Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.054
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 205, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755302

RESUMEN

Jojoba shrubs are wild plants cultivated in arid and semiarid lands and characterized by tolerance to drought, salinity, and high temperatures. Fungi associated with such plants may be attributed to the tolerance of host plants against biotic stress in addition to the promotion of plant growth. Previous studies showed the importance of jojoba as jojoba oil in the agricultural field; however, no prior study discussed the role of jojoba-associated fungi (JAF) in reflecting plant health and the possibility of using JAF in biocontrol. Here, the culture-independent and culture-dependent approaches were performed to study the diversity of the jojoba-associated fungi. Then, the cultivable fungi were evaluated for in-vitro antagonistic activity and in vitro plant growth promotion assays. The metagenome analysis revealed the existence of four fungal phyla: Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota. The phylum Ascomycota was the most common and had the highest relative abundance in soil, root, branch, and fruit samples (59.7%, 50.7%, 49.8%, and 52.4%, respectively). Alternaria was the most abundant genus in aboveground tissues: branch (43.7%) and fruit (32.1%), while the genus Discosia had the highest abundance in the underground samples: soil (24%) and root (30.7%). For the culture-dependent method, a total of 14 fungi were isolated, identified, and screened for their chitinolytic and antagonist activity against three phytopathogenic fungi (Fusarium oxysporum, Alternaria alternata and Rhizoctonia solani) as well as their in vitro plant growth promotion (PGP) activity. Based on ITS sequence analysis, the selected potent isolates were identified as Aspergillus stellatusEJ-JFF3, Aspergillus flavus EJ-JFF4, Stilbocrea sp. EJ-JLF1, Fusarium solani EJ-JRF3, and Amesia atrobrunneaEJ-JSF4. The endophyte strain A. flavus EJ-JFF4 exhibited the highest chitinolytic activity (9 Enzyme Index) and antagonistic potential against Fusarium oxysporum, Alternaria alternata, and Rhizoctonia solani phytopathogens with inhibitory percentages of 72, 70, and 80 respectively. Also, A. flavus EJ-JFF4 had significant multiple PGP properties, including siderophore production (69.3%), phosphate solubilization (95.4 µg ml-1). The greatest production of Indol-3-Acetic Acid was belonged to A. atrobrunnea EJ-JSF4 (114.5 µg ml-1). The analysis of FUNGuild revealed the abundance of symbiotrophs over other trophic modes, and the guild of endophytes was commonly assigned in all samples. For the first time, this study uncovered fungal diversity associated with jojoba plants using a culture-independent approach and in-vitro assessed the roles of cultivable fungal strains in promoting plant growth and biocontrol. The present study indicated the significance of jojoba shrubs as a potential source of diverse fungi with high biocontrol and PGP activities.


Asunto(s)
Alternaria , Hongos , Microbiología del Suelo , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Alternaria/genética , Alternaria/crecimiento & desarrollo , Metagenoma , Rhizoctonia/crecimiento & desarrollo , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fusarium/genética , Fusarium/crecimiento & desarrollo , Antibiosis , Raíces de Plantas/microbiología , Biodiversidad , Agentes de Control Biológico , Ascomicetos/crecimiento & desarrollo , Ascomicetos/genética , Desarrollo de la Planta
2.
Microb Pathog ; 191: 106677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705217

RESUMEN

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Asunto(s)
Chenopodiaceae , Endófitos , Probióticos , Streptomyces , Vibrio , Animales , Vibrio/efectos de los fármacos , Vibrio/fisiología , Chenopodiaceae/microbiología , Probióticos/farmacología , Endófitos/aislamiento & purificación , Endófitos/fisiología , Streptomyces/fisiología , Streptomyces/aislamiento & purificación , Streptomyces/genética , Penaeidae/microbiología , ARN Ribosómico 16S/genética , Antibiosis , Vibriosis/microbiología , Vibriosis/veterinaria , Vibriosis/prevención & control , Salinidad , Larva/microbiología , ADN Bacteriano/genética , Filogenia
3.
Arch Microbiol ; 206(5): 235, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722413

RESUMEN

In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.


Asunto(s)
Arándanos Azules (Planta) , Fusarium , Enfermedades de las Plantas , Raíces de Plantas , Schizophyllum , Arándanos Azules (Planta)/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Fusarium/fisiología , Schizophyllum/metabolismo , Schizophyllum/crecimiento & desarrollo , Antibiosis , Hifa/crecimiento & desarrollo , Agentes de Control Biológico , Plantones/microbiología , Plantones/crecimiento & desarrollo
4.
Curr Microbiol ; 81(7): 180, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761223

RESUMEN

Postharvest fungal diseases cause serious fruit losses and food safety issues worldwide. The trend in preventing food loss and waste has shifted to environmentally friendly and sustainable methods, such as biological control. Penicillium expansum is a common postharvest contaminant fungus that causes blue mould disease and patulin formation on apples. This study aimed to provide biocontrol using Metschnikowia pulcherrima isolates against P. expansum, and to understand their antagonistic action mechanisms. In vitro, 38.77-51.69% of mycelial growth inhibition of P. expansum was achieved by M. pulcherrima isolates with the dual culture assay, while this rate was 69.45-84.89% in the disc diffusion assay. The disease symptoms of P. expansum on wounds were reduced by M. pulcherrima, on Amasya apples. The lesion diameter, 41.84 mm after 12 d of incubation in control, was measured as 24.14 mm when treated with the most effective M. pulcherrima DN-MP in vivo. Although the antagonistic mechanisms of M. pulcherrima isolates were similar, there was a difference between their activities. In general, DN-HS and DN-MP isolates were found to be more effective. In light of all these results, it can be said that M. pulcherrima isolates used in the study have an antagonistic effect against the growth of P. expansum both in vitro and in vivo in Amasya apples, therefore, when the appropriate formulation is provided, they can be used as an alternative biocontrol agent to chemical fungicides in the prevention of postharvest diseases.


Asunto(s)
Antibiosis , Malus , Metschnikowia , Penicillium , Enfermedades de las Plantas , Penicillium/crecimiento & desarrollo , Penicillium/aislamiento & purificación , Penicillium/efectos de los fármacos , Penicillium/fisiología , Malus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Metschnikowia/crecimiento & desarrollo , Metschnikowia/fisiología , Frutas/microbiología , Agentes de Control Biológico/farmacología
5.
Nature ; 629(8010): 165-173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632398

RESUMEN

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Asunto(s)
Antibiosis , Proteínas Bacterianas , Toxinas Bacterianas , Streptomyces , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Microscopía por Crioelectrón , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestructura , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efectos de los fármacos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efectos de los fármacos , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo , Streptomyces griseus/metabolismo
6.
Sci Rep ; 14(1): 9365, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654026

RESUMEN

Strategies against the opportunistic fungal pathogen Candida albicans based on probiotic microorganisms represent a promising alternative to traditional antifungals. Here, we investigated the effects of Lactobacillaceae isolates from fermented foods or the human vagina, alone or in combination with the probiotic yeast Saccharomyces cerevisiae CNCM I-3856, against C. albicans in vitro. Nine out of nineteen tested strains of Lactobacillaceae inhibited growth of C. albicans with inhibition zones of 1-3 mm in spot assays. Five out of nineteen lactobacilli tested as such or in combination with S. cerevisiae CNCM I-3856 also significantly inhibited C. albicans hyphae formation, including Limosilactobacillus fermentum LS4 and L. fermentum LS5 resulting in respectively 62% and 78% hyphae inhibition compared to the control. Thirteen of the tested nineteen lactobacilli aggregated with the yeast form of C. albicans, with Lactiplantibacillus carotarum AMBF275 showing the strongest aggregation. The aggregation was enhanced when lactobacilli were combined with S. cerevisiae CNCM I-3856. No significant antagonistic effects were observed between the tested lactobacilli and S. cerevisiae CNCM I-3856. The multifactorial activity of Lactobacillaceae strains alone or combined with the probiotic S. cerevisiae CNCM I-3856 against C. albicans without antagonistic effects between the beneficial strains, paves the way for developing consortium probiotics for in vivo applications.


Asunto(s)
Candida albicans , Lactobacillus , Probióticos , Saccharomyces cerevisiae , Candida albicans/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de los fármacos , Probióticos/farmacología , Lactobacillus/fisiología , Humanos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Antibiosis , Femenino , Vagina/microbiología
7.
Appl Environ Microbiol ; 90(5): e0222223, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624199

RESUMEN

Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE: The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.


Asunto(s)
Ascomicetos , Burkholderia cenocepacia , Enfermedades de las Plantas , Ascomicetos/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Antibiosis , Familia de Multigenes
8.
Microb Pathog ; 191: 106645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631412

RESUMEN

Olive knot disease, caused by Pseudomonas savastanoi, poses a significant threat to olive cultivation, necessitating sustainable alternatives to conventional chemical control. This study investigates the biocontrol effectiveness of Bacillus sp. (Og2) and Pseudomonas fluorescens (Oq5), alone and combined, against olive knot disease. Olive plants were sprayed with 5 ml of the bacteria until uniformly wet, with additional application to the soil surface. Pathogen injection occurred 24 h later. The results revealed that treating plants with a combination of both bacteria provided the highest reduction in disease severity (89.58 %), followed by P. fluorescens alone (69.38 %). Significant improvements were observed in shoot height, particularly with the combination of Bacillus sp. and P. fluorescens. The root length of olive seedlings treated with P. fluorescens and Bacillus sp., either alone or in combination, was significantly longer compared to the control and pathogen-treated seedlings. In terms of root dry weight, the most effective treatments were treated with P. fluorescens was the highest (82.94 g) among all treatments followed by the combination of both isolates with seedlings inoculated with P. savastanoi. These findings underscore the potential of Bacillus sp. and Pseudomonas fluorescens as effective biocontrol agents against olive knot disease and promoting olive seedlings growth, providing a sustainable and environmentally friendly approach to disease management.


Asunto(s)
Bacillus , Agentes de Control Biológico , Olea , Enfermedades de las Plantas , Pseudomonas fluorescens , Plantones , Olea/microbiología , Pseudomonas fluorescens/fisiología , Bacillus/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plantones/microbiología , Plantones/crecimiento & desarrollo , Raíces de Plantas/microbiología , Antibiosis
9.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38632051

RESUMEN

AIMS: We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS: In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS: XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.


Asunto(s)
Bacillus , Citrullus , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Pseudomonas , Fusarium/crecimiento & desarrollo , Citrullus/microbiología , Citrullus/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Bacillus/fisiología , Bacillus/genética , Bacillus/crecimiento & desarrollo , Pseudomonas/crecimiento & desarrollo , Pseudomonas/fisiología , Antibiosis , Pseudomonas fluorescens/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Antifúngicos/farmacología
10.
Benef Microbes ; 15(2): 211-225, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38688481

RESUMEN

Enterococcus faecium SF68 (SF68) is a well-known probiotic with a long history of safe use. Recent changes in the taxonomy of enterococci have shown that a novel species, Enterococcus lactis, is closely related with E. faecium and occurs together with other enterococci in a phylogenetically well-defined E. faecium species group. The close phylogenetic relationship between the species E. faecium and E. lactis prompted a closer investigation into the taxonomic status of E. faecium SF68. Using phylogenomics and ANI, the taxonomic analysis in this study showed that probiotic E. faecium SF68, when compared to other E. faecium and E. lactis type and reference strains, could be re-classified as belonging to the species E. lactis. Further investigations into the functional properties of SF68 showed that it is potentially capable of bacteriocin production, as a bacteriocin gene cluster encoding the leaderless bacteriocin EntK1 together with putative Lactococcus lactis bacteriocins LsbA, and LsbB-like putative immunity peptide (LmrB) were found located in an operon on plasmid pF9. However, bacteriocin expression was not studied. Competitive exclusion experiments in co-culture over 7 days at 37 °C showed that the probiotic SF68 could inhibit the growth of specific E. faecium and Listeria monocytogenes strains, while showing little or no inhibitory activity towards an entero-invasive Escherichia coli and a Salmonella Typhimurium strain, respectively. In cell culture experiments with colon carcinoma HT29 cells, the probiotic SF68 was also able to strain-specifically inhibit adhesion and/or invasion of enterococcal and L. monocytogenes strains, while such adhesion and invasion inhibition effects were less pronounced for E. coli and Salmonella strains. This study therefore provides novel data on the taxonomy and functional properties of SF68, which can be reclassified as Enterococcus lactis SF68, thereby enhancing the understanding of its probiotic nature.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Filogenia , Probióticos , Enterococcus faecium/genética , Enterococcus faecium/clasificación , Enterococcus faecium/fisiología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Humanos , Antibiosis , Plásmidos/genética , Familia de Multigenes , Células HT29
11.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38684470

RESUMEN

In this study, we evaluated the antimicrobial activity of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against seven Acinetobacter baumannii strains, the majority of which were clinically relevant carbapenem-resistant A. baumannii strains. We observed the inhibitory activity of 18 (out of 114) sponge-isolated bacterial strains against all A. baumanii strains using medium-throughput solid agar overlay assays. These inhibitory strains belonged to the genera Lactococcus, Pseudomonas, and Vagococcus. In addition, this antimicrobial activity was validated through a liquid co-cultivation challenge using an inhibitory strain of each genus and a green fluorescent protein-tagged A. baumanii strain. Fluorescence measurements indicated that the growth of A. baumanii was inhibited by the sponge isolates. In addition, the inability of A. baumanii to grow after spreading the co-cultures on solid medium allowed us to characterize the activity of the sponge isolates as bactericidal. In conclusion, this study demonstrates that marine sponges are a reservoir of bacteria that deserves to be tapped for antibiotic discovery against A. baumanii.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Poríferos , Animales , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/aislamiento & purificación , Poríferos/microbiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Antibiosis
12.
Microb Pathog ; 190: 106616, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492826

RESUMEN

Root rot is a common disease, that severely affects the yield and quality of alfalfa. Biocontrol is widely used to control plant diseases caused by pathogenic fungi, however, biocontrol strains for alfalfa root rot are very limited. In this study, a Bacillus subtilis CG-6 strain with a significant biocontrol effect on alfalfa root rot was isolated. CG-6 secretes antibacterial enzymes and siderophore, phosphate solubilization and indoleacetic acid (IAA). The inhibition rate of strain CG-6 against Fusarium oxysporum was 87.33%, and it showed broad-spectrum antifungal activity. Inoculation with CG-6 significantly reduced the incidence of alfalfa root rot, the control effect of greenhouse cultivation reached 58.12%, and CG-6 treatment significantly increased alfalfa plant height, root length, fresh weight, and dry weight. The treatment with CG-6 significantly increased the levels of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and lipoxygenase) in alfalfa leaves by 15.52%-34.03%. Defensive enzymes (chitinase and ß-1,3-glucanase) increased by 24.37% and 28.08%, respectively. The expression levels of regulatory enzyme genes (MsCAT, MsPOD, MsCu, Zn-SOD1, MsCu, Zn-SOD2, MsCu, Zn-SOD3, and MsLOX2) and systemic resistance genes (MsPR1, MsPDF1.2, and MsVSP2) increased by 0.50-2.85 fold, which were higher than those in the pathogen treatment group. Therefore, CG-6 could be used as a potential strain to develop biopesticides against alfalfa root rot.


Asunto(s)
Bacillus subtilis , Fusarium , Medicago sativa , Enfermedades de las Plantas , Raíces de Plantas , Medicago sativa/microbiología , Bacillus subtilis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Fusarium/crecimiento & desarrollo , Antibiosis , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/microbiología , Quitinasas/metabolismo , Agentes de Control Biológico , Superóxido Dismutasa/metabolismo , Antifúngicos/farmacología
13.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533659

RESUMEN

Aphanizomenon flos-aquae (AFA) is the dominant filamentous cyanobacterium that develops into blooms in Upper Klamath Lake, Oregon, each year. During AFA bloom and collapse, ecosystem conditions for endangered Lost River and shortnose suckers deteriorate, thus motivating the need to identify processes that limit AFA abundance and decline. Here, we investigate the relations between AFA and other members of the microbial community (photosynthetic and nonphotosynthetic bacteria and archaea), how those relations impact abundance and collapse of AFA, and the types of microbial conditions that suppress AFA. We found significant spatial variation in AFA relative abundance during the 2016 bloom period using 16S rRNA sequencing. The Pelican Marina site had the lowest AFA relative abundance, and this was coincident with increased relative abundance of Candidatus Sericytochromatia, Flavobacterium, and Rheinheimera, some of which are known AFA antagonists. The AFA collapse coincided with phosphorus limitation relative to nitrogen and the increased relative abundance of Cyanobium and Candidatus Sericytochromatia, which outcompete AFA when dissolved inorganic nitrogen is available. The data collected in this study indicate the importance of dissolved inorganic nitrogen combined with microbial community structure in suppressing AFA abundance.


Asunto(s)
Aphanizomenon , Cianobacterias , Lagos , Oregon , Antibiosis , Ecosistema , ARN Ribosómico 16S/genética , Aphanizomenon/genética , Aphanizomenon/química , Nitrógeno
14.
ACS Appl Mater Interfaces ; 16(7): 8527-8537, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329426

RESUMEN

Bleeding and bacterial infections are crucial factors affecting wound healing. The usage of herbal medicine-derived materials holds great potential for promoting wound healing. However, the uncertain intrinsic effective ingredients and unclear mechanism of action remain great concerns. Herein, inspired by the herbal medicine Ligusticum wallichii, we reported the synthesis of tetramethylpyrazine-derived carbon quantum dots (TMP-CQDs) for promoting wound healing. Of note, the use of TMP as the precursor instead of L. wallichii ensured the repeatability and homogeneity of the obtained products. Furthermore, TMP-CQDs exhibited high antibacterial activity. Mechanically, TMP-CQDs inhibited the DNA repair, biosynthesis, and quorum sensing of the bacteria and induced intracellular reactive oxygen species (ROS). Moreover, TMP-CQDs could accelerate blood coagulation through activating factor VIII and promoting platelet aggregation. Effective wound healing was achieved by using TMP-CQDs in the Staphylococcus aureus-infected mouse skin wound model. This study sheds light on the development of herbal medicine-inspired materials as effective therapeutic drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Puntos Cuánticos , Ratones , Animales , Carbono , Puntos Cuánticos/uso terapéutico , Antibiosis , Coagulación Sanguínea , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
15.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396880

RESUMEN

Screening of Bacillus with antagonistic effects on paddy mold pathogens to provide strain resources for biological control of mold in Oryza sativa L. screening of Bacillus isolates antagonistic towards Aspergillus tubingensis from rhizosphere soil of healthy paddy; classification and identification of antagonistic strains by biological characteristics and 16S rDNA sequence analysis; transcriptome sequencing after RNA extraction from Bacillus-treated Aspergillus tubingensis; and extraction of inhibitory crude proteins of Bacillus by ammonium sulfate precipitation; inhibitory crude protein and Bacillus spp. were treated separately for A. tubingensis and observed by scanning electron microscopy (SEM). An antagonistic strain of Bacillus, named B7, was identified as Paenibacillus polymyxa by 16S rDNA identification and phylogenetic evolutionary tree comparison analysis. Analysis of the transcriptome results showed that genes related to secondary metabolite biosynthesis such as antifungal protein were significantly downregulated. SEM results showed that the mycelium of A. tubingensis underwent severe rupture after treatment with P. polymyxa and antifungal proteins, respectively. In addition, the sporocarp changed less after treatment with P. polymyxa, and the sporangium stalks had obvious folds. P. polymyxa B7 has a good antagonistic effect against A. tubingensis and has potential for biocontrol applications of paddy mold pathogens.


Asunto(s)
Aspergillus , Bacillus , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Antifúngicos/farmacología , Filogenia , Antibiosis , Bacillus/genética , ADN Ribosómico/genética , Paenibacillus/genética
16.
Microbiol Res ; 280: 127592, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199003

RESUMEN

Plant growth-promoting rhizobacteria, such as Bacillus spp., establish beneficial associations with plants and may inhibit the growth of phytopathogenic fungi. However, these bacteria are subject to multiple biotic stimuli from their competitors, causing stress and modifying their development. This work is a study of an in vitro interaction between two model microorganisms of socioeconomic relevance, using population dynamics and transcriptomic approaches. Co-cultures of Bacillus velezensis 83 with the phytopathogenic fungus Colletotrichum gloeosporioides 09 were performed to evaluate the metabolic response of the bacteria under conditions of non-nutritional limitation. The bacterial response was associated with the induction of a stress-resistant phenotype, characterized by a lower specific growth rate, but with antimicrobial production capacity. About 12% of co-cultured B. velezensis 83 coding sequences were differentially expressed, including the up-regulation of the general stress response (sigB regulon), and the down-regulation of alternative carbon sources catabolism (glucose preference). Defense strategies in B. velezensis are a determining factor in order to preserve the long-term viability of its population. Mostly, the presence of the fungus does not affect the expression of antibiosis genes, except for those corresponding to surfactin/bacillomycin D production. Indeed, the up-regulation of antibiosis genes expression is associated with bacterial growth, regardless of the presence of the fungus. This behavior in B. velezensis 83 resembles the strategy used by the classical Greek phalanx formation: by sacrificing growth rate and metabolic versatility, resources can be redistributed to defense (stress resistant phenotype) while maintaining the attack (antibiosis capacity). The presented results are the first characterization of the molecular phenotype at the transcriptome level of a biological control agent under biotic stress caused by a phytopathogen without nutrient limitation.


Asunto(s)
Bacillus , Colletotrichum , Antibiosis , Bacillus/metabolismo , Colletotrichum/genética , Bacterias , Fenotipo
17.
PLoS Biol ; 22(1): e3002454, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38261596

RESUMEN

Ecological variation influences the character of many biotic interactions, but examples of predator-prey reversal mediated by abiotic context are few. We show that the temperature at which prey grow before interacting with a bacterial predator can determine the very direction of predation, reversing predator and prey identities. While Pseudomonas fluorescens reared at 32°C was extensively killed by the generalist predator Myxococcus xanthus, P. fluorescens reared at 22°C became the predator, slaughtering M. xanthus to extinction and growing on its remains. Beyond M. xanthus, diffusible molecules in P. fluorescens supernatant also killed 2 other phylogenetically distant species among several examined. Our results suggest that the sign of lethal microbial antagonisms may often change across abiotic gradients in natural microbial communities, with important ecological and evolutionary implications. They also suggest that a larger proportion of microbial warfare results in predation-the killing and consumption of organisms-than is generally recognized.


Asunto(s)
Microbiota , Myxococcus xanthus , Animales , Conducta Predatoria , Antibiosis , Evolución Biológica
18.
Adv Sci (Weinh) ; 11(4): e2306528, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032128

RESUMEN

Immediate and effective hemostatic treatments for complex bleeding wounds are an urgent clinical demand. Hemostatic materials with characteristics of adhesion, sealing, anti-infection, and concrescence promotion have drawn growing concerns. However, pure natural multifunctional hemostatic materials with in situ ultrafast self-gelation are rarely reported. In this study, a hydro-sensitive collagen/tannic acid (ColTA) natural hemostatic powder is developed that can in situ self-gel to form adhesive by the non-covalent crosslinking between tannic acid (TA) and collagen (Col) in liquids. The physical interactions endow ColTA adhesive with the characteristics of instantaneous formation and high adhesion at various substrate surfaces. Crucially, ColTA powder adhesive shows an enhanced adhesion performance in the presence of blood due to the electrostatic interactions between ColTA adhesive and red blood cells, conducive to effective in situ sealing and rapid hemostasis. The biocompatible and hemocompatible ColTA adhesive can effectively control bleeding and seal the wounds of the caudal vein, liver, heart, and femoral arteries in rats. Furthermore, the low-cost and ready-to-use ColTA adhesive powder also possesses good antibacterial and inhibiting biofilm formation ability, and can efficiently regulate immune response by the NF-κB pathway to promote wound repair, making it a highly promising hemostatic material with great potential for biomedical applications.


Asunto(s)
Adhesivos , Hemostáticos , Polifenoles , Ratas , Animales , Polvos , Antibiosis , Hemostáticos/farmacología , Colágeno , Eritrocitos , Inmunidad
20.
J Control Release ; 363: 657-669, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832724

RESUMEN

Peri-implantitis induced by infection leads to gingival recession, alveolar resorption and eventual dental implant failure. So, antibiosis and biosealing of abutments as well as osseointegration of roots need to be projected seriously during the whole service lifespan of dental implants. In this work, a multipurpose photothermal therapy strategy based on Si/P/F doped TiO2 matrix is proposed to address the above issues. This TiO2 matrix not only has outstanding photothermal response, but also triggers the release of F ions under near-infrared (NIR) light irradiation. Local hyperthermia assisted with the released F ions reduces adenosine triphosphate (ATP) synthesis of staphylococcus aureus (S. aureus), increases bacterial membrane permeability, and induces abundant of reactive oxygen species, resulting in the oxidation of cellular components and eventual death of bacteria. Furthermore, the synergic action of mild photothermal stimulation and Si/P/F ions of TiO2 matrix up-regulates gingival epithelial cells behavior (e.g., hemidesmosome formation) and osteoblasts response in vitro. In an infected model, this TiO2 matrix obviously eliminates bacteria, reduces inflammatory response, improves epithelial sealing and osseointegration, and reduces alveolar resorption by regulating NIR irradiation.


Asunto(s)
Pérdida de Hueso Alveolar , Humanos , Fluoruros , Staphylococcus aureus , Antibiosis , Regeneración Ósea , Titanio , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA