Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.409
Filtrar
1.
BMC Pediatr ; 24(1): 309, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711130

RESUMEN

Schinzel-Giedion syndrome (SGS) is a severe multisystem disorder characterized by distinctive facial features, profound intellectual disability, refractory epilepsy, cortical visual impairment, hearing loss, and various congenital anomalies. SGS is attributed to gain-of-function (GoF) variants in the SETBP1 gene, with reported variants causing canonical SGS located within a 12 bp hotspot region encoding SETBP1 residues aa868-871 (degron). Here, we describe a case of typical SGS caused by a novel heterozygous missense variant, D874V, adjacent to the degron. The female patient was diagnosed in the neonatal period and presented with characteristic facial phenotype (midface retraction, prominent forehead, and low-set ears), bilateral symmetrical talipes equinovarus, overlapping toes, and severe bilateral hydronephrosis accompanied by congenital heart disease, consistent with canonical SGS. This is the first report of a typical SGS caused by a, SETBP1 non-degron missense variant. This case expands the genetic spectrum of SGS and provides new insights into genotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples , Proteínas Portadoras , Deformidades Congénitas de la Mano , Mutación Missense , Uñas Malformadas , Humanos , Femenino , Anomalías Múltiples/genética , Proteínas Portadoras/genética , Recién Nacido , Proteínas Nucleares/genética , Discapacidad Intelectual/genética , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/complicaciones , Pie Equinovaro/genética , Fenotipo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/complicaciones , Degrones
2.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557491

RESUMEN

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Asunto(s)
Anomalías Múltiples , Acetilcarnitina , Hipotiroidismo Congénito , Anomalías Craneofaciales , Histona Acetiltransferasas , Discapacidad Intelectual , Inestabilidad de la Articulación , Animales , Humanos , Ratones , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/genética , Acetilación , Acetilcarnitina/farmacología , Acetilcarnitina/uso terapéutico , Blefarofimosis , Cromatina , Anomalías Craneofaciales/tratamiento farmacológico , Anomalías Craneofaciales/genética , Exones , Facies , Cardiopatías Congénitas , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética
3.
Dev Biol ; 511: 63-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621649

RESUMEN

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Asunto(s)
Quinasas DyrK , Regulación del Desarrollo de la Expresión Génica , Cresta Neural , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas de Xenopus , Xenopus laevis , Animales , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Transducción de Señal , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología
4.
Mol Genet Genomic Med ; 12(3): e2411, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433559

RESUMEN

BACKGROUND: Hemifacial macrosomia (HFM, OMIM 164210) is a complex and highly heterogeneous disease. FORKHEAD BOX I3 (FOXI3) is a susceptibility gene for HFM, and mice with loss of function of Foxi3 did exhibit a phenotype similar to craniofacial dysmorphism. However, the specific pathogenesis of HFM caused by FOXI3 deficiency remains unclear till now. METHOD: In this study, we first constructed a Foxi3 deficiency (Foxi3-/- ) mouse model to verify the craniofacial phenotype of Foxi3-/- mice, and then used RNAseq data for gene differential expression analysis to screen candidate pathogenic genes, and conducted gene expression verification analysis using quantitative real-time PCR. RESULTS: By observing the phenotype of Foxi3-/- mice, we found that craniofacial dysmorphism was present. The results of comprehensive bioinformatics analysis suggested that the craniofacial dysmorphism caused by Foxi3 deficiency may be involved in the PI3K-Akt signaling pathway. Quantitative real-time PCR results showed that the expression of PI3K-Akt signaling pathway-related gene Akt2 was significantly increased in Foxi3-/- mice. CONCLUSION: The craniofacial dysmorphism caused by the deficiency of Foxi3 may be related to the expression of Akt2 and PI3K-Akt signaling pathway. This study laid a foundation for understanding the function of FOXI3 and the pathogenesis and treatment of related craniofacial dysmorphism caused by FOXI3 dysfunction.


Asunto(s)
Anomalías Craneofaciales , Anomalías Musculoesqueléticas , Animales , Ratones , Biología Computacional , Anomalías Craneofaciales/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/genética
5.
Prenat Diagn ; 44(5): 653-656, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38504427

RESUMEN

Autosomal recessive ROR2-Robinow syndrome is caused by pathogenic variants in the ROR2 gene. Fetal ultrasound done on our patient at 24 + 3/7 weeks gestation showed macrocephaly, brachycephaly, flat face, prominent forehead, mild frontal bossing, lower thoracic hemivertebrae, digital abnormalities and micropenis. Fetal trio whole exome sequencing done on amniocytes showed two pathogenic compound heterozygous variants in the ROR2 gene, c.1324 C > T; p.(Arg442*) maternally inherited and c.1366dup; p.(Leu456Profs*3) apparently de novo. c.1324 C > T; p.(Arg442*) is a nonsense variant resulting in protein truncation reported to be associated with RRS3. c.1366dup; p.(Leu456Profs*3) is a frameshift variant predicted to result in protein truncation reported to segregate with the disease in multiple affected individuals from a single large family with distal symphalangism of the fourth finger. Fetal autopsy following pregnancy termination showed a large head with low-set ears, facial abnormalities, mesomelic bone shortening, hemivertebra, fused S3 and S4 vertebral bodies, several fused rib heads and short penis with buried shaft.


Asunto(s)
Enanismo , Deformidades Congénitas de las Extremidades , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Ultrasonografía Prenatal , Anomalías Urogenitales , Humanos , Femenino , Embarazo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Adulto , Columna Vertebral/anomalías , Columna Vertebral/diagnóstico por imagen , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/diagnóstico por imagen , Dedos/anomalías , Dedos/diagnóstico por imagen , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico por imagen , Masculino , Secuenciación del Exoma
6.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38384171

RESUMEN

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Asunto(s)
Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 9 , Metilación de ADN , Cardiopatías Congénitas , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Cromosomas Humanos Par 9/genética , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Duplicación Cromosómica/genética , Niño , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Adolescente , Fenotipo
7.
Clin Genet ; 105(5): 499-509, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38221796

RESUMEN

Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Anomalías Craneofaciales , Sordera , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Peptidasa Específica de Ubiquitina 7/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
8.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38296633

RESUMEN

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Asunto(s)
Dominio BTB-POZ , Anomalías Craneofaciales , Cara , Humanos , Anomalías Múltiples , Proteínas Co-Represoras/genética , Anomalías Craneofaciales/genética , Displasia Ectodérmica , Cara/anomalías , Mutación Missense/genética , Síndrome
9.
PLoS One ; 19(1): e0296328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165902

RESUMEN

The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Variants in SETBP1 can result in three different diseases determined by the introduction (germline vs. somatic) and location of the variant. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1 and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcriptional regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.


Asunto(s)
Proteínas Portadoras , Proteínas Nucleares , Humanos , Anomalías Múltiples/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Anomalías Craneofaciales/genética , Expresión Génica , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Nat Commun ; 15(1): 827, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280846

RESUMEN

PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.


Asunto(s)
Anomalías Craneofaciales , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Neuronas , Discapacidad Intelectual/genética , Anomalías Craneofaciales/genética , Proteínas de Transporte Vesicular/genética
11.
Am J Med Genet A ; 194(4): e63488, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38062645

RESUMEN

Marshall syndrome is an extremely rare genetic disorder usually diagnosed in infancy with a prevalence of <1 in 1 million. Based on the literature reviewed, this is the first case report to provide a longitudinal history of a child with Marshall syndrome (from birth to age 12.5 years). This longitudinal case report arose in part from desires of this child's parents to share the story of their early fears at her initial diagnosis and compare those to how well she has turned out.


Asunto(s)
Catarata , Colágeno Tipo XI/deficiencia , Anomalías Craneofaciales , Pérdida Auditiva Sensorineural , Osteocondrodisplasias , Humanos , Niño , Femenino , Mutación , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Anomalías Craneofaciales/genética , Pérdida Auditiva Sensorineural/genética , Síndrome
12.
Ophthalmic Genet ; 45(2): 207-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37722826

RESUMEN

BACKGROUND: We present a case of a child with Floating-Harbor Syndrome (FHS) with bilateral chorioretinal coloboma (CC). To the best of our knowledge, this is the first case report of this association. Floating- Harbor syndrome is an extremely rare autosomal dominant genetic disorder with approximately 100 cases reported. It is characterized by a series of atypical features that include short stature with delayed bone age, low birth weight, skeletal anomalies, delayed speech development, and dysmorphic facial characteristics that typically portray a triangular face, deep-set eyes, long eyelashes, and prominent nose. MATERIALS AND METHODS: Our patient was examined by a pediatric ophthalmologist for the time at age of 7. Visual acuity, optical coherence tomography (OCT) and Optos imaging were collected on every visit. The patient had whole genome sequencing ordered by a pediatric geneticist to confirm Floating-Harbor syndrome. RESULTS: We present the patient's OCT and Optos images that illustrate the location of the patient's inferior chorioretinal coloboma in both eyes. The whole genome sequencing report collected revealed a heterozygous de novo pathogenic variant in the SRCAP gene, consistent with a Floating-Harbor syndrome diagnosis in the literature. DISCUSSION: Both genetic and systemic findings are consistent with the diagnosis of Floating-Harbor syndrome in our patient. Rubenstein-Taybi and Floating-Harbor syndrome share a similarity in molecular and physical manifestations, but because of the prevalence in Rubenstein-Taybi diagnoses, it is a syndromic condition that includes coloboma and frequently associated with each other. Therefore, a retinal exam should become part of the standard protocol for those with FHS, as proper diagnosis, examination and treatment can prevent irreversible retinal damage.


Asunto(s)
Anomalías Múltiples , Coloboma , Anomalías Craneofaciales , Defectos del Tabique Interventricular , Humanos , Niño , Coloboma/diagnóstico , Coloboma/genética , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética
13.
Orthod Craniofac Res ; 27(1): 84-94, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37452556

RESUMEN

OBJECTIVE: Dysregulation of Fibroblast Growth Factor 10 (FGF10), a member of the family of Fibroblast Growth Factor (FGF) proteins, has been implicated in craniofacial and dental anomalies, including craniosynostosis, cleft palate, and Lacrimo-Auriculo-Dento-Digital Syndrome. The aim of this murine study was to assess the craniofacial and dental phenotypes associated with a heterozygous FGF10 gene (FGF10+/- ) mutation at skeletal maturity. METHODS: Skulls of 40 skeletally mature mice, comprising two genotypes (heterozygous FGF10+/- mutation, n = 22; wildtype, n = 18) and two sexes (male, n = 23; female, n = 17), were subjected to micro-computed tomography. Landmark-based linear dimensions were measured for the cranial vault, maxilla, mandible, and first molar teeth. Multivariate analysis of variance was performed to assess whether there were significant differences in the craniofacial and dental structures between genotypes and sexes. RESULTS: The craniomaxillary skeleton and the first molar teeth were smaller in the FGF10+/- mice (P < .05), but the mandible was unaffected. Sex did not have a significant effect on these structures (P > .05). Cranial sutural defects were noted in 5/22 (22.7%) mutant versus 2/18 (11.1%) wildtype mice, and cleft palate in only one (4.5%) mutant mouse. None of the mice displayed craniosynostosis, expansive bony lesions, bifid condyles, or impacted teeth. CONCLUSION: The FGF10+/- mutation was associated with craniomaxillary skeletal hypoplasia that probably arose from deficient (delayed) intramembranous ossification of the sutured bones. Overall, the skeletal and dental data suggest that the FGF10 gene plays an important role in the aetiology of craniofacial dysmorphology and malocclusion.


Asunto(s)
Fisura del Paladar , Anomalías Craneofaciales , Craneosinostosis , Ratones , Masculino , Femenino , Animales , Fisura del Paladar/genética , Microtomografía por Rayos X , Factor 10 de Crecimiento de Fibroblastos/genética , Modelos Animales de Enfermedad , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/genética , Craneosinostosis/genética , Mutación/genética
14.
Genet Med ; 26(4): 101057, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158856

RESUMEN

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Animales , Humanos , Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Anomalías Musculoesqueléticas/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome , Pez Cebra/genética
15.
Dev Biol ; 505: 75-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923186

RESUMEN

Congenital craniofacial abnormalities are congenital anomalies of variable expressivity and severity with a recognizable set of abnormalities, which are derived from five identifiable primordial structures. They can occur unilaterally or bilaterally and include various malformations such as cleft lip with/without palate, craniosynostosis, and craniofacial microsomia. To date, the molecular etiology of craniofacial abnormalities is largely unknown. Noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, circular RNAs and PIWI-interacting RNAs, function as major regulators of cellular epigenetic hallmarks via regulation of various molecular and cellular processes. Recently, aberrant expression of ncRNAs has been implicated in many diseases, including craniofacial abnormalities. Consequently, this review focuses on the role and mechanism of ncRNAs in regulating craniofacial development in the hope of providing clues to identify potential therapeutic targets.


Asunto(s)
Anomalías Craneofaciales , Craneosinostosis , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , MicroARNs/genética , Anomalías Craneofaciales/genética
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1546-1550, 2023 Dec 10.
Artículo en Chino | MEDLINE | ID: mdl-37994140

RESUMEN

OBJECTIVE: To explore the clinical phenotype and genetic characteristics of a child with Intellectual developmental disorder with behavioral abnormalities and craniofacial malformations without epilepsy (IDDBCS). METHODS: A child who had visited the Lianyungang Maternal and Child Health Care Hospital in April 2021 was selected as the study subject. Clinical data of the child were collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents and subjected to whole exome sequencing (WES). Candidate variants were verified by Sanger sequencing of his family members. RESULTS: The child, a 3-year-and-4-month-old male, had presented with global developmental delay and cranial malformation. Genetic testing revealed that he has harbored a heterozygous c.1703delA (p.K568Sfs9) variant of the PHF21A gene, for which both of his parents were of the wild type. This low-frequency variant may alter the structure and function of the protein product. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as a pathogenic variant (PVS1+PS2+PM2_Supporting). CONCLUSION: The heterozygous c.1703delA (p.K568Sfs9) variant of the PHF21A gene probably underlay the IDDBCS in this patient.


Asunto(s)
Anomalías Craneofaciales , Discapacidad Intelectual , Problema de Conducta , Niño , Masculino , Humanos , Lactante , Discapacidades del Desarrollo/genética , Anomalías Craneofaciales/genética , Convulsiones/genética , Discapacidad Intelectual/genética , Mutación
17.
Birth Defects Res ; 115(20): 1885-1898, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800171

RESUMEN

BACKGROUND: Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS: In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION: As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.


Asunto(s)
Discapacidades del Desarrollo , Histonas , Lisina , Niño , Humanos , Cromatina/genética , Discapacidades del Desarrollo/genética , Genómica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Lisina/genética , Anomalías Craneofaciales/genética
18.
Biol Open ; 12(7)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37746814

RESUMEN

Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.


Asunto(s)
Anomalías Craneofaciales , Factores Asociados con la Proteína de Unión a TATA , Proteínas de Pez Cebra , Animales , Anomalías Craneofaciales/genética , Corazón , Discapacidad Intelectual , Mutación , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Pez Cebra , Proteínas de Pez Cebra/genética
19.
Am J Med Genet A ; 191(12): 2806-2812, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37724761

RESUMEN

Frontonasal dysplasia (FND) refers to a group of rare developmental disorders characterized by abnormal morphology of the craniofacial region. We studied a family manifesting with clinical features typical for FND2 including neurobehavioral abnormalities, hypotrichosis, hypodontia, and facial dysmorphism. Whole-exome sequencing analysis identified a novel heterozygous frameshift insertion in ALX4 (c.985_986insGTGC, p.Pro329Argfs*115), encoding aristaless homeobox 4. This and a previously reported dominant FND2-causing variant are predicted to result in the formation of a similar abnormally elongated protein tail domain. Using a reporter assay, we showed that the elongated ALX4 displays increased activity. ALX4 negatively regulates the Wnt/ß-catenin pathway and accordingly, patient keratinocytes showed altered expression of genes associated with the WNT/ß-catenin pathway, which in turn may underlie ectodermal manifestations in FND2. In conclusion, dominant FND2 with ectodermal dysplasia results from frameshift variants in ALX4 exerting a gain-of-function effect.


Asunto(s)
Anomalías Craneofaciales , Displasia Ectodérmica , Humanos , Genes Homeobox , beta Catenina/genética , Cara , Anomalías Craneofaciales/genética , Displasia Ectodérmica/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
20.
Zhonghua Er Ke Za Zhi ; 61(8): 726-730, 2023 Aug 02.
Artículo en Chino | MEDLINE | ID: mdl-37528014

RESUMEN

Objective: To discuss the clinical and genetic features of intellectual developmental disorder with behavioral abnormalities and craniofacial dysmorphism with or without seizures (IDDBCS). Methods: The clinical and genetic records of a patient who was diagnosed with IDDBCS caused by PHF21A gene variation at Children's Hospital Capital Institute of Pediatrics in 2021 were collected retrospectively. Using " PHF21A gene" as the keyword, relevant articles were searched at CNKI, Wanfang Data and PubMed from establishment of databases to February 2023. Clinical and genetic features of IDDBCS were summarized in the combination of this case. Results: An 8 months of age boy showed overgrowth (height, weight and head circumference were all higher than the 97th percentile of children of the same age and sex) and language and motor developmental delay after birth, and gradually showed autism-like symptoms like stereotyped behavior and poor eye contact. At 8 months of age, he began to show epileptic seizures, which were in the form of a series of spastic seizures with no reaction to adrenocorticotropic hormone but a good response to vigabatrin. Physical examination showed special craniofacial appearances including a prominent high forehead, sparse eyebrows, broad nasal bridge, and downturned mouth with a tent-shaped upper lip. The patient also manifested hypotonia. Whole exome sequencing showed a de novo heterogeneous variant, PHF21A (NM_001101802.1): c.54+1G>A, and IDDBCS was diagnosed. A total of 6 articles (all English articles) were collected, involving this case and other 14 patients of IDDBCS caused by PHF21A gene variation. Clinical manifestations were intellectual disability or developmental delay (15 patients), craniofacial anomalies (15 patients), behavioral abnormalities (12 patients), seizures (9 patients), and overgrowth (8 patients). The main pathogenic variations were frameshift variations (8 patients). Conclusions: IDDBCS should be considered when patients show nervous developmental abnormalities, craniofacial anomalies, seizures and overgrowth. PHF21A gene variation detection helps to make a definite diagnosis.


Asunto(s)
Anomalías Craneofaciales , Discapacidad Intelectual , Masculino , Humanos , Niño , Discapacidad Intelectual/genética , Discapacidades del Desarrollo/genética , Estudios Retrospectivos , Convulsiones/genética , Anomalías Craneofaciales/genética , Histona Desacetilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA