Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.032
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 28(9): 3384-3390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766795

RESUMEN

OBJECTIVE: We aimed to investigate the application of CD34 detection in immunophenotypic discrimination and its prognostic relevance in children with acute B-lymphoblastic leukemia (B-ALL). PATIENTS AND METHODS: A retrospective analysis was conducted on clinical follow-up data of 105 children with newly diagnosed B-ALL treated at our hospital from January 2022 to December 2023. Based on the expression of CD34 in the bone marrow, patients were divided into a CD34 positive group (positive cells ≥10%) and a CD34 negative group (positive cells <10%). The study compared the positive rates of common leukemia cell antigens, clinical characteristics, initial treatment responses, and long-term follow-up outcomes between the two groups. RESULTS: Among all 105 B-ALL cases, 87 children (82.9%) had bone marrow CD34 positive cells ≥10%, classified into the CD34 positive group, while the remaining 18 children (17.1%) had bone marrow CD34 positive cells <10%, classified into the CD34 negative group. The CD34 positive group exhibited significantly higher positive rates of CD13 expression, standard-risk B-ALL, and risk stratification than the CD34 negative group. In contrast, the proportions of early pre-B-ALL, E2A-PBX1 fusion gene, and MLL-AF4 fusion gene were significantly lower in the CD34 negative group, with statistically significant differences (p<0.05). No significant differences were found in the positive rates of leukemia cell antigens such as CD10, CD19, CD20, CD22, CD79a, CD13, CD33, and CD38 between the two groups (p>0.05). The occurrence rates of minimal residual disease (MRD) and relapse after induction chemotherapy in the CD34 positive group were significantly lower than those in the CD34 negative group (p<0.05). However, the sensitivity to the first prednisone treatment and bone marrow treatment efficacy on the 19th and 33rd days after chemotherapy showed no significant differences between the groups (p>0.05). CONCLUSIONS: A higher positive rate of bone marrow CD34 expression in children with B-ALL is associated with a favorable prognosis. Children with negative CD34 expression are relatively more prone to MRD and tumor relapse after chemotherapy.


Asunto(s)
Antígenos CD34 , Inmunofenotipificación , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Niño , Antígenos CD34/metabolismo , Masculino , Femenino , Preescolar , Estudios Retrospectivos , Pronóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Lactante , Adolescente
2.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704588

RESUMEN

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antígenos CD34/metabolismo
3.
Am J Dermatopathol ; 46(6): 346-352, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574066

RESUMEN

ABSTRACT: Some authors have suggested that the fibroblasts of the nail mesenchyme (onychofibroblasts) can be distinguished from skin fibroblasts by their high expression of CD10. My 2015 study documented the presence of a relatively sparse CD34 + /CD10 + dendritic subpopulation in the dermis and hypodermis of the matrix. For some time now, my hypothesis has been that these interstitial dendritic mesenchymal cells of the matrix correspond to telocytes. Telocytes have been described as peculiar interstitial dendritic cells present in the mesenchymal tissue of numerous organs, including the skin, but their presence and characteristics in the nail unit have not been explored. This study was undertaken to more comprehensively investigate the existence and characteristics of nail telocytes. A series of 20 normal adult nail units were examined with a combination of morphological and immunohistochemical analyses. The matrix dermis contained a sparse subpopulation of CD34 + /CD10 + elongated telocytes with a higher density in the lunular region and, at this distal level, a change in their immunohistochemical profile, resulting in a progressive loss of CD34 expression. The matrix hypodermis showed CD34 + /CD10 + telocytes in their classical elongated aspect, which acquired, especially in the distal fibromyxoid area of the thumb, an oval to round morphology with multiple intracytoplasmic vacuoles. The characteristic dynamic immunophenotypic profile of the dermal telocytes with a progressive distal loss of the defining molecule CD34 was equally observed in the distal hypodermis. The nail bed dermis was thick with a dense fibrous connective tissue. A reticular network of CD34 - /CD10 + telocytes was present in the superficial dermis of the proximal nail bed. The mesenchymal cells of the deep part of the proximal nail bed dermis and the entire distal nail bed dermis were CD34 - /CD10 - . The adult nail mesenchyme is composed of 3 microanatomically distinct regions. Only the thumb has a distal hypodermis rich in mucinous material. The population of telocytes is relatively sparse compared with the fibroblastic population of the entire nail mesenchyme. The concept of onychodermis/onychofibroblasts is not valid. Nail telocytes have a dynamic immunohistochemical profile depending on whether they are located proximally or distally. The CD34 + /CD10 + profile correlates with the onychogenic epithelial region, while the CD34 - /CD10 + profile correlates with a spatial rearrangement of the nail epidermal bed.


Asunto(s)
Inmunohistoquímica , Uñas , Telocitos , Humanos , Telocitos/patología , Uñas/patología , Adulto , Antígenos CD34/análisis , Antígenos CD34/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Fibroblastos/patología , Biomarcadores/análisis , Biomarcadores/metabolismo , Anciano
5.
Stem Cell Res Ther ; 15(1): 100, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589882

RESUMEN

BACKGROUND: Erythroid and myeloid differentiation disorders are commonly occurred in leukemia. Given that the relationship between erythroid and myeloid lineages is still unclear. To find the co-regulators in erythroid and myeloid differentiation might help to find new target for therapy of myeloid leukemia. In hematopoiesis, ALA (alpha lipoic acid) is reported to inhibit neutrophil lineage determination by targeting transcription factor ELK1 in granulocyte-monocyte progenitors via splicing factor SF3B1. However, further exploration is needed to determine whether ELK1 is a common regulatory factor for erythroid and myeloid differentiation. METHODS: In vitro culture of isolated CD34+, CMPs (common myeloid progenitors) and CD34+ CD371- HSPCs (hematopoietic stem progenitor cells) were performed to assay the differentiation potential of monocytes, neutrophils, and erythrocytes. Overexpression lentivirus of long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 transduced CD34+ HSPCs were transplanted into NSG mice to assay the human lymphocyte and myeloid differentiation differences 3 months after transplantation. Knocking down of SRSF11, which was high expressed in CD371+GMPs (granulocyte-monocyte progenitors), upregulated by ALA and binding to ELK1-RNA splicing site, was performed to analyze the function in erythroid differentiation derived from CD34+ CD123mid CD38+ CD371- HPCs (hematopoietic progenitor cells). RNA sequencing of L-ELK1 and S-ELK1 overexpressed CD34+ CD123mid CD38+ CD371- HPCs were performed to assay the signals changed by ELK1. RESULTS: Here, we presented new evidence that ALA promoted erythroid differentiation by targeting the transcription factor ELK1 in CD34+ CD371- hematopoietic stem progenitor cells (HSPCs). Overexpression of either the long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 inhibited erythroid-cell differentiation, but knockdown of ELK1 did not affect erythroid-cell differentiation. RNAseq analysis of CD34+ CD123mid CD38+ CD371- HPCs showed that L-ELK1 upregulated the expression of genes related to neutrophil activity, phosphorylation, and hypoxia signals, while S-ELK1 mainly regulated hypoxia-related signals. However, most of the genes that were upregulated by L-ELK1 were only moderately upregulated by S-ELK1, which might be due to a lack of serum response factor interaction and regulation domains in S-ELK1 compared to L-ELK1. In summary, the differentiation of neutrophils and erythrocytes might need to rely on the dose of L-ELK1 and S-ELK1 to achieve precise regulation via RNA splicing signals at early lineage commitment. CONCLUSIONS: ALA and ELK1 are found to regulate both human granulopoiesis and erythropoiesis via RNA spliceosome, and ALA-ELK1 signal might be the target of human leukemia therapy.


Asunto(s)
Leucemia , Ácido Tióctico , Humanos , Ratones , Animales , Eritropoyesis , Neutrófilos/metabolismo , Subunidad alfa del Receptor de Interleucina-3 , Proteína Elk-1 con Dominio ets/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Eritrocitos , Hipoxia , Isoformas de Proteínas
7.
Cell Transplant ; 33: 9636897241241992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602231

