Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
1.
Bull Exp Biol Med ; 177(4): 431-435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39259464

RESUMEN

The effects of HIF1A knockdown by RNA interference on the histone H3K9 methylation in human umbilical cord mesenchymal stromal cells in vitro under conditions of 24-h exposure to hypoxia (1% O2) were studied. Evaluation of transcriptional activity of genes involved in the regulation of H3K9 methylation (KDM3A, KDM4A, and EHMT2) and the cytofluorimetric analysis of the expression of the corresponding antigens and H3K9 methylation level demonstrated a pronounced stimulating effect of hypoxic exposure. Moreover, the expression of KDM4A and EHMT2 was regulated by HIF1A-mediated mechanism, unlike KDM3A; the level of the corresponding proteins depended on HIF1A. In addition, the HIF-1-dependent regulation of KDM3A, KDM4A, and EHMT2/G9a, and directly the H3K9 methylation level in mesenchymal stromal cells also took place under normoxia conditions.


Asunto(s)
Hipoxia de la Célula , Histonas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Histona Demetilasas con Dominio de Jumonji , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Metilación , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia de la Célula/genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferencia de ARN , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Regulación de la Expresión Génica
2.
J Med Chem ; 67(18): 16072-16087, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39008565

RESUMEN

Both G9a and NSD2 have been recognized as promising therapeutic targets for cancer treatment. However, G9a inhibitors only showed moderate inhibitory activity against solid tumors and NSD2 inhibitors were limited to the treatment of hematological malignancies. Inspired by the advantages of dual-target inhibitors that show great potential in enhancing efficiency, we developed a series of highly potent G9a/NSD2 dual inhibitors to treat solid tumors. The candidate 16 demonstrated much enhanced antiproliferative activity compared to the selective G9a inhibitor 3 and NSD2 inhibitor 15. In addition, it exhibited superior potency in inhibiting colony formation, inducing cell apoptosis, and blocking cancer cell metastasis. Furthermore, it effectively inhibited the catalytic functions of both G9a and NSD2 in cells and exhibited significant antitumor efficacy in the PANC-1 xenograft model with good safety. Therefore, compound 16 as a highly potent G9a/NSD2 dual inhibitor presents an attractive anticancer drug candidate for the treatment of solid tumors.


Asunto(s)
Antineoplásicos , Proliferación Celular , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Antígenos de Histocompatibilidad/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Descubrimiento de Drogas , Proteínas Represoras
3.
J Med Chem ; 67(15): 13271-13285, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39041067

RESUMEN

G9a, which was initially identified as a histone H3 Lys9 (H3K9) methyltransferase, is potentially an attractive therapeutic target for human cancers. Despite its importance, there is no available selective G9a chemical probe because its homologous protein GLP shares approximately 80% of its sequence with G9a. The development of G9a chemical probes with high selectivity for G9a over GLP is a big challenge but is extremely valuable for understanding G9a-related biology. Herein, we developed a first-in-class selective G9a degrader G9D-4, which induced a dose- and time-dependent G9a degradation without degradation of GLP. G9D-4 exhibited effective antiproliferative activities in a panel of pancreatic cancer cell lines and was able to sensitize KRASG12D mutant pancreatic cancer cells to KRASG12D inhibitor MRTX1133. These data clearly demonstrated the practicality and importance of a selective G9a degrader as a preliminary chemical probe suitable for understanding G9a-related biology and a promising strategy for the treatment of pancreatic cancer.


Asunto(s)
Antineoplásicos , N-Metiltransferasa de Histona-Lisina , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antígenos de Histocompatibilidad/metabolismo , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Relación Estructura-Actividad , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteolisis/efectos de los fármacos
4.
Bioorg Med Chem Lett ; 110: 129856, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914346

RESUMEN

The discovery and development of structurally distinct lysine methyltransferase G9a inhibitors have been the subject of intense research in epigenetics. Structure-based optimization was conducted, starting with the previously reported seed compound 7a and lead to the identification of a highly potent G9a inhibitor, compound 7i (IC50 = 0.024 µM). X-ray crystallography for the ligand-protein interaction and kinetics study, along with surface plasmon resonance (SPR) analysis, revealed that compound 7i interacts with G9a in a unique binding mode. In addition, compound 7i caused attenuation of cellular H3K9me2 levels and induction of γ-globin mRNA expression in HUDEP-2 cells in a dose-dependent manner.


Asunto(s)
Anemia de Células Falciformes , Inhibidores Enzimáticos , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Humanos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Relación Estructura-Actividad , Anemia de Células Falciformes/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Epigénesis Genética/efectos de los fármacos , Estructura Molecular , Antígenos de Histocompatibilidad/metabolismo , Relación Dosis-Respuesta a Droga , Cristalografía por Rayos X
5.
Mol Ther ; 32(8): 2662-2675, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38796700

RESUMEN

Prader-Willi syndrome (PWS) is the prototypic genomic disorder resulting from deficiency of paternally expressed genes in the human chromosome 15q11-q13 region. The unique molecular mechanism involving epigenetic modifications renders PWS as the most attractive candidate to explore a proof-of-concept of epigenetic therapy in humans. The premise is that epigenetic modulations could reactivate the repressed PWS candidate genes from the maternal chromosome and offer therapeutic benefit. Our prior study identifies an EHMT2/G9a inhibitor, UNC0642, that reactivates the expression of PWS genes via reduction of H3K9me2. However, low brain permeability and poor oral bioavailability of UNC0642 preclude its advancement into translational studies in humans. In this study, a newly developed inhibitor, MS152, modified from the structure of UNC0642, has better brain penetration and greater potency and selectivity against EHMT2/G9a. MS152 reactivated maternally silenced PWS genes in PWS patient fibroblasts and in brain and liver tissues of PWS mouse models. Importantly, the molecular efficacy of oral administration is comparable with the intraperitoneal route. MS152 treatment in newborns ameliorates the perinatal lethality and poor growth, maintaining reactivation in a PWS mouse model at postnatal 90 days. Our findings provide strong support for MS152 as a first-in-class inhibitor to advance the epigenetic therapy of PWS in humans.


Asunto(s)
Modelos Animales de Enfermedad , Epigénesis Genética , Síndrome de Prader-Willi , Humanos , Animales , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/genética , Ratones , Epigénesis Genética/efectos de los fármacos , Administración Oral , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina
6.
Glycobiology ; 34(6)2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38590172

RESUMEN

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae , Fucosa , Glicoproteínas , Antígenos de Histocompatibilidad , Yeyuno , Organoides , Glicómica , Proteómica , Genotipo , Fenotipo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fucosa/metabolismo , Glicosilación , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Humanos , Glicopéptidos/química , Infecciones por Caliciviridae/sangre , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/metabolismo , Organoides/metabolismo , Yeyuno/metabolismo , Yeyuno/virología
7.
PLoS One ; 19(4): e0301175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574067

RESUMEN

BACKGROUND: Canonical α/ß T-cell receptors (TCRs) bind to human leukocyte antigen (HLA) displaying antigenic peptides to elicit T cell-mediated cytotoxicity. TCR-engineered T-cell immunotherapies targeting cancer-specific peptide-HLA complexes (pHLA) are generating exciting clinical responses, but owing to HLA restriction they are only able to target a subset of antigen-positive patients. More recently, evidence has been published indicating that naturally occurring α/ß TCRs can target cell surface proteins other than pHLA, which would address the challenges of HLA restriction. In this proof-of-concept study, we sought to identify and engineer so-called HLA-independent TCRs (HiTs) against the tumor-associated antigen mesothelin. METHODS: Using phage display, we identified a HiT that bound well to mesothelin, which when expressed in primary T cells, caused activation and cytotoxicity. We subsequently engineered this HiT to modulate the T-cell response to varying levels of mesothelin on the cell surface. RESULTS: The isolated HiT shows cytotoxic activity and demonstrates killing of both mesothelin-expressing cell lines and patient-derived xenograft models. Additionally, we demonstrated that HiT-transduced T cells do not require CD4 or CD8 co-receptors and, unlike a TCR fusion construct, are not inhibited by soluble mesothelin. Finally, we showed that HiT-transduced T cells are highly efficacious in vivo, completely eradicating xenografted human solid tumors. CONCLUSION: HiTs can be isolated from fully human TCR-displaying phage libraries against cell surface-expressed antigens. HiTs are able to fully activate primary T cells both in vivo and in vitro. HiTs may enable the efficacy seen with pHLA-targeting TCRs in solid tumors to be translated to cell surface antigens.


Asunto(s)
Mesotelina , Neoplasias , Humanos , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Antígenos de Neoplasias/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Péptidos/metabolismo , Antígenos de Histocompatibilidad/metabolismo
8.
Front Immunol ; 15: 1342335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596688

RESUMEN

Introduction: Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic ß cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods: Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results: T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion: Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Péptidos/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad/metabolismo
9.
J Med Chem ; 67(8): 6397-6409, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38602846

RESUMEN

Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.


Asunto(s)
Antineoplásicos , N-Metiltransferasa de Histona-Lisina , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Línea Celular Tumoral , Proteolisis/efectos de los fármacos , Antígenos de Histocompatibilidad/metabolismo , Descubrimiento de Drogas , Proliferación Celular/efectos de los fármacos , Masculino , Relación Estructura-Actividad
10.
Proc Natl Acad Sci U S A ; 121(9): e2315985121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377192

RESUMEN

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Hominidae , Animales , Humanos , Proteínas Virales/metabolismo , Citomegalovirus , Hominidae/genética , Hominidae/metabolismo , Línea Celular , Antígenos de Histocompatibilidad/metabolismo , Antígenos HLA-A/metabolismo , Péptidos/metabolismo
11.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398632

RESUMEN

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Proteínas/metabolismo , Unión Proteica , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad/metabolismo , Alanina/metabolismo
12.
Elife ; 132024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167271

RESUMEN

Mechanical force is critical for the interaction between an αß T cell receptor (TCR) and a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell activation. However, the underlying mechanism remains unclear. We use all-atom molecular dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or antagonist peptides under different extensions to simulate the effects of applied load on the complex, elucidating their divergent biological responses. We found that TCR α and ß chains move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while antagonists destabilize it. Simulations of the Cß FG-loop deletion, which reduces the catch bond response, and simulations with in silico mutant peptides further support the observed behaviors. The present results highlight the combined role of interdomain motion, fluctuating forces, and interfacial contacts in determining the mechanical response and fine peptide discrimination by a TCR, thereby resolving the conundrum of nearly identical crystal structures of TCRαß-pMHC agonist and antagonist complexes.


Asunto(s)
Péptidos , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Unión Proteica , Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Simulación de Dinámica Molecular , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad/metabolismo
13.
Nature ; 626(8000): 881-890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297124

RESUMEN

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas , Células-Madre Neurales , Neurogénesis , Neuronas , Adulto , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Factores de Tiempo , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 120(52): e2308366120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113261

RESUMEN

Immune system threat detection hinges on T cells' ability to perceive varying peptide-major histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs but diverge only over longer (9+ h) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception and establish a framework for understanding T cell responses under diverse contexts.


Asunto(s)
Activación de Linfocitos , Linfocitos T , Ratones , Animales , Receptores de Antígenos de Linfocitos T , Antígenos/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Péptidos/metabolismo , Complejo Mayor de Histocompatibilidad , Percepción , Unión Proteica
15.
Molecules ; 28(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959685

RESUMEN

A decreased hemoglobin synthesis is contemplated as a pathological indication of ß-thalassemia. Recent studies show that EPZ035544 from Epizyme could induce fetal hemoglobin (HbF) levels due to its proven capability to inhibit euchromatin histone lysine methyl transferase (EHMT2). Therefore, the development of EHMT2 inhibitors is considered promising in managing ß-thalassemia. Our strategy to find novel compounds that are EHMT2 inhibitors relies on the virtual screening of ligands that have a structural similarity to N2-[4-methoxy-3-(2,3,4,7-tetrahydro-1H-azepin-5-yl) phenyl]-N4,6-dimethyl-pyrimidine-2,4-diamine (F80) using the PubChem database. In silico docking studies using Autodock Vina were employed to screen a library of 985 compounds and evaluate their binding ability with EHMT2. The selection of hit compounds was based on the docking score and mode of interaction with the protein. The top two ranked compounds were selected for further investigations, including pharmacokinetic properties analysis and molecular dynamics simulations (MDS). Based on the obtained docking score and interaction analysis, N-(4-methoxy-3-methylphenyl)-4,6-diphenylpyrimidin-2-amine (TP1) and 2-N-[4-methoxy-3-(5-methoxy-3H-indol-2-yl)phenyl]-4-N,6-dimethylpyrimidine-2,4-diamine (TP2) were found to be promising candidates, and TP1 exhibited better stability in the MDS study compared to TP2. In summary, our approach helps identify potential EHMT2 inhibitors, and further validation using in vitro and in vivo experiments could certainly enable this molecule to be used as a therapeutic drug in managing ß-thalassemia disease.


Asunto(s)
Histonas , Talasemia beta , Humanos , Simulación del Acoplamiento Molecular , Histonas/metabolismo , Lisina , Talasemia beta/tratamiento farmacológico , Simulación de Dinámica Molecular , Diaminas , Transferasas/metabolismo , Ligandos , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo
16.
Adv Immunol ; 159: 115-147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37996206

RESUMEN

Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and ß2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.


Asunto(s)
Presentación de Antígeno , Células Dendríticas , Animales , Ratones , Antígenos/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Complejo Mayor de Histocompatibilidad , Péptidos/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(43): e2304689120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37856544

RESUMEN

The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.


Asunto(s)
Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Humanos , Ratones , Animales , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos H-2 , Antígenos de Histocompatibilidad/metabolismo , Ratones Endogámicos C57BL
18.
Cell Chem Biol ; 30(12): 1525-1541.e7, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37858336

RESUMEN

We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.


Asunto(s)
Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Inflamación , Humanos , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo
19.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894922

RESUMEN

Changes in epigenetic programming have been proposed as being key events in the initiation and progression of childhood cancers. HMT euchromatic histone lysine methyltransferase 2 (G9a, EHMT2), which is encoded by the G9a (Ehmt2) gene, as well as its related protein GLP, which is encoded by the GLP/Ehmt1 gene, participate in epigenetic regulation by contributing to a transcriptionally repressed chromatin state. G9a/GLP activation has been reported in several cancer types. Herein, we evaluated the role of G9a in two solid pediatric tumors: neuroblastoma (NB) and Ewing sarcoma (ES). Our results show that G9a/Ehmt2 and GLP/Ehmt1 expression is higher in tumors with poorer prognosis, including St4 International Neuroblastoma Staging System (INSS) stage, MYCN amplified NB, and metastatic ES. Importantly, higher G9a and GLP levels were associated with shorter patient overall survival (OS) in both NB and ES. Moreover, pharmacological inhibition of G9a/GLP reduced cell viability in NB and ES cells. These findings suggest that G9a and GLP are associated with more aggressive NB and ES tumors and should be further investigated as being epigenetic targets in pediatric solid cancers.


Asunto(s)
Neuroblastoma , Sarcoma de Ewing , Niño , Humanos , Supervivencia Celular/genética , Epigénesis Genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Neuroblastoma/genética , Sarcoma de Ewing/genética
20.
Front Immunol ; 14: 1228873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781387

RESUMEN

T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.


Asunto(s)
Péptidos , Receptores de Antígenos de Linfocitos T , Humanos , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad/metabolismo , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...