Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.121
Filtrar
1.
BMC Res Notes ; 17(1): 222, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127702

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) is a RNA virus belonging to Retroviridae family and is associated with the development of various diseases, including adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Aside from HAM/TSP, HTLV-1 has been implicated in the development of several disorders that mimic auto-inflammation. T-cell migration is important topic in the context of HTLV-1 associated diseases progression. The primary objective of this case-control study was to assess the relationship between increased mRNA expression in virus migration following HTLV-1 infection. PBMCs from 20 asymptomatic patients and 20 healthy subjects were analyzed using real-time PCR to measure mRNA expression of LFA1, MLCK, RAC1, RAPL, ROCK1, VAV1 and CXCR4. Also, mRNA expression of Tax and HBZ were evaluated. Mean expression of Tax and HBZ in ACs (asymptomatic carriers) was 0.7218 and 0.6517 respectively. The results revealed a noteworthy upregulation of these genes involved in T-cell migration among ACs patients in comparison to healthy individuals. Considering the pivotal role of gene expression alterations associated with the progression into two major diseases (ATLL or HAM/TSP), analyzing the expression of these genes in the ACs group can offer probable potential diagnostic markers and aid in monitoring the condition of ACs.


Asunto(s)
Movimiento Celular , Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/fisiología , Masculino , Femenino , Adulto , Estudios de Casos y Controles , Persona de Mediana Edad , Infecciones por HTLV-I/inmunología , Infecciones por HTLV-I/virología , Infecciones por HTLV-I/genética , Productos del Gen tax/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Leucocitos/metabolismo , Leucocitos/inmunología , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Proteínas de los Retroviridae , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
2.
Nat Commun ; 15(1): 5318, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909022

RESUMEN

During primary varicella zoster virus (VZV) infection, infected lymphocytes drive primary viremia, causing systemic dissemination throughout the host, including the skin. This results in cytokine expression, including interferons (IFNs), which partly limit infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. It is not clear how VZV achieves this while evading the cytokine response. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity, increasing the expression of a subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of keratinocytes facilitates lymphocyte function-associated antigen 1-dependent T cell adhesion and expression of gC during infection increases VZV spread to peripheral blood mononuclear cells. This constitutes the discovery of a strategy to modulate IFN-γ activity, upregulating a subset of ISGs, promoting enhanced lymphocyte adhesion and virus spread.


Asunto(s)
Adhesión Celular , Herpesvirus Humano 3 , Molécula 1 de Adhesión Intercelular , Interferón gamma , Queratinocitos , Linfocitos T , Humanos , Interferón gamma/metabolismo , Interferón gamma/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Queratinocitos/virología , Queratinocitos/metabolismo , Queratinocitos/inmunología , Herpesvirus Humano 3/fisiología , Infección por el Virus de la Varicela-Zóster/inmunología , Infección por el Virus de la Varicela-Zóster/virología , Leucocitos Mononucleares/virología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Proteínas del Envoltorio Viral/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo
3.
Blood ; 144(12): 1271-1283, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-38875515

RESUMEN

ABSTRACT: The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.


Asunto(s)
Adhesión Celular , Células Asesinas Naturales , Mieloma Múltiple , Humanos , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Pronóstico , Femenino , Masculino , Citotoxicidad Inmunológica , Antígenos de Diferenciación de Linfocitos T/metabolismo , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Receptores de IgG , Proteínas Ligadas a GPI
4.
J Clin Invest ; 134(14)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38787791

RESUMEN

Intratumoral Tregs are key mediators of cancer immunotherapy resistance, including anti-programmed cell death (ligand) 1 [anti-PD-(L)1] immune checkpoint blockade (ICB). The mechanisms driving Treg infiltration into the tumor microenvironment (TME) and the consequence on CD8+ T cell exhaustion remain elusive. Here, we report that heat shock protein gp96 (also known as GRP94) was indispensable for Treg tumor infiltration, primarily through the roles of gp96 in chaperoning integrins. Among various gp96-dependent integrins, we found that only LFA-1 (αL integrin), and not αV, CD103 (αE), or ß7 integrin, was required for Treg tumor homing. Loss of Treg infiltration into the TME by genetic deletion of gp96/LFA-1 potently induced rejection of tumors in multiple ICB-resistant murine cancer models in a CD8+ T cell-dependent manner, without loss of self-tolerance. Moreover, gp96 deletion impeded Treg activation primarily by suppressing IL-2/STAT5 signaling, which also contributed to tumor regression. By competing for intratumoral IL-2, Tregs prevented the activation of CD8+ tumor-infiltrating lymphocytes, drove thymocyte selection-associated high mobility group box protein (TOX) induction, and induced bona fide CD8+ T cell exhaustion. By contrast, Treg ablation led to striking CD8+ T cell activation without TOX induction, demonstrating clear uncoupling of the 2 processes. Our study reveals that the gp96/LFA-1 axis plays a fundamental role in Treg biology and suggests that Treg-specific gp96/LFA-1 targeting represents a valuable strategy for cancer immunotherapy without inflicting autoinflammatory conditions.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Linfocitos T Reguladores , Microambiente Tumoral , Animales , Linfocitos T Reguladores/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/genética , Ratones Noqueados , Antígeno-1 Asociado a Función de Linfocito/inmunología , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Humanos , Agotamiento de Células T
5.
Mol Biol Cell ; 35(5): ar64, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507235

RESUMEN

Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet despite its ubiquitous expression on NK cells, CD56 remains a poorly understood protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2 accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.


Asunto(s)
Actinas , Moléculas de Adhesión de Célula Nerviosa , Humanos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Actinas/metabolismo , Antígeno CD56/metabolismo , Células Asesinas Naturales , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Movimiento Celular
6.
Cells ; 13(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38391953

RESUMEN

Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, ß2 integrins (LFA-1, Mac-1, p150,95 and αDß2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. ß2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. ß2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from ß2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which ß2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.


Asunto(s)
Moléculas de Adhesión Celular , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Moléculas de Adhesión Celular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno de Macrófago-1 , Antígenos CD18 , Comunicación
7.
Elife ; 122024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393325

RESUMEN

T cells are crucial for efficient antigen-specific immune responses and thus their migration within the body, to inflamed tissues from circulating blood or to secondary lymphoid organs, plays a very critical role. T cell extravasation in inflamed tissues depends on chemotactic cues and interaction between endothelial adhesion molecules and cellular integrins. A migrating T cell is expected to sense diverse external and membrane-intrinsic mechano-physical cues, but molecular mechanisms of such mechanosensing in cell migration are not established. We explored if the professional mechanosensor Piezo1 plays any role during integrin-dependent chemotaxis of human T cells. We found that deficiency of Piezo1 in human T cells interfered with integrin-dependent cellular motility on ICAM-1-coated surface. Piezo1 recruitment at the leading edge of moving T cells is dependent on and follows focal adhesion formation at the leading edge and local increase in membrane tension upon chemokine receptor activation. Piezo1 recruitment and activation, followed by calcium influx and calpain activation, in turn, are crucial for the integrin LFA1 (CD11a/CD18) recruitment at the leading edge of the chemotactic human T cells. Thus, we find that Piezo1 activation in response to local mechanical cues constitutes a membrane-intrinsic component of the 'outside-in' signaling in human T cells, migrating in response to chemokines, that mediates integrin recruitment to the leading edge.


Asunto(s)
Quimiocinas , Canales Iónicos , Linfocitos T , Humanos , Adhesión Celular , Movimiento Celular , Quimiotaxis , Antígeno-1 Asociado a Función de Linfocito , Canales Iónicos/metabolismo
8.
J Immunother Cancer ; 12(2)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38417916

RESUMEN

BACKGROUND: The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS: Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS: Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS: Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.


Asunto(s)
Neoplasias de la Mama , Receptores Quiméricos de Antígenos , Humanos , Femenino , Molécula 1 de Adhesión Intercelular , Receptores Quiméricos de Antígenos/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Regulación hacia Abajo , Escape del Tumor , Línea Celular Tumoral , Células Asesinas Naturales , Trastuzumab/farmacología , Anticuerpos , Receptores Fc/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo
9.
Nat Commun ; 15(1): 407, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195629

RESUMEN

T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.


Asunto(s)
Antineoplásicos , Linfocitos T , Humanos , Gránulos Citoplasmáticos , Antígeno-1 Asociado a Función de Linfocito , Receptores de Antígenos de Linfocitos T , Antígeno CD11a/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38205640

RESUMEN

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Asunto(s)
Lesión Pulmonar Aguda , Antígeno de Macrófago-1 , Animales , Ratones , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Adhesión Celular , Disulfuros , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
11.
Int J Radiat Oncol Biol Phys ; 119(1): 234-250, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981041

RESUMEN

PURPOSE: Radiation therapy (RT) has been shown to effectively induce the expression of intercellular adhesion molecule-1 (ICAM-1), which is recognized by lymphocyte function-associated antigen 1 (LFA-1) expressed on natural killer (NK) cells. However, the potential synergistic antitumor immune response of tumor irradiation and administered NK cells has not been explored in intractable human liver cancers. Furthermore, NK cell targeting against both parental and cancer stemness has never been investigated. METHODS AND MATERIALS: Highly activated ex vivo NK cells were administered into the human liver tumor-bearing mice. Tumor direct RT was optimized according to tumor bearing site. HepG2 and Hep3B ICAM-1 knockout cells were generated using CRISPR/CAS9. Stemness tumor spheres were generated. NK cell cytolysis against parental and tumor sphere was evaluated using flow cytometry and real-time cytotoxicity assay. RESULTS: A combination of adoptive NK cell therapy with RT significantly improved therapeutic efficacy over monotherapies against subcutaneous, orthotopic, and metastatic human liver tumor models. Direct tumor irradiation potentiated NK cell recognition and conjugation against liver cancer through the LFA-1/ICAM-1 axis. Suppression of immune synapse formation on NK cells using high-affinity LFA-1 inhibitors or ICAM-1 knockout liver cancer induced "outside-in" signal blocking in NK cells, resulting in failure to eliminate liver tumor despite the combination therapy. NK cells effectively recognized and targeted triple-high epithelial cell adhesion molecule+CD133+CD24+ liver cancer expressing upregulated ICAM-1 in the irradiated tumor microenvironment, which led to prevention of the initiation of metastasis, improving survival in a metastatic model. In addition, the LFA-1/ICAM-1 axis interruption between NK cells and stemness liver tumor spheres significantly diminished NK cell cytolysis. Consistent with our preclinical data, the LFA-1/ICAM-1 axis correlated with survival outcomes in patients with metastatic cancer from the The Cancer Genome Atlas databases. CONCLUSIONS: NK cells in combination with tumor irradiation can provide synergistic therapeutic effects for NK cell recognition and elimination against both parental and stemlike liver cancer through LFA-1/ICAM-1.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno-1 Asociado a Función de Linfocito/farmacología , Citotoxicidad Inmunológica , Células Asesinas Naturales , Neoplasias Hepáticas/metabolismo , Padres , Microambiente Tumoral
12.
Oncoimmunology ; 13(1): 2293511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38125721

RESUMEN

Anti-PD-1 antibody therapy has achieved success in tumor treatment; however, the duration of its clinical benefits are typically short. The functional state of intratumoral CD8+ T cells substantially affects the efficacy of anti-PD-1 antibody therapy. Understanding how intratumoral CD8+ T cells change will contribute to the improvement in anti-PD-1 antibody therapy. In this study, we found that tumor growth was not arrested after the late administration of anti-PD-1 antibody and that the antitumor function of CD8+ T cells decreased with tumor progression. The results of the RNA sequencing of CD8+ T cells infiltrating the tumor site on days 7 and 14 showed that the cell adhesion molecule Lymphocyte Function-associated Antigen-1 (LFA-1) participates in regulating the antitumor function of CD8+ T cells and that decreased LFA-1 expression in intratumoral CD8+ T cells is associated with tumor progression. By analyzing the Gene Expression Omnibus (GEO) database and our results, we found that the antitumor function of intratumoral CD8+ T cells with high LFA-1 expression was stronger. The formation of immune synapses is impaired in Itgal-si CD8+ T cells, resulting in decreased anti-tumor function. LFA-1 expression in intratumoral CD8+ T cells is regulated by the IL-2/STAT5 pathway. The combination of IL-2 and anti-PD-1 antibody effectively enhanced LFA-1 expression and the antitumor function of intratumoral CD8+ T cells. The adoptive transfer of OT-1 T cells overexpressing LFA-1, STAT5A, or STAT5B resulted in higher antitumor function, deferred tumor growth, and prolonged survival. These findings indicate that LFA-1-mediated immune synapse acts as a regulator of the antitumor function of intratumoral CD8+ T cells, which can be applied to improve anti-PD-1 antibody therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Interleucina-2/farmacología , Factor de Transcripción STAT5/metabolismo , Moléculas de Adhesión Celular
13.
Biochim Biophys Acta Gen Subj ; 1868(3): 130541, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103755

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are natural nano-carriers that possess the required crucial features of an ideal biomolecular delivery system. However, using unmodified EVs may have some limitations such as low accumulation in target sites. Studies have established that engineering EVs against different cell surface markers can overcome most of these hurdles. METHODS: In this study, engineered EVs expressing ICAM-1/LAMP2b fusion protein on their surfaces were produced and isolated. The uptake of isolated targeted and non-targeted EVs was evaluated by imaging and flow cytometry. To assess the ability of targeted EVs to be applied as a safe carrier, pAAVS1-Puro-GFP plasmids were encapsulated into EVs by electroporation. RESULTS: The HEKT 293 cell line was successfully modified permanently by a lentiviral vector to express ICAM-1 on the surface of the derived EVs. The ELISA and western blot tests established the binding affinity of targeted EVs for recombinant LFA-1 with a remarkable difference from non-targeted EVs. Furthermore, flow cytometry results revealed noteworthy differences in the binding of LFA-1-positive, non-targeted EVs, and targeted EVs to LFA-1-negative cells. Finally, imaging and flow cytometry indicated that newly produced EVs could efficiently interact with T cells and functionally deliver loaded plasmids to them. CONCLUSION: These LFA-1-targeted EVs were able to interact with T cells as their recipient cells. They can be utilized as an ideal delivery system to transfer various biomolecules to T cells, facilitating immunotherapies or other cell-based treatments.


Asunto(s)
Vesículas Extracelulares , Linfocitos T , Linfocitos T/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Vesículas Extracelulares/metabolismo , Línea Celular
14.
Med Oncol ; 41(1): 15, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38078968

RESUMEN

Lymphocyte function-associated antigene-1 (LFA-1) is a well-described integrin found on lymphocytes and other leukocytes, which is known to be overexpressed in leukemias and lymphomas. This receptor plays a significant role in immune responses such as T-cell activation, leukocyte cell-cell interactions, and trafficking of leukocyte populations. Subsequently, binders of LFA-1 emerge as potential candidates for cancer and autoimmune therapy. This study used the phage display technique to construct and characterize a high-affinity single-chain fragment variable (scFv) antibody against LFA-1. After expression, purification, dialysis, and concentration of the recombinant LFA-1 protein, four female BALB/c mice were immunized, splenocyte's mRNA was extracted, and cDNA was synthesized. A scFv library was constructed by linking the amplified VH/Vκ fragments through a 72-bp linker using SOEing PCR. Next, the scFv gene fragments were cloned into the pComb-3XSS phagemid vector; thus, the phage library was developed. The selection process involved three rounds of phage-bio-panning, polyclonal, and monoclonal phage ELISA. AF17 was chosen and characterized among the positive clones through SDS-PAGE, Western blotting, indirect ELISA, and in-silico analyses. The results of the study showed the successful construction of a high-affinity scFv library against LFA-1. The accuracy of the AF17 production and its ability to bind to the LFA-1 were confirmed through SDS-PAGE, Western blot, and ELISA. This study highlights the potential application of the high-affinity AF17 against LFA-1 for targeting T lymphocytes for therapeutic purposes.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Animales , Ratones , Femenino , Anticuerpos de Cadena Única/genética , Antígeno-1 Asociado a Función de Linfocito/genética , Técnicas de Visualización de Superficie Celular , Anticuerpos Monoclonales , Biblioteca de Péptidos , Proteínas Recombinantes/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo
15.
Cells ; 12(23)2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067132

RESUMEN

B cell antigen receptor (BCR) signaling induces actin cytoskeleton remodeling by stimulating actin severing, actin polymerization, and the nucleation of branched actin networks via the Arp2/3 complex. This enables B cells to spread on antigen-bearing surfaces in order to increase antigen encounters and to form an immune synapse (IS) when interacting with antigen-presenting cells (APCs). Although the WASp, N-WASp, and WAVE nucleation-promoting factors activate the Arp2/3 complex, the role of WAVE2 in B cells has not been directly assessed. We now show that both WAVE2 and the Arp2/3 complex localize to the peripheral ring of branched F-actin when B cells spread on immobilized anti-Ig antibodies. The siRNA-mediated depletion of WAVE2 reduced and delayed B cell spreading on immobilized anti-Ig, and this was associated with a thinner peripheral F-actin ring and reduced actin retrograde flow compared to control cells. Depleting WAVE2 also impaired integrin-mediated B cell spreading on fibronectin and the LFA-1-induced formation of actomyosin arcs. Actin retrograde flow amplifies BCR signaling at the IS, and we found that depleting WAVE2 reduced microcluster-based BCR signaling and signal amplification at the IS, as well as B cell activation in response to antigen-bearing cells. Hence, WAVE2 contributes to multiple actin-dependent processes in B lymphocytes.


Asunto(s)
Actinas , Receptores de Antígenos de Linfocitos B , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/fisiología , Animales , Ratones
16.
Indian J Med Res ; 157(5): 453-459, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37955219

RESUMEN

Background & objectives: To examine ß-D-mannuronic acid (M2000) effects on L-selectin shedding and leucocyte function-associated antigen-1 (LFA-1) expression as mechanisms of action of this drug in patients with ankylosing spondylitis (AS). Methods: To investigate the molecular consequences of ß-D-mannuronic acid on L-selectin shedding, flow cytometry method was used. Furthermore, the effect of it on LFA-1 gene expression was analyzed by using quantitative real time (qRT)-PCR technique. Results: The LFA-1 expression in patients with AS was higher than controls (P=0.046). The LFA-1 expression after 12 wk therapy with ß-D-mannuronic acid was meaningfully decreased (P=0.01). After 12 wk treatment with ß-D-mannuronic acid, the frequency of CD62L-expressing CD4+ T cells in patients with AS, was not considerably altered, compared to the patients before therapy (P=0.5). Furthermore, after 12 wk therapy with ß-D-mannuronic acid, L-selectin expression levels on CD4+ T-cells in patients with AS, were not remarkably changed, compared to the expression levels of these in patients before treatment (P=0.2). Interpretation & conclusions: The results of this study for the first time showed that ß-D-mannuronic acid can affect events of adhesion cascade in patients with AS. Moreover, ß-D-mannuronic acid presented as an acceptable benefit to AS patients and could aid in the process of disease management.


Asunto(s)
Espondilitis Anquilosante , Humanos , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/genética , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/uso terapéutico , Selectina L/genética , Moléculas de Adhesión Celular
17.
Front Immunol ; 14: 1219953, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781399

RESUMEN

Integrin αLß2 (CD11a/CD18, CD11a) is a critical leukocyte adhesion molecule in leukocyte arrest and immunological synapse formation. However, its role in the bone marrow has not been investigated in depth. Here we showed that CD11a was expressed on all subsets of hematopoietic stem and progenitor cells (HPSCs). CD11a deficiency enhanced HSPCs activity under lipopolysaccharide (LPS) stimulation as demonstrated by a higher HSPC cell count along with an increase in cell proliferation. However, our mixed chimera experiment did not support that this phenotype was driven in a cell-intrinsic manner. Rather we found that the production of IL-27, a major cytokine that drives HSPC proliferation, was significantly upregulated both in vivo and in vitro. This adds a novel role of CD11a biology.


Asunto(s)
Moléculas de Adhesión Celular , Células Madre Hematopoyéticas , Antígeno-1 Asociado a Función de Linfocito , Médula Ósea , Antígeno CD11a
18.
Cell Commun Signal ; 21(1): 233, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723552

RESUMEN

Cancer immunotherapy has been proven to be clinically effective in multiple types of cancers. Lymphocyte function-associated antigen 1 (LFA-1), a member of the integrin family of adhesion molecules, is expressed mainly on αß T cells. LFA-1 is associated with tumor immune responses, but its exact mechanism remains unknown. Here, two kinds of mice tumor model of LFA-1 knockout (LFA-1-/-) mice bearing subcutaneous tumor and Apc Min/+;LFA-1-/- mice were used to confirm that LFA-1 knockout resulted in inhibition of tumor growth. Furthermore, it also demonstrated that the numbers of regulatory T cells (Treg cells) in the spleen, blood, mesenteric lymph nodes were decreased in LFA-1-/- mice, and the numbers of Treg cells in mesenteric lymph nodes were also decreased in Apc Min/+;LFA-1-/- mice compared with Apc Min/+ mice. LFA-1 inhibitor (BIRT377) was administered to subcutaneous tumor-bearing LFA-1+/+ mice, and the results showed that the tumor growth was inhibited and the number of Treg cells was reduced. The analysis of TIMER tumor database indicated that LFA-1 expression is positively associated with Treg cells and TNM stage. Conclusively, this suggests that LFA-1 knockout would inhibit tumor growth and is correlated with Treg cells. LFA-1 may be one potential target for cancer immunotherapy. Video Abstract.


Asunto(s)
Antígeno-1 Asociado a Función de Linfocito , Neoplasias , Animales , Ratones , Linfocitos T Reguladores , Bazo , Bases de Datos Factuales
19.
Sci Rep ; 13(1): 15344, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714911

RESUMEN

Rheumatoid arthritis (RA) is characterized by synovial proliferation and lymphocyte accumulation leading to progressive damage of the periarticular bone and the articular cartilage. The hyperplasia of the synovial intima lining mainly consists of fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) which exhibit apoptosis-resistance, hyper-proliferation, and high invasiveness. The therapeutic efficacy of mesenchymal stem cells (MSCs) treatment in RA has been shown to be due to its immuno-regulatory ability. However, the exact factors and mechanisms involved in MSCs treatment in RA remain unclear. In this study, TRAIL receptor-Death receptor 4 (DR4), DR5, and LFA-1 ligand-intercellular adhesion molecule-1 (ICAM-1) were upregulated in IL-1ß-stimulated HFLS-RA. We demonstrated that the total cell number of IL-1ß-stimulated hUCMSCs adhering to IL-1ß-stimulated HFLA-RA increased via LFA-1/ICAM-1 interaction. Direct co-culture of IL-1ß-stimulated hUCMSCs with IL-1ß-stimulated HFLS-RA increased the apoptosis of HFLS-RA. RA symptoms in the CIA mouse model improved after administration of IL-1ß-stimulated hUCMSCs. In conclusion, IL-1ß-stimulated hUCMSCs adhering to HFLS-RA occurred via LFA-1/ICAM-1 interaction, apoptosis of HFLS-RA was induced via TRAIL/DR4, DR5 contact, and RA symptoms and inflammation were significantly improved in a CIA mouse model. The results of this study suggest that IL-1ß-stimulated hUCMSCs have therapeutic potential in RA treatment.


Asunto(s)
Artritis Reumatoide , Células Madre Mesenquimatosas , Sinoviocitos , Animales , Humanos , Ratones , Apoptosis , Artritis Reumatoide/terapia , Modelos Animales de Enfermedad , Fibroblastos , Molécula 1 de Adhesión Intercelular , Antígeno-1 Asociado a Función de Linfocito , Cordón Umbilical , Interleucina-1beta/metabolismo
20.
Biomolecules ; 13(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627259

RESUMEN

Lymphocyte function-associated antigen-1 (LFA-1) and its endothelial ligand intercellular adhesion molecule-1 (ICAM-1) are important for the migration of lymphocytes from blood vessels into lymph nodes. However, it is largely unknown whether these molecules mediate the homeostatic migration of lymphocytes from peripheral tissues into lymph nodes through lymphatic vessels. In this study, we find that, in naive mice, ICAM-1 is expressed on the sinus endothelia of lymph nodes, but not on the lymphatic vessels of peripheral tissues. In in vivo lymphocyte migration assays, memory CD4+ T cells migrated to lymph nodes from peripheral tissues much more efficiently than from blood vessels, as compared to naive CD4+ T cells. Moreover, ICAM-1 deficiency in host mice significantly inhibited the migration of adoptively transferred wild-type donor lymphocytes from peripheral tissues, but not from blood vessels, into lymph nodes. The migration of LFA-1-deficient donor lymphocytes from peripheral tissues into the lymph nodes of wild-type host mice was also significantly reduced as compared to wild-type donor lymphocytes. Furthermore, the number of memory T cells in lymph nodes was significantly reduced in the absence of ICAM-1 or LFA-1. Thus, our study extends the functions of the LFA-1/ICAM-1 adhesion pathway, indicating its novel role in controlling the homeostatic migration of lymphocytes from peripheral tissues into lymph nodes and maintaining memory T cellularity in lymph nodes.


Asunto(s)
Vasos Linfáticos , Antígeno-1 Asociado a Función de Linfocito , Animales , Ratones , Molécula 1 de Adhesión Intercelular , Linfocitos , Ganglios Linfáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...