RESUMEN

There is a huge unmet need for new treatment modalities for ocular surface inflammatory disorders (OSIDs) such as dry eye disease and meibomian gland dysfunction. Mesenchymal stem cell therapies may hold the answer due to their potent immunomodulatory properties, low immunogenicity, and ability to modulate both the innate and adaptive immune response. MSC-like cells that can be isolated from the corneal stroma (C-MSCs) offer a potential new treatment strategy; however, an optimized culture medium needs to be developed to produce the ideal phenotype for use in a cell therapy to treat OSIDs. The effects of in vitro expansion of human C-MSC in a medium of M199 containing fetal bovine serum (FBS) was compared to a stem cell medium (SCM) containing knockout serum replacement (KSR) with basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (LIF), investigating viability, protein, and gene expression. Isolating populations expressing CD34 or using siRNA knockdown of CD34 were investigated. Finally, the potential of C-MSC as a cell therapy was assessed using co-culture with an in vitro corneal epithelial cell injury model and the angiogenic effects of C-MSC conditioned medium were evaluated with blood and lymph endothelial cells. Both media supported proliferation of C-MSC, with SCM increasing expression of CD34, ABCG2, PAX6, NANOG, REX1, SOX2, and THY1, supported by increased associated protein expression. Isolating cell populations expressing CD34 protein made little difference to gene expression, however, knockdown of the CD34 gene led to decreased expression of progenitor genes. C-MSC increased viability of injured corneal epithelial cells whilst decreasing levels of cytotoxicity and interleukins-6 and -8. No pro-angiogenic effect of C-MSC was seen. Culture medium can significantly influence C-MSC phenotype and culture in SCM produced a cell phenotype more suitable for further consideration as an anti-inflammatory cell therapy. C-MSC show considerable potential for development as therapies for OSIDs, acting through anti-inflammatory action.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Humanos , Células Endoteliales/metabolismo , Córnea/metabolismo , Técnicas de Cocultivo , Fenotipo , Antígenos CD34/metabolismo , Células Cultivadas , Proliferación Celular , Diferenciación Celular
8.
Cardiovasc Diabetol ; 23(1): 107, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553774

RESUMEN

BACKGROUND: Diabetes-induced trained immunity contributes to the development of atherosclerosis and its complications. This study aimed to investigate in humans whether epigenetic signals involved in immune cell activation and inflammation are initiated in hematopoietic stem/progenitor cells (HSPCs) and transferred to differentiated progeny. METHODS AND RESULTS: High glucose (HG)-exposure of cord blood (CB)-derived HSPCs induced a senescent-associated secretory phenotype (SASP) characterized by cell proliferation lowering, ROS production, telomere shortening, up-regulation of p21 and p27genes, upregulation of NFkB-p65 transcription factor and increased secretion of the inflammatory cytokines TNFα and IL6. Chromatin immunoprecipitation assay (ChIP) of p65 promoter revealed that H3K4me1 histone mark accumulation and methyltransferase SetD7 recruitment, along with the reduction of repressive H3K9me3 histone modification, were involved in NFkB-p65 upregulation of HG-HSPCs, as confirmed by increased RNA polymerase II engagement at gene level. The differentiation of HG-HSPCs into myeloid cells generated highly responsive monocytes, mainly composed of intermediate subsets (CD14hiCD16+), that like the cells from which they derive, were characterized by SASP features and similar epigenetic patterns at the p65 promoter. The clinical relevance of our findings was confirmed in sternal BM-derived HSPCs of T2DM patients. In line with our in vitro model, T2DM HSPCs were characterized by SASP profile and SETD7 upregulation. Additionally, they generated, after myeloid differentiation, senescent monocytes mainly composed of proinflammatory intermediates (CD14hiCD16+) characterized by H3K4me1 accumulation at NFkB-p65 promoter. CONCLUSIONS: Hyperglycemia induces marked chromatin modifications in HSPCs, which, once transmitted to the cell progeny, contributes to persistent and pathogenic changes in immune cell function and composition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inmunidad Entrenada , Humanos , Fenotipo Secretor Asociado a la Senescencia , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34/metabolismo , Epigénesis Genética , Diabetes Mellitus Tipo 2/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
9.
Stem Cell Reports ; 19(4): 579-595, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38518781

RESUMEN

Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34+VEC+CD31- cells, and, when combined with FGF2 treatment, more than 90% of CD34+VEC+CD31+ EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.


Asunto(s)
Células Endoteliales , Factor 2 de Crecimiento de Fibroblastos , Células Madre Pluripotentes , Factores de Transcripción SOXF , Humanos , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Células Endoteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
10.
Genes Chromosomes Cancer ; 63(3): e23227, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38517106

RESUMEN

AIMS: Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS: Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS: This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.


Asunto(s)
Neoplasias de los Tejidos Conjuntivo y Blando , Proteínas de Fusión Oncogénica , Neoplasias Cutáneas , Neoplasias de los Tejidos Blandos , Adolescente , Niño , Femenino , Humanos , Masculino , Antígenos CD34/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de los Tejidos Conjuntivo y Blando/genética , Neoplasias de los Tejidos Conjuntivo y Blando/patología , Proteínas Tirosina Quinasas Receptoras , Neoplasias Cutáneas/patología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Proteínas de Fusión Oncogénica/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética
11.
Food Funct ; 15(8): 4010-4020, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38501161

RESUMEN

Cordyceps sinensis is a parasitic fungus known to induce immune responses. The impact of Cordyceps supplementation on stem cell homing and expansion to human skeletal muscle after exercise remains unexplored. In this study, we examined how pre-exercise Cordyceps supplementation influences cell infiltration, CD34+ cell recruitment, and Pax7+ cell expansion in human skeletal muscle after high-intensity interval exercise (HIIE) on a cycloergometer. A randomized, double-blind, placebo-controlled crossover study was conducted with 14 young adults (age: 24 ± 0.8 years). A placebo (1 g cornstarch) and Cordyceps (1 g Cordyceps sinensis) were administered before exercise (at 120% maximal aerobic power). Multiple biopsies were taken from the vastus lateralis for muscle tissue analysis before and after HIIE. This exercise regimen doubled the VEGF mRNA in the muscle at 3 h post-exercise (P = 0.006). A significant necrotic cell infiltration (+284%, P = 0.05) was observed 3 h after HIIE and resolved within 24 h. This response was substantially attenuated by Cordyceps supplementation. Moreover, we observed increases in CD34+ cells at 24 h post-exercise, notably accelerated by Cordyceps supplementation to 3 h (+51%, P = 0.002). This earlier response contributed to a four-fold expansion in Pax7+ cell count, as demonstrated by immunofluorescence double staining (CD34+/Pax7+) (P = 0.01). In conclusion, our results provide the first human evidence demonstrating the accelerated resolution of exercise-induced muscle damage by Cordyceps supplementation. This effect is associated with earlier stem cell recruitment into the damaged sites for muscle regeneration.


Asunto(s)
Cordyceps , Estudios Cruzados , Ejercicio Físico , Músculo Esquelético , Humanos , Cordyceps/química , Adulto Joven , Masculino , Ejercicio Físico/fisiología , Adulto , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Método Doble Ciego , Células Madre/efectos de los fármacos , Antígenos CD34/metabolismo , Femenino , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
12.
J Cosmet Dermatol ; 23(6): 2249-2255, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38429917

RESUMEN

BACKGROUND: Concentrated growth factor (CGF) injection has proven effective in treating androgenetic alopecia (AGA). The primary mechanism of CGF in treating AGA is thought to be the CD34+ stem cells and platelets-associated growth factors being injected into the scalp. CGF efficacy in treating AGA may rely on the activation level of these stem cells and platelets. The 640 nm laser is a United States Food and Drug Administration approved AGA treatment that activates follicle stem cells. Therefore, we hypothesize that pretreating CGF with a 640 nm laser may further activate CD34+ stem cells and platelets, thereby improving the efficacy of CGF in treating AGA. OBJECTIVE: This study aims to investigate whether 640 nm laser pretreated CGF (640CGF) has a greater effect in treating AGA than 640 nm laser non-pretreated CGF (N640CGF) and evaluate whether 640 nm laser pretreatment changed CD34+ cell percentage. METHODS: This study enrolled 10 patients (8 male, 2 female) with AGA aged 18-60 years who received CGF injections. The 640CGF group was pretreated with a 640 nm laser at an energy density of 4 J/cm2, with a 30 cm irradiation distance for 30 min. Half of the scalp was treated with 640CGF, whereas the other half was treated with N640CGF. The injection was prepared by a doctor who did not know which blood tube had been pretreated. The treatment efficacy was evaluated using a trichoscope 1 month after injection. RESULTS: All 10 (100%) patients participated in the follow-up visit, and a higher quantity of new hairs was observed on the side injected with 640CGF than N640CGF (p = 0.019). Additionally, fewer malnourished hairs were observed on the 640CGF pretreated side (p = 0.015). No serious adverse events were reported. CONCLUSIONS: A higher percentage of CD34+ stem cells and improved efficacy in AGA treatment could be observed with CGF prepared from 640 nm laser-pretreated blood.


Asunto(s)
Alopecia , Antígenos CD34 , Folículo Piloso , Péptidos y Proteínas de Señalización Intercelular , Humanos , Alopecia/terapia , Antígenos CD34/metabolismo , Adulto , Femenino , Persona de Mediana Edad , Masculino , Adulto Joven , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Resultado del Tratamiento , Células Madre/efectos de los fármacos , Adolescente , Cuero Cabelludo , Terapia por Luz de Baja Intensidad/métodos , Terapia por Luz de Baja Intensidad/efectos adversos , Terapia por Luz de Baja Intensidad/instrumentación
13.
Methods Mol Biol ; 2777: 163-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478343

RESUMEN

The hierarchical organization of the leukemic stem cells (LSCs) is identical to that of healthy counterpart cells. It may be split into roughly three stages: a small number of pluripotent stem cells at the top, few lineage-restricted cells in the middle, and several terminally differentiated blood cells at the bottom. Although LSCs can differentiate into the hematopoietic lineage, they can also accumulate as immature progenitor cells, also known as blast cells. Since blast cells are uncommon in healthy bloodstreams, their presence might be a sign of cancer. For instance, a 20% blast cutoff in peripheral blood or bone marrow is formally used to distinguish acute myeloid leukemia from myelodysplastic neoplasms, which is essential to plan the patients' management. Many techniques may be useful for blast enumeration: one of them is flow cytometry, which can perform analyses on many cells by detecting the expression of cell surface markers. Leukemic and non-leukemic blast cells might indeed be characterized by the same surface markers, but these markers are usually differently expressed. Here we propose to use CD45, in combination with CD34 and other cell surface markers, to identify and immunophenotype blast cells in patient-derived samples.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Médula Ósea/metabolismo , Antígenos CD34/metabolismo , Citometría de Flujo/métodos , Células Madre Neoplásicas/metabolismo , Inmunofenotipificación
14.
Blood ; 143(16): 1599-1615, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38394668

RESUMEN

ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.


Asunto(s)
Interferón gamma , Leucemia Mieloide Aguda , Linfocitos T , Animales , Humanos , Ratones , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Antígenos CD34/metabolismo , Línea Celular Tumoral , Células Madre Hematopoyéticas/metabolismo , Interferón gamma/efectos de los fármacos , Interferón gamma/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Activación de Linfocitos/efectos de los fármacos
15.
Transfusion ; 64(4): 742-750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407504

RESUMEN

Plerixafor (PLER), a reversible antagonist of the CXC chemokine receptor type 4, has been in clinical use for mobilization of blood grafts for autologous hematopoietic cell transplantation (AHCT) for about 15 years. Initially PLER was investigated in placebo-controlled trials with the granulocyte colony-stimulating factor (G-CSF) filgrastim. It has also been used in combination with chemotherapy plus G-CSF in patients who had failed a previous mobilization attempt or appeared to mobilize poorly with current mobilization (preemptive use). This review summarizes what is known regarding addition of PLER to standard mobilization regimens. PLER increases mobilization of CD34+ cells, decreases the number of apheresis sessions needed to achieve collection targets and increases the proportion of patients who can proceed to AHCT. It appears also to increase the amount of various lymphocyte subsets in the grafts collected. In general, hematologic recovery after AHCT has been comparable to patients mobilized without PLER, although slower platelet recovery has been observed in some studies of patients who mobilize poorly. In phase III studies, long-term outcome has been comparable to patients mobilized without PLER. This also appears to be the case in patients receiving plerixafor for poor or suboptimal mobilization of CD34+ cells. In practice, PLER is safe and has not been shown to increase tumor cell mobilization.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Mieloma Múltiple , Humanos , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Trasplante Autólogo , Mieloma Múltiple/terapia , Antígenos CD34/metabolismo
16.
PLoS One ; 19(2): e0296671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394221

RESUMEN

Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG.


Asunto(s)
Células Progenitoras Endoteliales , Pulmón , MicroARNs , Antígenos CD34/metabolismo , Movimiento Celular , Proliferación Celular , Células Progenitoras Endoteliales/metabolismo , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Complejo Represivo Polycomb 2/metabolismo
17.
J Psychosom Res ; 178: 111412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281471

RESUMEN

OBJECTIVE: Certain brain activation responses to psychological stress are associated with worse outcomes in CVD patients. We hypothesized that elevated acute psychological stress, manifesting as greater activity within neural centers for emotional regulation, mobilizes CPC from the bone marrow to the peripheral blood and predicts future cardiovascular events. METHODS: In 427 patients with stable CAD undergoing a laboratory-based mental stress (MS) test, CPCs were enumerated using flow cytometry as CD34-expressing mononuclear cells (CD34+) before and 45 min after stress. Changes in brain regional blood flow with MS were measured using high resolution-positron emission tomography (HR-PET). Association between the change in CPC with MS and the risk of cardiovascular death or myocardial infarction (MI) during a 5-year follow-up period was analyzed. RESULTS: MS increased CPC counts by a mean of 150 [630] cells/mL (15%), P < 0.001. Greater limbic lobe activity, indicative of activation of emotion-regulating centers, was associated with greater CPC mobilization (P < 0.005). Using Fine and Gray models after adjustment for demographioc, clinical risk factors and medications use, greater CPC mobilization was associated with a higher adjusted risk of adverse events; a rise of 1000 cells/mL was associated with a 50% higher risk of cardiovascular death/MI [hazards ratio, 1.5, 95% confidence interval, 1.1-2.2). CONCLUSION: Greater limbic lobe activity, brain areas involved in emotional regulation, is associated with MS-induced CPC mobilization. This mobilization isindependently associated with cardiovascular events. These findings provide novel insights into mechanisms through which psychological stressors modulate cardiovascular risk.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Antígenos CD34/metabolismo , Citometría de Flujo , Células Madre/metabolismo , Estrés Psicológico/complicaciones
18.
Hereditas ; 161(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173016

RESUMEN

BACKGROUND: Vascular aging is an important pathophysiological basis for the senescence of various organs and systems in the human body, and it is a common pathogenetic trigger for many chronic diseases in the elderly. METHODS: The extracellular vesicles (EVs) from young and aged umbilical vein endothelial cells were isolated and identified by qPCR the differential expression levels of 47 mRNAs of genes closely related to aging in the two groups. RESULTS: There were significant differences in the expression levels of 18 genes (we noted upregulation in PLA2G12A, TP53BP1, CD144, PDE11A, FPGT, SERPINB4, POLD1, and PPFIBP2 and downregulation in ATP2C2, ROBO2, RRM2, GUCY1B1, NAT1-14, VEGFR2, WTAPP1, CD146, DMC1, and GRIK2). Subsequent qPCR identification of the above-mentioned genes in PBMCs and plasma-EVs from the various age groups revealed that the trend in expression levels in peripheral blood plasma-EVs of the different age groups was approximately the same as that in PBMCs. Of these mRNAs, the expression of four genes-PLA2G12A, TP53BP1, OPRL1, and KIAA0895-was commensurate with increasing age. In contradistinction, the expression trend of four genes (CREG1, PBX1, CD34, and SLIT2) was inversely proportional to the increase in age. Finally, by taking their intersection, we determined that the expression of TP53BP1 was upregulated with increasing human age and that CD34 and PBX1 were downregulated with increasing age. CONCLUSION: Our study indicates that human peripheral blood plasma-EV-derived TP53BP1, CD34, and PBX1 potentially comprise a noninvasive biomarker for assessing and predicting vascular aging.


Asunto(s)
Células Endoteliales , Vesículas Extracelulares , Anciano , Humanos , Envejecimiento/genética , Biomarcadores/metabolismo , Células Endoteliales/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Antígenos CD34/metabolismo
19.
Ann Hematol ; 103(5): 1601-1611, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267561

RESUMEN

High-dose cyclophosphamide (HD-Cy) (3 g/m2) plus granulocyte colony-stimulating factor (G-CSF) is a very effective regimen for peripheral blood stem cell (PBSC) mobilization. Unfortunately, it is associated with an increased risk of neutropenic fever (NF). We analyzed the effect of NF on PBSC apheresis results and the efficacy of prophylactic antibiotics for the prevention of NF associated with HD-Cy plus G-CSF for PBSC mobilization in patients with newly diagnosed multiple myeloma (MM). First, patients were divided into NF ( +) and NF ( -) groups according to whether they suffered from NF during mobilization. Second, we divided patients into an antibiotic prophylaxis group and a nonantibiotic prophylaxis group according to whether antibiotic prophylaxis was used during the mobilization period. Our study showed that NF( +) patients (n = 44) had lower CD34 + cell dose collection (median 2.60 versus 5.34 × 106/kg, P < 0.001) and slower neutrophil engraftment and platelet engraftment (median 11 versus 10 days, P = 0.002, and median 13 versus 11 days, P = 0.043, respectively) than NF( -) patients (n = 234). Of note, the nonantibiotic prophylaxis group patients (n = 30) had a 26.7% incidence of NF. In the patients receiving antibiotic prophylaxis (n = 227), the incidence was reduced to 9.3% (P = 0.01). The antibiotic prophylaxis patients had higher CD34 + cell collection (median 5.41 versus 2.27 × 106/kg, P < 0.001) and lower hospitalization cost of mobilization ($ median 3108.02 versus 3702.39, p = 0.012). Thus, our results demonstrate that NF is associated with lower CD34 + cell collection and that antibiotic prophylaxis can reduce the incidence of NF and improve stem cell mobilization and collection outcomes, which reduces the hospitalization cost of mobilization.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/complicaciones , Mieloma Múltiple/tratamiento farmacológico , Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Ciclofosfamida/efectos adversos , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Antibacterianos/uso terapéutico , Antígenos CD34/metabolismo
20.
Cancer Res ; 84(3): 479-492, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095536

RESUMEN

Osimertinib is a third-generation covalent EGFR inhibitor that is used in treating non-small cell lung cancer. First-generation EGFR inhibitors were found to elicit pro-differentiation effect on acute myeloid leukemia (AML) cells in preclinical studies, but clinical trials yielded mostly negative results. Here, we report that osimertinib selectively induced apoptosis of CD34+ leukemia stem/progenitor cells but not CD34- cells in EGFR-negative AML and chronic myeloid leukemia (CML). Covalent binding of osimertinib to CD34 at cysteines 199 and 177 and suppression of Src family kinases (SFK) and downstream STAT3 activation contributed to osimertinib-induced cell death. SFK and STAT3 inhibition induced synthetic lethality with osimertinib in primary CD34+ cells. CD34 expression was elevated in AML cells compared with their normal counterparts. Genomic, transcriptomic, and proteomic profiling identified mutation and gene expression signatures of patients with AML with high CD34 expression, and univariate and multivariate analyses indicated the adverse prognostic significance of high expression of CD34. Osimertinib treatment induced responses in AML patient-derived xenograft models that correlated with CD34 expression while sparing normal CD34+ cells. Clinical responses were observed in two patients with CD34high AML who were treated with osimertinib on a compassionate-use basis. These findings reveal the therapeutic potential of osimertinib for treating CD34high AML and CML and describe an EGFR-independent mechanism of osimertinib-induced cell death in myeloid leukemia. SIGNIFICANCE: Osimertinib binds CD34 and selectively kills CD34+ leukemia cells to induce remission in preclinical models and patients with AML with a high percentage of CD34+ blasts, providing therapeutic options for myeloid leukemia patients.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Leucemia Mieloide Aguda , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteómica , Proliferación Celular , Neoplasias Pulmonares/metabolismo , Leucemia Mieloide Aguda/genética , Células Progenitoras Mieloides , Receptores ErbB/metabolismo , Antígenos CD34/metabolismo , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA