule deer of North America are the only deer species in which SARS-CoV-2 has been documented, raising the question of whether other reservoir species exist. We report cases of SARS-CoV-2 seropositivity in a fallow deer population located in Dublin, Ireland. Sampled deer were seronegative in 2020 when the Alpha variant was circulating in humans, 1 deer was seropositive for the Delta variant in 2021, and 12/21 (57%) sampled deer were seropositive for the Omicron variant in 2022, suggesting host tropism expansion as new variants emerged in humans. Omicron BA.1 was capable of infecting fallow deer lung type-2 pneumocytes and type-1-like pneumocytes or endothelial cells ex vivo. Ongoing surveillance to identify novel SARS-CoV-2 reservoirs is needed to prevent public health risks during human-animal interactions in periurban settings.


Asunto(s)
COVID-19 , Ciervos , SARS-CoV-2 , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/veterinaria , Humanos , Ciervos/virología , Irlanda/epidemiología , Estudios Seroepidemiológicos , Población Urbana , Reservorios de Enfermedades/virología , Reservorios de Enfermedades/veterinaria , Animales Salvajes/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Masculino
4.
Emerg Infect Dis ; 30(8): 1664-1667, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043429

RESUMEN

We identified a rustrela virus variant in a wild mountain lion (Puma concolor) in Colorado, USA. The animal had clinical signs and histologic lesions compatible with staggering disease. Considering its wide host range in Europe, rustrela virus should be considered as a cause for neurologic diseases among mammal species in North America.


Asunto(s)
Puma , Animales , Colorado/epidemiología , Puma/virología , Filogenia , Animales Salvajes/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/epidemiología
5.
Rev Soc Bras Med Trop ; 57: e00806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39082524

RESUMEN

This report describes the occurrence of the rabies virus in two species of wild animals in the urban area of Montes Claros (MOC), Minas Gerais State, Brazil, in May 2023. The virus has been detected in frugivorous chiropterans (Artibeus sp) and marmosets (Callithrix penicillata). This is the first notified case of the rabies virus in the species C. penicillata in the urban area of MOC. Our findings show that the rabies virus is circulating in the urban area of MOC; therefore, permanent preventive measures must be adopted to avoid infection of other animals and humans.


Asunto(s)
Callithrix , Virus de la Rabia , Rabia , Animales , Virus de la Rabia/aislamiento & purificación , Brasil/epidemiología , Callithrix/virología , Rabia/veterinaria , Rabia/epidemiología , Quirópteros/virología , Animales Salvajes/virología
6.
Viruses ; 16(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066204

RESUMEN

In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents.


Asunto(s)
Heces , Zoonosis , Animales , Humanos , Ratones , Ratas/virología , Heces/virología , Zoonosis/virología , Zoonosis/transmisión , Filogenia , COVID-19/virología , COVID-19/transmisión , COVID-19/epidemiología , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Animales Salvajes/virología , Reservorios de Enfermedades/virología , Muridae/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Virus/clasificación , Virus/aislamiento & purificación , Virus/genética
7.
Viruses ; 16(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39066268

RESUMEN

Rabbit hemorrhagic disease virus 2 (RHDV2) is a highly infectious, often fatal viral disease that affects both domestic and wild lagomorph species. In the United States (U.S.), the virus first was detected in wild lagomorph populations in the southwest in March 2020 and has continued to be detected in native North American lagomorph species over several years. The susceptibility of host species and exact mechanisms of environmental transmission across the U.S. landscape remain poorly understood. Our study aims to increase the understanding of RHDV2 in wild lagomorph populations by providing a history of detection. We present and summarize results from all RHDV2-suspect wild lagomorph morbidity and mortality samples submitted for diagnostic testing in the U.S. from March 2020 to March 2024. Samples were submitted from 916 wild lagomorphs across eight native North American species in 14 western states, of which 313 (34.2%) tested positive by RHDV2 RT-qPCR. Detections of RHDV2 in pygmy rabbits (Brachylagus idahoensis) and riparian brush rabbits (Sylvilagus bachmani riparius) suggest that the risk to threatened and endangered species warrants more attention. Continuing to investigate wild lagomorph morbidity and mortality events and tracking RHDV2 detections over time can help inform on disease epidemiology and wild lagomorph population trends.


Asunto(s)
Animales Salvajes , Infecciones por Caliciviridae , Brotes de Enfermedades , Virus de la Enfermedad Hemorrágica del Conejo , Lagomorpha , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Virus de la Enfermedad Hemorrágica del Conejo/clasificación , Virus de la Enfermedad Hemorrágica del Conejo/aislamiento & purificación , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/virología , Lagomorpha/virología , Estados Unidos/epidemiología , Animales Salvajes/virología , Brotes de Enfermedades/veterinaria , Conejos/virología
8.
PLoS Negl Trop Dis ; 18(7): e0012306, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976750

RESUMEN

BACKGROUND: Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are involved in the transmission and maintenance of infectious diseases. Furthermore, despite their importance, diseases transmitted by rodents have been neglected. To date, there have been limited epidemiological studies on rodents, and information regarding their involvement in infectious diseases in the Republic of Korea (ROK) is still scarce. METHODOLOGY/PRINCIPAL FINDINGS: We investigated rodent-borne pathogens using nested PCR/RT-PCR from 156 rodents including 151 Apodemus agrarius and 5 Rattus norvegicus from 27 regions in eight provinces across the ROK between March 2019 and November 2020. Spleen, kidney, and blood samples were used to detect Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%) with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelii. Co-infections with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%), respectively. A. phagocytophilum was detected in all regions, showing a widespread occurrence in the ROK. The infection rates of Bartonella spp. were 83.3% for B. grahamii and 16.7% for B. taylorii. CONCLUSIONS/SIGNIFICANCE: To the best of our knowledge, this is the first report of C. burnetii and SFTSV infections in rodents in the ROK. This study also provides the first description of various rodent-borne pathogens through an extensive epidemiological survey in the ROK. These results suggest that rodents harbor various pathogens that pose a potential threat to public health in the ROK. Our findings provide useful information on the occurrence and distribution of zoonotic pathogens disseminated among rodents and emphasize the urgent need for rapid diagnosis, prevention, and control strategies for these zoonotic diseases.


Asunto(s)
Anaplasma phagocytophilum , Bartonella , Coxiella burnetii , Zoonosis , Animales , República de Corea/epidemiología , Zoonosis/epidemiología , Zoonosis/microbiología , Ratas , Coxiella burnetii/aislamiento & purificación , Coxiella burnetii/genética , Bartonella/aislamiento & purificación , Bartonella/genética , Anaplasma phagocytophilum/aislamiento & purificación , Anaplasma phagocytophilum/genética , Roedores/microbiología , Murinae/microbiología , Animales Salvajes/microbiología , Animales Salvajes/virología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/virología , Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Reservorios de Enfermedades/microbiología , Leptospira interrogans/aislamiento & purificación , Leptospira interrogans/genética
9.
Viruses ; 16(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39066240

RESUMEN

Morbillivirus canis (canine distemper virus (CDV)) is recognized as a multihost pathogen responsible for a transmissible disease affecting both domestic and wild animals. A considerable portion of wildlife populations remain unvaccinated due to a lack of safety and immunogenicity data on existing vaccines for the prevention of CDV infection in these species. This review aimed to assess the current state of CDV vaccination research for both domestic and wild animals and to explore novel vaccine candidates through in vivo studies. It also sought to synthesize the scattered information from the extensive scientific literature on CDV vaccine research, identify key researchers in the field, and highlight areas where research on CDV vaccination is lacking. A scoping review was conducted across four databases following the PRISMA-ScR protocol, with information analyzed using absolute and relative frequencies and 95% confidence intervals (CIs) for study number proportions. Among the 2321 articles retrieved, 68 met the inclusion criteria and focused on CDV vaccines in various animal species, such as dogs, ferrets, minks, and mice. Most of the scientific community involved in this research was in the USA, Canada, France, and Denmark. Various vaccine types, including MLV CDV, recombinant virus, DNA plasmids, inactivated CDV, and MLV measles virus (MeV), were identified, along with diverse immunization routes and schedules employed in experimental and commercial vaccines. Safety and efficacy data were summarized. Notably, 37 studies reported postimmunization CDV challenge, primarily in dogs, revealing the survival rates of vaccinated animals. In summary, CDV vaccines generally demonstrate an acceptable safety profile in dogs and show promise as a means of controlling CDV. However, significant gaps in vaccine research persist, particularly concerning wildlife reservoirs, indicating the need for further investigation.


Asunto(s)
Animales Domésticos , Animales Salvajes , Virus del Moquillo Canino , Moquillo , Vacunación , Vacunas Virales , Animales , Animales Salvajes/virología , Virus del Moquillo Canino/inmunología , Virus del Moquillo Canino/genética , Vacunas Virales/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/administración & dosificación , Moquillo/prevención & control , Moquillo/inmunología , Moquillo/virología , Vacunación/veterinaria , Perros , Hurones , Ratones , Inmunogenicidad Vacunal , Visón/virología , Visón/inmunología
10.
PLoS Comput Biol ; 20(7): e1012263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38995977

RESUMEN

Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.


Asunto(s)
COVID-19 , Ciervos , SARS-CoV-2 , Animales , Ciervos/virología , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/veterinaria , COVID-19/virología , Humanos , Modelos Epidemiológicos , Animales Salvajes/virología , Biología Computacional , Brotes de Enfermedades/veterinaria , Brotes de Enfermedades/estadística & datos numéricos , Zoonosis/transmisión , Zoonosis/epidemiología , Zoonosis/virología
11.
Vet Res ; 55(1): 90, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030652

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), considered a zoonotic agent of wildlife origin, can infect various animal species, including wildlife in free-range and captive environments. Detecting susceptible species and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emergence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection by SARS-CoV-2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from different regions of Spain during the 2020-2023 coronavirus disease 19 (COVID-19) pandemic. In total, 8/137 animals were positive for SARS-CoV-2 antibodies against the receptor binding domain and/or viral nucleoprotein according to independent ELISAs. However, only one ELISA-positive sample of a captive bottlenose dolphin (Tursiops truncatus) tested positive for SARS-CoV-2 neutralizing antibodies with a low titre (SNT50 38.15) according to a virus neutralization test. Cetaceans are expected to have a high risk of infection with SARS-CoV-2 according to early predictive studies due to the similarity of their angiotensin converting enzyme 2 cell receptor to that of humans. Moreover, of 283 animals analysed for SARS-CoV-2 RNA using RT-qPCR, none tested positive. Our results reinforce the importance of considering cetaceans at risk for SARS-CoV-2 infection and support taking preventive biosecurity measures when interacting with them, especially in the presence of individuals with suspected or confirmed COVID-19. Although most animals in this study tested negative for acute infection or viral exposure, ongoing surveillance of wildlife species and potentially susceptible animals is important to prevent future spillover events and detect potential novel reservoirs.


Asunto(s)
Animales Salvajes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Animales , España/epidemiología , Animales Salvajes/virología , COVID-19/veterinaria , COVID-19/epidemiología , COVID-19/virología , COVID-19/transmisión , COVID-19/prevención & control , Anticuerpos Antivirales/sangre , Animales de Zoológico
12.
mBio ; 15(8): e0320323, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012149

RESUMEN

Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE: We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.


Asunto(s)
Animales Salvajes , Aves , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Canadá/epidemiología , Aves/virología , Animales Salvajes/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Filogenia , Europa (Continente)/epidemiología , Monitoreo Epidemiológico , Asia/epidemiología
13.
Nat Commun ; 15(1): 6210, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075057

RESUMEN

Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022-September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.


Asunto(s)
Animales Salvajes , COVID-19 , SARS-CoV-2 , Animales , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Animales Salvajes/virología , Humanos , Estudios Seroepidemiológicos , Filogenia , Quirópteros/virología , Virginia/epidemiología , Mapaches/virología , District of Columbia/epidemiología , Ciervos/virología , Genoma Viral , Urbanización , Anticuerpos Antivirales/sangre , ARN Viral/genética
14.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045787

RESUMEN

Domestic dogs (Canis lupus familiaris) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, Sedoreoviridae, Parvoviridae and Anelloviridae. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family Anelloviridae, genus Thetatorquevirus, and by one novel virus in the family Sedoreoviridae, genus Orbivirus. The genus Orbivirus contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical importance to humans and other animals.


Asunto(s)
Animales Salvajes , Enfermedades de los Perros , Animales , Perros , Uganda/epidemiología , Enfermedades de los Perros/virología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Prevalencia , Animales Salvajes/virología , Viroma , Virus/clasificación , Virus/aislamiento & purificación , Virus/genética , Metagenómica , Anelloviridae/genética , Anelloviridae/aislamiento & purificación , Anelloviridae/clasificación , Humanos , Virosis/epidemiología , Virosis/veterinaria , Virosis/transmisión , Virosis/virología
15.
Virol J ; 21(1): 146, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918816

RESUMEN

The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.


Asunto(s)
Genoma Viral , Filogenia , Roedores , Animales , China , Roedores/virología , Animales Salvajes/virología , Paramyxovirinae/genética , Paramyxovirinae/clasificación , Paramyxovirinae/aislamiento & purificación , ARN Viral/genética , Infecciones por Paramyxoviridae/veterinaria , Infecciones por Paramyxoviridae/virología , Infecciones por Paramyxoviridae/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Reservorios de Enfermedades/virología , Análisis de Secuencia de ADN
16.
PLoS One ; 19(6): e0305702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905303

RESUMEN

Since the confirmation of African swine fever (ASF) in South Korea in 2019, its spread, predominantly in wild boars, has been a significant concern. A key factor in this situation is the lack of identification of risk factors by surveillance bias. The unique orography, characterized by high mountains, complicates search efforts, leading to overlooked or delayed case detection and posing risks to the swine industry. Additionally, shared rivers with neighboring country present a continual threat of virus entry. This study employs geospatial analysis and statistical methods to 1) identify areas at high risk of ASF occurrence but possibly under-surveilled, and 2) indicate strategic surveillance points for monitoring the risk of ASF virus entry through water bodies and basin influences. Pearson's rho test indicated that elevation (rho = -0.908, p-value < 0.001) and distance from roads (rho = -0.979, p-value < 0.001) may have a significant impact on limiting surveillance activities. A map of potential under-surveilled areas was created considering these results and was validated by a chi-square goodness-of-fit test (X-square = 208.03, df = 1, p-value < 0.001). The strong negative correlation (rho = -0.997, p-value <0.001) between ASF-positive wild boars and distance from water sources emphasizes that areas surrounding rivers are one of the priority areas for monitoring. The subsequent hydrological analyses provided important points for monitoring the risk of virus entry via water from the neighboring country. This research aims to facilitate early detection and prevent further spread of ASF.


Asunto(s)
Fiebre Porcina Africana , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Animales , Porcinos , República de Corea/epidemiología , Animales Salvajes/virología , Sus scrofa/virología , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/patogenicidad , Monitoreo Epidemiológico/veterinaria
17.
Sci Rep ; 14(1): 14199, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902400

RESUMEN

The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.


Asunto(s)
Animales Salvajes , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Aves de Corral , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Aviar/transmisión , Animales Salvajes/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Brotes de Enfermedades/veterinaria , Aves de Corral/virología , Aves/virología , Estados Unidos/epidemiología , Filogenia , Migración Animal
18.
PLoS One ; 19(6): e0303756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38829903

RESUMEN

The rapid spread of highly pathogenic avian influenza (HPAI) A (H5N1) viruses in Southeast Asia in 2004 prompted the New Zealand Ministry for Primary Industries to expand its avian influenza surveillance in wild birds. A total of 18,693 birds were sampled between 2004 and 2020, including migratory shorebirds (in 2004-2009), other coastal species (in 2009-2010), and resident waterfowl (in 2004-2020). No avian influenza viruses (AIVs) were isolated from cloacal or oropharyngeal samples from migratory shorebirds or resident coastal species. Two samples from red knots (Calidris canutus) tested positive by influenza A RT-qPCR, but virus could not be isolated and no further characterization could be undertaken. In contrast, 6179 samples from 15,740 mallards (Anas platyrhynchos) tested positive by influenza A RT-qPCR. Of these, 344 were positive for H5 and 51 for H7. All H5 and H7 viruses detected were of low pathogenicity confirmed by a lack of multiple basic amino acids at the hemagglutinin (HA) cleavage site. Twenty H5 viruses (six different neuraminidase [NA] subtypes) and 10 H7 viruses (two different NA subtypes) were propagated and characterized genetically. From H5- or H7-negative samples that tested positive by influenza A RT-qPCR, 326 AIVs were isolated, representing 41 HA/NA combinations. The most frequently isolated subtypes were H4N6, H3N8, H3N2, and H10N3. Multivariable logistic regression analysis of the relations between the location and year of sampling, and presence of AIV in individual waterfowl showed that the AIV risk at a given location varied from year to year. The H5 and H7 isolates both formed monophyletic HA groups. The H5 viruses were most closely related to North American lineages, whereas the H7 viruses formed a sister cluster relationship with wild bird viruses of the Eurasian and Australian lineages. Bayesian analysis indicates that the H5 and H7 viruses have circulated in resident mallards in New Zealand for some time. Correspondingly, we found limited evidence of influenza viruses in the major migratory bird populations visiting New Zealand. Findings suggest a low probability of introduction of HPAI viruses via long-distance bird migration and a unique epidemiology of AIV in New Zealand.


Asunto(s)
Animales Salvajes , Aves , Gripe Aviar , Filogenia , Animales , Nueva Zelanda/epidemiología , Gripe Aviar/virología , Gripe Aviar/epidemiología , Animales Salvajes/virología , Aves/virología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/clasificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Genoma Viral , Patos/virología
19.
Emerg Microbes Infect ; 13(1): 2361792, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38828793

RESUMEN

Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.


Asunto(s)
Animales Salvajes , Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Reino Unido/epidemiología , Animales Salvajes/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/transmisión , Canidae , Gripe Aviar/virología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión
20.
Arch Virol ; 169(7): 137, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847873

RESUMEN

The present study focuses on the pathological and molecular characterization of African swine fever virus (ASFV) associated with an outbreak in wild boars in two national parks in southern India in 2022-2023. Significant mortality was observed among free-ranging wild boars at Bandipur National Park, Karnataka, and Mudumalai National Park, Tamil Nadu. Extensive combing operations were undertaken in both national parks, spanning an area of around 100 km2, originating from the reported epicenter, to estimate the mortality rate. Recovered carcasses were pathologically examined, and ASFV isolates was genetically characterized. Our findings suggested spillover infection of ASFV from nearby domestic pigs, and the virus was equally pathogenic in wild boars and domestic pigs. ASFV intrusion was reported in the Northeastern region of the country, which borders China and Myanmar, whereas the current outbreak is very distantly located, in southern India. Molecular data will help in tracing the spread of the virus in the country.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Brotes de Enfermedades , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , India/epidemiología , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/mortalidad , Sus scrofa/virología , Brotes de Enfermedades/veterinaria , Filogenia , Animales Salvajes/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...