Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.210
Filtrar
1.
Front Immunol ; 15: 1389358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736873

RESUMEN

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Genotipo , Células Asesinas Naturales , Receptores KIR , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Femenino , Masculino , Adulto , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/genética , Citomegalovirus/inmunología , Receptores KIR/genética , Persona de Mediana Edad , Factores Sexuales , Factores de Edad , Antígenos CD57 , Prueba de Histocompatibilidad , Adulto Joven , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Antígenos HLA/genética , Antígenos HLA/inmunología , Anciano , Receptores KIR3DL1/genética
2.
HLA ; 103(5): e15515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747019

RESUMEN

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Asunto(s)
Alelos , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/mortalidad , Secuenciación del Exoma/métodos , Estudios de Casos y Controles , Masculino , Femenino , Frecuencia de los Genes , Cadenas beta de HLA-DQ/genética , Antígenos HLA/genética , Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Polimorfismo de Nucleótido Simple
3.
Nat Commun ; 15(1): 4031, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740772

RESUMEN

The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.


Asunto(s)
Alelos , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Antígenos HLA , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/genética , COVID-19/virología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Antígenos HLA/genética , Antígenos HLA/inmunología , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Masculino , Femenino , Genotipo , Vacunación , Persona de Mediana Edad , Adulto , Variación Genética , Cadenas beta de HLA-DQ/genética , Cadenas beta de HLA-DQ/inmunología , Infección Irruptiva
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38770719

RESUMEN

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Asunto(s)
Algoritmos , Vacunas contra el Cáncer , Método de Montecarlo , Humanos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , Antígenos HLA/inmunología , Antígenos HLA/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Mutación
10.
Proc Natl Acad Sci U S A ; 121(22): e2319029121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781214

RESUMEN

The HapImmuneTM platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment. The loosening of HLA restriction could increase the patient population that can benefit from this therapeutic approach. To understand the molecular basis for its unconventional binding capability, we used single-particle cryogenic electron microscopy to determine the structures of R023 bound to multiple sotorasib-peptide conjugates presented by different HLAs. R023 forms a pocket for sotorasib between the VH and VL domains, binds HLAs in an unconventional, angled way, with VL making most contacts with them, and makes few contacts with the peptide moieties. This binding mode enables the antibody to accommodate different hapten-peptide conjugates and to adjust its conformation to different HLAs presenting hapten-peptides. Deep mutational scanning validated the structures and revealed distinct levels of mutation tolerance by sotorasib- and HLA-binding residues. Together, our structural information and sequence landscape analysis reveal key features for achieving MHC-restricted recognition of multiple hapten-peptide antigens, which will inform the development of next-generation therapeutic antibodies.


Asunto(s)
Péptidos , Humanos , Péptidos/inmunología , Péptidos/química , Antígenos HLA/inmunología , Antígenos HLA/metabolismo , Complejo Mayor de Histocompatibilidad/inmunología , Haptenos/inmunología , Unión Proteica , Microscopía por Crioelectrón
11.
Nat Commun ; 15(1): 3956, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730277

RESUMEN

Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.


Asunto(s)
Aprendizaje Profundo , Péptidos , Espectrometría de Masas en Tándem , Humanos , Péptidos/química , Péptidos/inmunología , Espectrometría de Masas en Tándem/métodos , Bases de Datos de Proteínas , Proteómica/métodos , Antígenos HLA/inmunología , Antígenos HLA/genética , Programas Informáticos , Iones
12.
Front Immunol ; 15: 1386160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779658

RESUMEN

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Asunto(s)
Células Presentadoras de Antígenos , Mapeo Epitopo , Epítopos de Linfocito T , Antígenos HLA , Humanos , Epítopos de Linfocito T/inmunología , Antígenos HLA/inmunología , Antígenos HLA/genética , Mapeo Epitopo/métodos , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , SARS-CoV-2/inmunología , Péptidos/inmunología , COVID-19/inmunología , Espectrometría de Masas en Tándem , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Cromatografía Liquida , Alelos , Proteómica/métodos
13.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38757301

RESUMEN

Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome­wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)­R software and chi­square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome­wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10­8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA­A*02:07 and HLA­C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta­analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple , Psoriasis , Humanos , Psoriasis/genética , Taiwán/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Factores de Riesgo , Haplotipos , Genotipo , Antígenos HLA/genética , Anciano , Puntuación de Riesgo Genético
16.
JAMA Dermatol ; 160(5): 525-534, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568509

RESUMEN

Importance: Sulfamethoxazole (SMX) and cotrimoxazole (CTX), a fixed-dose combination of SMX and trimethoprim in a 5:1 ratio, are antibacterial sulfonamides commonly used for treating various diseases. A substantial prevalence of severe cutaneous adverse reactions (SCARs) following the administration of these drugs has been reported. However, the association between human leukocyte antigen (HLA) genotypes and SMX/CTX-induced SCARs has remained unclear. Objective: To investigate the association between HLA genotypes and SMX/CTX-induced SCARs. Data sources: A comprehensive search was conducted in CENTRAL (Cochrane Library), MEDLINE, and Embase from inception to January 17, 2023. Study Selection: Case-control studies that recruited patients who had experienced SCARs following SMX or CTX were included, and HLA alleles were analyzed. Data Extraction and Synthesis: Two independent authors extracted data on study characteristics and outcome data. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines were followed. The Newcastle-Ottawa Scale for case-control studies was used to assess study quality. Odds ratios (ORs) were calculated using a random-effects model for meta-analysis. Main Outcomes and Measures: The prespecified outcome was the OR comparing SMX/CTX-induced SCARs with healthy or SMX/CTX-tolerant controls based on different HLA alleles. Results: Six studies involving 322 patients with SCAR were included, including 236 patients with Stevens-Johnson syndrome/toxic epidermal necrolysis, 86 with drug reaction with eosinophilia and systemic symptoms, 8448 healthy controls, and 229 tolerant controls. Significant associations were found in HLA-A*11:01 (OR, 2.10; 95% CI, 1.11-4.00), HLA-B*13:01 (OR, 5.96; 95% CI, 1.58-22.56), HLA-B*15:02 (OR, 2.23; 95% CI, 1.20-4.14), HLA-B*38:02 (OR, 3.47; 95% CI, 1.42-8.48), and HLA-C*08:01 (OR, 2.63; 95% CI, 1.07-6.44) compared with tolerant controls. In the Stevens-Johnson syndrome/toxic epidermal necrolysis subgroup, significant associations were found in HLA-B*15:02 (OR, 3.01; 95% CI, 1.56-5.80) and HLA-B*38:02 (OR, 5.13; 95% CI, 1.96-13.47). In the drug reaction with eosinophilia and systemic symptoms subgroup, significant associations were found in HLA-A*68:01 (OR, 12.86; 95% CI, 1.09-151.34), HLA-B*13:01 (OR, 23.09; 95% CI, 3.31-161.00), HLA-B*39:01 (OR, 4.56; 95% CI, 1.31-15.82). Conclusions and Relevance: The results of this systematic review and meta-analysis suggest that multiple HLA alleles (HLA-A*11:01, HLA-B*13:01, HLA-B*15:02, HLA-B*38:02, and HLA-C*0801) are associated with SMX/CTX-induced SCARs.


Asunto(s)
Erupciones por Medicamentos , Antígenos HLA , Combinación Trimetoprim y Sulfametoxazol , Humanos , Combinación Trimetoprim y Sulfametoxazol/efectos adversos , Antígenos HLA/genética , Antígenos HLA/inmunología , Erupciones por Medicamentos/etiología , Erupciones por Medicamentos/epidemiología , Erupciones por Medicamentos/inmunología , Sulfametoxazol/efectos adversos , Genotipo , Índice de Severidad de la Enfermedad , Antibacterianos/efectos adversos , Estudios de Casos y Controles
17.
Int Immunopharmacol ; 133: 112070, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640716

RESUMEN

Skin, the largest organ of body, is a highly immunogenic tissue with a diverse collection of immune cells. Highly polymorphic human leukocyte antigen (HLA) molecules have a central role in coordinating immune responses as recognition molecules. Nevertheless, HLA gene expression patterns among diverse cell types within a specific organ, like the skin, have yet to be thoroughly investigated, with stromal cells attracting much less attention than immune cells. To illustrate HLA expression profiles across different cell types in the skin, we performed single-cell RNA sequencing (scRNA-seq) analyses on skin datasets, covering adult and fetal skin, and hair follicles as the skin appendages. We revealed the variation in HLA expression between different skin populations by examining normal adult skin datasets. Moreover, we evaluated the potential immunogenicity of multiple skin populations based on the expression of classical HLA class I genes, which were well represented in all cell types. Furthermore, we generated scRNA-seq data of developing skin from fetuses of 15 post conception weeks (PCW), 17 PCW, and 22 PCW, delineating the dynamic expression of HLA genes with cell type-dependent variation among various cell types during development. Notably, the pseudotime trajectory analysis unraveled the significant variance in HLA genes during the evolution of vascular endothelial cells. Moreover, we uncovered the immune-privileged properties of hair follicles at single-cell resolution. Our study presents a comprehensive single-cell transcriptomic landscape of HLA genes in the skin, which provides new insights into variation in HLA molecules and offers a clue for allogeneic skin transplantation.


Asunto(s)
Perfilación de la Expresión Génica , Antígenos HLA , Análisis de la Célula Individual , Piel , Transcriptoma , Humanos , Piel/inmunología , Piel/metabolismo , Antígenos HLA/genética , Antígenos HLA/inmunología , Folículo Piloso/inmunología , Folículo Piloso/metabolismo , Feto/inmunología , Adulto , Privilegio Inmunológico
18.
Transfusion ; 64(5): 824-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642032

RESUMEN

BACKGROUND: Glanzmann thrombasthenia (GT) and Bernard-Soulier syndrome (BSS) patients require frequent platelet transfusions and hence have an increased risk for alloimmunization against donor Human Leukocyte Antigens (HLA) when no HLA-matching is performed. Knowing that Human Platelet Antigens (HPA) are located on the platelet glycoproteins that can be absent in these patients, preventive HPA-matching may also be considered. Uniform recommendations on this topic lack in transfusion guidelines making standard practice unclear, therefore, we aimed to provide a framework for matched platelet transfusions. STUDY DESIGN AND METHODS: We conducted a targeted literature search and a national survey of Dutch (pediatric) hematologists from July to September 2021. RESULTS: We found 20 articles describing platelet transfusion policies in 483 GT-patients and 29 BSS-patients, both adults and children. Twenty surveys were returned for full analysis. All responders treated patients with platelet disorders, including GT (n = 36 reported) and BSS (n = 29 reported). Of respondents, 75% estimated the risk of antibody formation as "likely" for HLA and 65% for HPA. Formation of HLA antibodies was reported in 5 GT and in 5 BSS-patients, including one child. Fifteen respondents gave preventive HLA-matched platelets in elective setting (75%). Three respondents additionally matched for HPA in GT-patients (15%). Main argument for matched platelet transfusions was preventing alloimmunization to safeguard the effectivity of 'random' donor-platelets in acute settings. CONCLUSION: Elective HLA-matching for GT and BSS-patients is already conducted by most Dutch (pediatric) hematologists. HPA-matching is mainly applied when HPA-antibodies are formed. Based on the current literature and the survey, recommendations are proposed.


Asunto(s)
Antígenos de Plaqueta Humana , Síndrome de Bernard-Soulier , Antígenos HLA , Transfusión de Plaquetas , Trombastenia , Humanos , Antígenos de Plaqueta Humana/inmunología , Trombastenia/terapia , Trombastenia/inmunología , Síndrome de Bernard-Soulier/terapia , Síndrome de Bernard-Soulier/inmunología , Países Bajos , Antígenos HLA/inmunología , Encuestas y Cuestionarios , Masculino , Femenino , Niño
20.
Front Immunol ; 15: 1329032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571959

RESUMEN

The commonly used antibodies 3D12 and 4D12 recognise the human leukocyte antigen E (HLA-E) protein. These antibodies bind distinct epitopes on HLA-E and differ in their ability to bind alleles of the major histocompatibility complex E (MHC-E) proteins of rhesus and cynomolgus macaques. We confirmed that neither antibody cross-reacts with classical HLA alleles, and used hybrids of different MHC-E alleles to map the regions that are critical for their binding. 3D12 recognises a region on the alpha 3 domain, with its specificity for HLA-E resulting from the amino acids present at three key positions (219, 223 and 224) that are unique to HLA-E, while 4D12 binds to the start of the alpha 2 domain, adjacent to the C terminus of the presented peptide. 3D12 staining is increased by incubation of cells at 27°C, and by addition of the canonical signal sequence peptide presented by HLA-E peptide (VL9, VMAPRTLVL). This suggests that 3D12 may bind peptide-free forms of HLA-E, which would be expected to accumulate at the cell surface when cells are incubated at lower temperatures, as well as HLA-E with peptide. Therefore, additional studies are required to determine exactly what forms of HLA-E can be recognised by 3D12. In contrast, while staining with 4D12 was also increased when cells were incubated at 27°C, it was decreased when the VL9 peptide was added. We conclude that 4D12 preferentially binds to peptide-free HLA-E, and, although not suitable for measuring the total cell surface levels of MHC-E, may putatively identify peptide-receptive forms.


Asunto(s)
Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Humanos , Epítopos , Antígenos HLA , Péptidos , Antígenos de Histocompatibilidad Clase II , Anticuerpos Monoclonales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA