Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
2.
Sci Total Environ ; 950: 175316, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117193

RESUMEN

2,4,6-Trichloroanisole (2,4,6-TCA), a compound with a characteristic earthy odor, is a common source of odorous pollutants in drinking water and wine. However, research on its biological toxicity is limited. In this study, we used zebrafish as an indicator model to investigate the effects of 2,4,6-TCA exposure on morphological development, oxidative stress, apoptosis, heart rate, blood flow, and motility. We found that exposure to 2,4,6-TCA resulted in significant spinal, tail, and cardiac deformities in zebrafish larvae and promoted a pronounced oxidative stress response and extensive cell apoptosis, notably in the digestive tract, head, spine, and heart, ultimately leading to significant reductions in zebrafish heart rate, blood flow, and motility. Moreover, these effects became more pronounced with an increase in the concentration of 2,4,6-TCA to which the zebrafish were exposed. Furthermore, qPCR analysis revealed that exposure to 2,4,6-TCA promoted significant changes in the expression levels of genes associated with oxidative stress, apoptosis, cardiac development, and the nervous system, particularly key genes (p53, apaf1, casp9, and casp3) in the mitochondrial apoptotic pathway, which were significantly upregulated. Similarly, we detected significant upregulation of ache gene expression. These findings indicated that exposure to 2,4,6-TCA resulted in the accumulation of reactive oxygen species in zebrafish, induced strong oxidative stress responses, and triggered lipid peroxidation and extensive cell apoptosis. Cellular apoptosis, which mitochondrial signaling pathways may mediate, has been found to lead to malformations in zebrafish embryos, resulting in significant reductions in cardiac function and motility. To our knowledge, this is the first systematic assessment of the toxicity of 2,4,6-TCA, and our findings provide an important reference for risk assessment and early warning of 2,4,6-TCA exposure.


Asunto(s)
Anisoles , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Anisoles/toxicidad , Apoptosis/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos
3.
Chem Biol Interact ; 401: 111155, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39029857

RESUMEN

Doxorubicin (Dox) is widely used as a chemotherapy drug, while anethole (AN) is primarily known as the main aromatic component in various plant species. This research focused on the impact of AN on the cardiac and renal toxicity induced by Dox and to understand the underlying mechanisms. For cardiac toxicity, Wistar rats were categorized into four groups: a Control group; a Dox group, where rats received 2.5 mg/kg of Dox intraperitoneally every other day; and two Dox + AN groups, where animals were administered Dox (2.5 mg/kg/every other day, IP) along with 125 mg/kg or 250 mg/kg of AN, respectively. The renal toxicity study included similar groups, with the Dox group receiving a single dose of 20 mg/kg of Dox intraperitoneally on the tenth day, and the Dox + AN groups receiving 125 mg/kg and 250 mg/kg of AN for two weeks, alongside the same dose of Dox (20 mg/kg, IP, once on the 10th day). Parameters assessed included ECG, cardiac injury markers (CK, CK-MB, and LDH), and kidney function tests (Cr, BUN, uric acid, LDL, Kim-1, NGAL, and CysC). Antioxidant activity, lipid peroxidation, inflammation, and apoptotic markers were also monitored in heart and renal tissues. Gene expression levels of the TLR4/MyD88/NFκB pathway, along with Bax and Bcl-2, were evaluated. Dox significantly altered ECG, elevated cardiac injury markers, and renal function markers. It also augmented gene expressions of TLR4/MyD88/NFκB, amplified oxidative stress, inflammatory cytokines and apoptotic markers. Conversely, AN reduced cardiac injury markers and kidney function tests, improved ECG, diminished TLR4/MyD88/NFκB gene expression, and alleviated oxidative stress by increasing antioxidant enzyme activities and reducing inflammatory cytokines. AN also enhanced Bcl-2 levels and inhibited Bax and the cleavage of caspase-3 and 9. AN countered the lipid peroxidation, oxidative stress, inflammation, and apoptosis induced by Dox, marking it as a potential preventive strategy against Dox-induced nephrotoxic and cardiotoxic injuries.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Doxorrubicina , Riñón , Farmacología en Red , Ratas Wistar , Animales , Doxorrubicina/toxicidad , Ratas , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Anisoles/farmacología , Anisoles/toxicidad , Masculino , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Corazón/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Antibióticos Antineoplásicos/toxicidad , Antioxidantes/farmacología , FN-kappa B/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo
4.
J Agric Food Chem ; 71(1): 884-894, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36584355

RESUMEN

α-Asarone (αA) and ß-asarone (ßA) are often used as flavoring agents for alcoholic beverages and food supplements. They possess a double bond in the side chain with different configurations. Double bonds are a class of alert chemical group, due to their metabolic epoxidation to the corresponding epoxides eliciting liver injury. Little is known about changes of configuration on metabolic activation and related toxicity. Here, we report the insight into the mechanisms of hepatotoxicity of asarone with different configurations. In vitro and in vivo comparative studies demonstrated ßA displayed higher metabolic activation effectiveness. Apparently, the major metabolic pathway of ßA underwent epoxidation at C-1' and C-2', while αA was mainly metabolized to the corresponding alcohol resulting from the hydroxylation of C-3'. CYP1A2 dominated the metabolism of αA and ßA. The molecular simulation studies showed that the orientation of ßA at the active site of CYP1A2 favored the epoxidation of ßA over that of αA. These findings not only remind us that configuration is another important factor for toxicities but also facilitate the understanding of the mechanisms of toxic action of asarone. Additionally, these findings would benefit the risk assessment of αA and ßA exposure from foods.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Derivados de Alilbenceno/toxicidad , Anisoles/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocromo P-450 CYP1A2
5.
Chemosphere ; 308(Pt 2): 136421, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36108757

RESUMEN

Anisole (methoxybenzene) represents an important marker compound of lignin pyrolysis and a starting material for many chemical products. In this study, secondary organic aerosols (SOA) formed by anisole via various atmospheric processes, including homogeneous photooxidation with varying levels of OH• and NOx and subsequent heterogeneous NO3• dark reactions, were investigated. The yields of anisole SOA, particle-bound organoperoxides, particle-induced oxidative potential (OP), and cytotoxicity were characterized in view of the atmospheric fate of the anisole precursor. Anisole SOA yields ranged between 0.12 and 0.35, depending on the reaction pathways and aging degrees. Chemical analysis of the SOA suggests that cleavage of the benzene ring is the main reaction channel in the photooxidation of anisole to produce low-volatility, highly oxygenated small molecules. Fresh anisole SOA from OH• photooxidation are more light-absorbing and have higher OP and organoperoxide content. The high correlation between SOA OP and organoperoxide content decreases exponentially with the degree of OH• aging. However, the contribution of organoperoxides to OP is minor (<4%), suggesting that other, non-peroxide oxidizers play a central role in anisole SOA OP. The particle-induced OP and particulate organoperoxides yield both reach a maximum value after ∼2 days' of photooxidation, implicating the potential long impact of anisole during atmospheric transport. NOx-involved photooxidation and nighttime NO3• reactions facilitate organic nitrate formation and enhance particle light absorption. High NOx levels suppress anisole SOA formation and organoperoxides yield in photooxidation, with decreased aerosol OP and cellular oxidative stress. In contrast, nighttime aging significantly increases the SOA toxicity and reactive oxygen species (ROS) generation in lung cells. These dynamic properties and the toxicity of anisole SOA advocate consideration of the complicated and consecutive aging processes in depicting the fate of VOCs and assessing the related effects in the atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Nitratos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Anisoles/análisis , Anisoles/toxicidad , Benceno/análisis , Lignina/análisis , Nitratos/química , Oxidación-Reducción , Especies Reactivas de Oxígeno/análisis
6.
Toxicol In Vitro ; 79: 105290, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34861381

RESUMEN

Potential consequences of combined exposure to the selected food-borne alkenylbenzenes safrole and estragole or their proximate carcinogenic 1'-hydroxy metabolites were evaluated in vitro and in silico. HepG2 cells were exposed to 1'-hydroxyestragole and 1'-hydroxysafrole individually or in equipotent combination subsequently detecting cytotoxicity and DNA adduct formation. Results indicate that concentration addition adequately describes the cytotoxic effects and no statistically significant differences were shown in the level of formation of the major DNA adducts. Furthermore, physiologically based kinetic modeling revealed that at normal dietary intake the concentration of the parent compounds and their 1'-hydroxymetabolites remain substantially below the Km values for the respective bioactivation and detoxification reactions providing further support for the fact that the simultaneous presence of the two carcinogens or of their proximate carcinogenic 1'-hydroxy metabolites may not affect their DNA adduct formation. Overall, these results point at the absence of interactions upon combined exposure to selected food-borne alkenylbenzenes at realistic dietary levels of intake.


Asunto(s)
Derivados de Alilbenceno/toxicidad , Anisoles/toxicidad , Safrol/análogos & derivados , Safrol/toxicidad , Derivados de Alilbenceno/farmacocinética , Anisoles/farmacocinética , Carcinógenos/farmacocinética , Carcinógenos/toxicidad , Aductos de ADN/efectos de los fármacos , Células Hep G2 , Humanos , Medición de Riesgo , Safrol/farmacocinética
9.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34299276

RESUMEN

1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.


Asunto(s)
Analgésicos Opioides/toxicidad , Anisoles/toxicidad , Derivados del Benceno/toxicidad , Alucinógenos/toxicidad , Fenciclidina/toxicidad , Psicotrópicos/toxicidad , Receptores Opioides/metabolismo , Tramadol/toxicidad , Analgésicos Opioides/química , Animales , Anisoles/química , Derivados del Benceno/química , Células Cultivadas , Cricetinae , Alucinógenos/química , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Animales , Fenciclidina/química , Psicotrópicos/química , Tramadol/química
10.
Food Chem Toxicol ; 153: 112253, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34015424

RESUMEN

Estragole and anethole are secondary metabolites occurring in a variety of commonly used herbs like fennel, basil, and anise. Estragole is genotoxic and carcinogenic in rodents, which depends on the formation of 1'-sulfoxyestragole after hydroxylation and subsequent sulfoconjugation catalyzed by CYP and SULT, respectively. It was hypothesized recently that anethole may be bioactivated via the same metabolic pathways. Incubating estragole with hepatic S9-fractions from rats and humans, specific adducts with hemoglobin (N-(isoestragole-3-yl)-valine, IES-Val) and DNA (isoestragole-2'-deoxyguanosine and isoestragole-2'-deoxyadenosine) were formed. An isotope-dilution technique was developed for the quantification of IES-Val after cleavage with fluorescein isothiocyanate (FITC) according to a modified Edman degradation. The same adducts, albeit at lower levels, were also detected in reactions with anethole, indicating the formation of 3'-hydroxyanethole and the reactive 3'-sulfoxyanethole. Finally, we conducted a pilot investigation in which IES-Val levels in human blood were determined during and after the consumption of an estragole- and anethole-rich fennel tea for four weeks. A significant increase of IES-Val levels was observed during the consumption phase and followed by a continuous decrease during the washout period. IES-Val may be used to monitor the internal exposure to the common reactive genotoxic metabolites of estragole and anethole, 1'-sulfoxyestragole and 3'-sulfoxyanethole, respectively.


Asunto(s)
Derivados de Alilbenceno/toxicidad , Anisoles/toxicidad , Aductos de ADN/química , Foeniculum/química , Hemoglobinas/química , Derivados de Alilbenceno/metabolismo , Animales , Anisoles/metabolismo , Bebidas/análisis , Biomarcadores/sangre , Humanos , Ratas
11.
Environ Toxicol Chem ; 40(6): 1713-1725, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33646621

RESUMEN

The present study investigates the bioaccumulation of the insensitive munition compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), developed for future weapons systems to replace current munitions containing sensitive explosives. The earthworm Eisenia andrei was exposed to sublethal concentrations of DNAN or NTO amended in Sassafras sandy loam. Chemical analysis indicated that 2- and 4-amino-nitroanisole (2-ANAN and 4-ANAN, respectively) were formed in DNAN-amended soils. The SumDNAN (sum of DNAN, 2-ANAN, and 4-ANAN concentrations) in soil decreased by 40% during the 14-d exposure period. The SumDNAN in the earthworm body residue increased until day 3 and decreased thereafter. Between days 3 and 14, there was a 73% decrease in tissue uptake that was greater than the 23% decrease in the soil concentration, suggesting that the bioavailable fraction may have decreased over time. By day 14, the DNAN concentration accounted for only 45% of the SumDNAN soil concentration, indicating substantial DNAN transformation in the presence of earthworms. The highest bioaccumulation factor (BAF; the tissue-to-soil concentration ratio) was 6.2 ± 1.0 kg/kg (dry wt) on day 3 and decreased to 3.8 ± 0.8 kg/kg by day 14. Kinetic studies indicated a BAF of 2.3 kg/kg, based on the earthworm DNAN uptake rate of 2.0 ± 0.24 kg/kg/d, compared with the SumDNAN elimination rate of 0.87 d-1 (half-life = 0.79 d). The compound DNAN has a similar potential to bioaccumulate from soil compared with trinitrotoluene. The NTO concentration in amended soil decreased by 57% from the initial concentration (837 mg NTO/kg dry soil) during 14 d, likely due to the formation of unknown transformation products. The bioaccumulation of NTO was negligible (BAF ≤ 0.018 kg/kg dry wt). Environ Toxicol Chem 2021;40:1713-1725. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Sustancias Explosivas , Oligoquetos , Contaminantes del Suelo , Animales , Anisoles/análisis , Anisoles/toxicidad , Bioacumulación , Sustancias Explosivas/toxicidad , Cinética , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
12.
Neurobiol Dis ; 150: 105244, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33385516

RESUMEN

There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R-/-) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine possible molecular mechanisms, we used quantitative PCR, Western blotting and immunohistochemistry to assess the possible involvement of several seizure-related genes and proteins. Peripheral tissue contractile response of WT and Sig1R-/- mice was studied in an isolated vasa deferentia model. The most important finding was the significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus and habenula of Sig1R-/- mice. Our results demonstrated that Sig1R-/- mice have decreased thresholds for PTZ- and BIC-induced tonic seizures. In the NE-100-induced seizure model, Sig1R-/- animals demonstrated lower seizure scores, shorter durations and increased latency times of seizures compared to WT mice. Sig1R-independent activities of NE-100 included downregulation of the gene expression of iNOS and GABA-A γ2 and inhibition of KCl-induced depolarization in both WT and Sig1R-/- animals. In conclusion, the results of this study indicate that the lack of Sig1R resulted in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Our results confirm that Sig1R is a significant molecular target for seizure modulation and warrants further investigation for the development of novel anti-seizure drugs.


Asunto(s)
Convulsivantes/toxicidad , Habénula/metabolismo , Hipocampo/metabolismo , Receptores de GABA-B/genética , Receptores sigma/genética , Convulsiones/genética , Animales , Anisoles/toxicidad , Bicuculina/toxicidad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Predisposición Genética a la Enfermedad , Habénula/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Pentilenotetrazol/toxicidad , Propilaminas/toxicidad , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Convulsiones/inducido químicamente , Receptor Sigma-1
13.
Life Sci ; 264: 118675, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127513

RESUMEN

Among the bacterial resistance mechanisms, efflux pumps are responsible for expelling xenobiotics, including bacterial cell antibiotics. Given this problem, studies are investigating new alternatives for inhibiting bacterial growth or enhancing the antibiotic activity of drugs already on the market. With this in mind, this study aimed to evaluate the antibacterial activity of Estragole against the RN4220 Staphylococcus aureus strain, which carries the MsrA efflux pump, as well as Estragole's toxicity in the Drosophila melanogaster arthropod model. The broth microdilution method was used to perform the Minimum Inhibitory Concentration (MIC) tests. Estragole was used at a Sub-Inhibitory Concentration (MIC/8) in association with erythromycin and ethidium bromide to assess its combined effect. As for Estragole's toxicity evaluation over D. melanogaster, the fumigation bioassay and negative geotaxis methods were used. The results were expressed as an average of sextuplicate replicates. A Two-way ANOVA followed by Bonferroni's post hoc test was used. The present study demonstrated that Estragole did not show a direct antibacterial activity over the RN4220 S. aureus strain, since it obtained a MIC ≥1024 µg/mL. The association of estragole with erythromycin demonstrated a potentiation of the antibiotic effect, reducing the MIC from 512 to 256 µg/mL. On the other hand, when estragole was associated with ethidium bromide (EtBr), an antagonism was observed, increasing the MIC of EtBr from 32 to 50.7968 µg/mL, demonstrating that estragole did not inhibited directly the MsrA efflux pump mechanism. We conclude that estragole has no relevant direct effect over bacterial growth, however, when associated with erythromycin, this reduced its MIC, potentiating the effect of the antibiotic.


Asunto(s)
Anisoles/toxicidad , Antibacterianos/toxicidad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Derivados de Alilbenceno , Animales , Anisoles/administración & dosificación , Antibacterianos/administración & dosificación , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Farmacorresistencia Bacteriana Múltiple/fisiología , Eritromicina/administración & dosificación , Aromatizantes/administración & dosificación , Aromatizantes/toxicidad , Pruebas de Sensibilidad Microbiana/métodos , Staphylococcus aureus/fisiología
14.
J Appl Toxicol ; 41(8): 1166-1179, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33236787

RESUMEN

Asarone isomers are naturally occurring in Acorus calamus Linné, Guatteria gaumeri Greenman, and Aniba hostmanniana Nees. These secondary plant metabolites belong to the class of phenylpropenes (phenylpropanoids or alkenylbenzenes). They are further chemically classified into the propenylic trans- and cis-isomers α-asarone and ß-asarone and the allylic γ-asarone. Flavoring, as well as potentially pharmacologically useful properties, enables the application of asarone isomers in fragrances, food, and traditional phytomedicine not only since their isolation in the 1950s. However, efficacy and safety in humans are still not known. Preclinical evidence has not been systematically studied, and several pharmacological effects have been reported for extracts of Acorus calamus and propenylic asarone isomers. Toxicological data are rare and not critically evaluated altogether in the 21st century yet. Therefore, within this review, available toxicological data of asarone isomers were assessed in detail. This assessment revealed that cardiotoxicity, hepatotoxicity, reproductive toxicity, and mutagenicity as well as carcinogenicity were described for propenylic asarone isomers with varying levels of reliability. The toxicodynamic profile of γ-asarone is unknown except for mutagenicity. Based on the estimated daily exposure and reported adverse effects, officials restricted or published recommendations for the use of ß-asarone and preparations of Acorus calamus. In contrast, α-asarone and γ-asarone were not directly addressed due to a limited data situation.


Asunto(s)
Derivados de Alilbenceno/toxicidad , Anisoles/toxicidad , Derivados de Alilbenceno/farmacocinética , Animales , Anisoles/farmacocinética , Carcinógenos/toxicidad , Cardiotoxicidad/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Isomerismo , Reproducción/efectos de los fármacos
15.
Toxicol Lett ; 337: 1-6, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189830

RESUMEN

Accumulation of N2-(trans-isoestragol-3'-yl)-2'-deoxyguanosine (E-3'-N2-dG) DNA adducts derived from the alkenylbenzene estragole upon repeated dose exposure was investigated since the repair of this adduct was previously shown to be inefficient. To this end human HepaRG cells were exposed to repeating cycles of 2 h exposure to 50 µM estragole followed by 22 h repair to mimic daily exposure. The E-3'-N2-dG DNA adduct levels were quantified by LC-MS/MS after each cycle. The results show accumulation of E-3'-N2-dG DNA adducts at a rate of 17.53 adducts/108 nts/cycle. This rate at the dose level calculated by physiologically based kinetic (PBK) modeling to result in 50 µM was converted to a rate expected at average human daily intake of estragole. The predicted time estimated to reach adduct levels reported at the BMD10 of the related alkenylbenzene methyleugenol of 10-100 adducts /108 nts upon average human daily intake of estragole amounted to 8-80 (in rat) or 6-57 years (in human). It is concluded that the persistent nature of the E-3'-N2-dG DNA adducts may contribute to accumulation of substantial levels of DNA adducts upon prolonged dietary exposure.


Asunto(s)
Anisoles/toxicidad , Aductos de ADN/efectos de los fármacos , Hígado/metabolismo , Derivados de Alilbenceno , Animales , Anisoles/farmacocinética , Línea Celular , ADN/genética , ADN/aislamiento & purificación , Dieta , Eugenol/análogos & derivados , Eugenol/toxicidad , Hepatocitos/efectos de los fármacos , Humanos , Cinética , Hígado/efectos de los fármacos , Hígado/patología , Modelos Biológicos , Ratas
16.
Toxicology ; 444: 152566, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32853702

RESUMEN

Estragole is a natural constituent in herbs and spices and in products thereof such as essential oils or herbal teas. After cytochrome P450-catalyzed hydroxylation and subsequent sulfation, estragole acts as a genotoxic hepatocarcinogen forming DNA adducts in rodent liver. Because of the genotoxic mode of action and the widespread occurrence in food and phytomedicines a refined risk assessment for estragole is needed. We analyzed the time- and concentration-dependent levels of the DNA adducts N2-(isoestragole-3'-yl)-2'-desoxyguanosine (E3'N2dG) and N6-(isoestragole-3'-yl)-desoxyadenosine (E3'N6dA), reported to be the major adducts formed in rat liver, in rat hepatocytes (pRH) in primary culture after incubation with estragole. DNA adduct levels were measured via UHPLC-ESI-MS/MS using stable isotope dilution analysis. Both adducts were formed in pRH and could already be quantified after an incubation time of 1 h (E3'N6dA at 10 µM, E3'N2dG at 1µM estragole). E3'N2dG, the main adduct at all incubation times and concentrations, could be detected at estragole concentrations < 0.1 µM after 24 h and < 0.5 µM after 48 h. Adduct levels were highest after 6 h and showed a downward trend at later time-points, possibly due to DNA repair and/or apoptosis. While the concentration-response characteristics of adduct formation were apparently linear over the whole concentration range, strong indication for marked hypo-linearity was obtained when the modeling was based on concentrations < 1 µM only. In the micronucleus assay no mutagenic potential of estragole was found in HepG2 cells whereas in HepG2-CYP1A2 cells 1 µM estragole led to a 3.2 fold and 300 µM to a 7.1 fold increase in micronuclei counts. Our findings suggest the existence of a 'practical threshold' dose for DNA adduct formation as an initiating key event of the carcinogenicity of estragole indicating that the default assumption of concentration-response-linearity is questionable, at least for the two major adducts studied here.


Asunto(s)
Anisoles/toxicidad , Carcinógenos/toxicidad , Aductos de ADN , Hepatocitos/efectos de los fármacos , Derivados de Alilbenceno , Animales , Células Cultivadas , Citocromo P-450 CYP1A2/genética , Hepatocitos/metabolismo , Humanos , Masculino , Pruebas de Micronúcleos , Ratas Wistar
17.
Food Chem Toxicol ; 145: 111585, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32702506

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association initiated the safety re-evaluation of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, 4th in a series focusing on the safety evaluation of NFCs, presents an evaluation of NFCs rich in hydroxyallylbenzene and hydroxypropenylbenzene constituents using a procedure initially published in 2005 and updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure requires the characterization of the chemical composition for each NFC and subsequent organization of the constituents into defined congeneric groups. The safety of each NFC is evaluated using the conservative threshold of toxicological concern (TTC) approach together with studies on absorption, metabolism and toxicology of the NFC and its constituent congeneric groups. By the application of this procedure, seven NFCs, derived from clove, cinnamon leaf and West Indian bay leaf were affirmed as "generally recognized as safe (GRAS)" under their conditions of intended use as flavor ingredients. An eighth NFC, an oleoresin of West Indian bay leaf, was affirmed based on its estimated intake, which is below the TTC of 0.15 µg/person per day for compounds with structural alerts for genotoxicity.


Asunto(s)
Cinnamomum zeylanicum/química , Aromatizantes/toxicidad , Laurus/química , Syzygium/química , Derivados de Alilbenceno , Animales , Anisoles/química , Anisoles/toxicidad , Seguridad de Productos para el Consumidor , Escherichia coli/efectos de los fármacos , Eugenol/química , Eugenol/toxicidad , Femenino , Aromatizantes/química , Humanos , Masculino , Ratones , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Aceites de Plantas/química , Aceites de Plantas/toxicidad , Ratas , Safrol/química , Safrol/toxicidad , Salmonella typhimurium/efectos de los fármacos
19.
Food Chem Toxicol ; 142: 111484, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32526244

RESUMEN

The phenylpropenes α-asarone and ß-asarone are widely spread in the marsh plant Acorus calamus. Both isomers are classified as carcinogenic in rodents. However, the respective genotoxic mechanisms are not elucidated so far. The present study gives deeper insights into the genotoxic effects of asarone isomers as well as their known oxidative phase I metabolites, (E)-3'-oxoasarone and asarone epoxide. We show that asarone metabolites highly increase DNA strand breaks after 1 h of incubation, markedly metabolic activation contributes to their carcinogenic mode of action. All test compounds act as aneugens and potently enhance the amounts of micronuclei in binuclear cells. However, a prolonged incubation time of 24 h results in a decrease of DNA damage. This work suggests that asarone metabolites also induce DNA double strand breaks , why we put a strong focus on homologous recombination and non-homologous end joining. The obtained results herein indicate that asarone epoxide-induced DNA strand breaks are repaired via a homologous repair pathway.


Asunto(s)
Anisoles/toxicidad , Roturas del ADN de Doble Cadena/efectos de los fármacos , Mutágenos/toxicidad , Activación Metabólica , Derivados de Alilbenceno , Anisoles/química , Anisoles/metabolismo , Células Hep G2 , Humanos , Isomerismo , Mutágenos/química
20.
Arch Toxicol ; 94(4): 1349-1365, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32185416

RESUMEN

Estragole, naturally occurring in a variety of herbs and spices, can form DNA adducts after bioactivation. Estragole DNA adduct formation and repair was studied in in vitro liver cell models, and a molecular dynamics simulation was used to investigate the conformation dependent (in)efficiency of N2-(trans-isoestragol-3'-yl)-2'-deoxyguanosine (E-3'-N2-dG) DNA adduct repair. HepG2, HepaRG cells, primary rat hepatocytes and CHO cells (including CHO wild-type and three NER-deficient mutants) were exposed to 50 µM estragole or 1'-hydroxyestragole and DNA adduct formation was quantified by LC-MS immediately following exposure and after a period of repair. Results obtained from CHO cell lines indicated that NER plays a role in repair of E-3'-N2-dG adducts, however, with limited efficiency since in the CHO wt cells 80% DNA adducts remained upon 24 h repair. Inefficiency of DNA repair was also found in HepaRG cells and primary rat hepatocytes. Changes in DNA structure resulting from E-3'-N2-dG adduct formation were investigated by molecular dynamics simulations. Results from molecular dynamics simulations revealed that conformational changes in double-stranded DNA by E-3'-N2-dG adduct formation are small, providing a possible explanation for the restrained repair, which may require larger distortions in the DNA structure. NER-mediated enzymatic repair of E-3'-N2-dG DNA adducts upon exposure to estragole will be limited, providing opportunities for accumulation of damage upon repeated daily exposure. The inability of this enzymatic repair is likely due to a limited distortion of the DNA double-stranded helix resulting in inefficient activation of nucleotide excision repair.


Asunto(s)
Anisoles/toxicidad , Carcinógenos/toxicidad , Aromatizantes/toxicidad , Derivados de Alilbenceno , Animales , Cromatografía Liquida , Cricetinae , Cricetulus , ADN , Aductos de ADN , Reparación del ADN , Desoxiguanosina , Hepatocitos , Espectrometría de Masas , Simulación de Dinámica Molecular , Ratas , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...