Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.319
Filtrar
1.
Front Immunol ; 15: 1389018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720898

RESUMEN

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Anticuerpos de Dominio Único , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Dominio Único/inmunología , Inmunoterapia Adoptiva/métodos , Animales , Línea Celular Tumoral , Ratones , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Anticuerpos de Cadena Única/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Artif Cells Nanomed Biotechnol ; 52(1): 300-308, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38753524

RESUMEN

Lung cancer is a dangerous disease that is lacking in an ideal therapy. Here, we evaluated the anti-lung cancer effect in nude mice of a fully human single-chain antibody (scFv) against the associated antigen 7 transmembrane receptor (Ts7TMR), which is also called G protein-coupled receptor, between A549 cells and Trichinella spiralis (T. spiralis). Our data showed that anti-Ts7TMR scFv could inhibit lung cancer growth in a dose-dependent manner, with a tumour inhibition rate of 59.1%. HE staining did not reveal any obvious tissue damage. Mechanistically, immunohistochemical staining revealed that the scFv down-regulated the expression of PCNA and VEGF in tumour tissues. Overall, this study found that anti-Ts7TMR scFv could inhibit A549 lung cancer growth by suppressing cell proliferation and angiogenesis, which may provide a new strategy for treating lung cancer.


Asunto(s)
Proliferación Celular , Neoplasias Pulmonares , Ratones Desnudos , Anticuerpos de Cadena Única , Trichinella spiralis , Animales , Humanos , Trichinella spiralis/inmunología , Ratones , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Antígeno Nuclear de Célula en Proliferación/inmunología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factor A de Crecimiento Endotelial Vascular/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Patológica/inmunología
3.
Protein Sci ; 33(6): e5017, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747382

RESUMEN

Biparatopic antibodies (bpAbs) are engineered antibodies that bind to multiple different epitopes within the same antigens. bpAbs comprise diverse formats, including fragment-based formats, and choosing the appropriate molecular format for a desired function against a target molecule is a challenging task. Moreover, optimizing the design of constructs requires selecting appropriate antibody modalities and adjusting linker length for individual bpAbs. Therefore, it is crucial to understand the characteristics of bpAbs at the molecular level. In this study, we first obtained single-chain variable fragments and camelid heavy-chain variable domains targeting distinct epitopes of the metal binding protein MtsA and then developed a novel format single-chain bpAb connecting these fragment antibodies with various linkers. The physicochemical properties, binding activities, complex formation states with antigen, and functions of the bpAb were analyzed using multiple approaches. Notably, we found that the assembly state of the complexes was controlled by a linker and that longer linkers tended to form more compact complexes. These observations provide detailed molecular information that should be considered in the design of bpAbs.


Asunto(s)
Anticuerpos de Cadena Única , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Animales , Humanos , Ingeniería de Proteínas/métodos , Epítopos/química , Epítopos/inmunología , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología
4.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38689446

RESUMEN

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Asunto(s)
Aminoaciltransferasas , Proteínas Bacterianas , Cisteína Endopeptidasas , Escherichia coli , Procesamiento Proteico-Postraduccional , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/química , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Nanopartículas/química , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo
5.
PeerJ ; 12: e17143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618563

RESUMEN

Phage display technology has become an important research tool in biological research, fundamentally changing the traditional monoclonal antibody preparation process, and has been widely used in the establishment of antigen-antibody libraries, drug design, vaccine research, pathogen detection, gene therapy, antigenic epitope research, and cellular signal transduction research.The phage display is a powerful platform for technology development. Using phage display technology, single chain fragment variable (scFv) can be screened, replacing the disadvantage of the large size of traditional antibodies. Phage display single chain antibody libraries have significant biological implications. Here we describe the types of antibodies, including chimeric antibodies, bispecific antibodies, and scFvs. In addition, we describe the phage display system, phage display single chain antibody libraries, screening of specific antibodies by phage libraries and the application of phage libraries.


Asunto(s)
Anticuerpos Biespecíficos , Bacteriófagos , Anticuerpos de Cadena Única , Anticuerpos de Cadena Única/genética , Anticuerpos Monoclonales , Bacteriófagos/genética , Tecnología
6.
Sci Rep ; 14(1): 8472, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605110

RESUMEN

With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.


Asunto(s)
Coinfección , Coronavirus Humano OC43 , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Anticuerpos de Cadena Única , Humanos , ARN/metabolismo , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612450

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Asunto(s)
Anticuerpos Biespecíficos , Escherichia coli Enterotoxigénica , Inmunoglobulinas , Anticuerpos de Cadena Única , Animales , Porcinos , Anticuerpos de Cadena Única/farmacología , Pollos , Diarrea/veterinaria
8.
Anticancer Res ; 44(5): 1955-1962, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677771

RESUMEN

BACKGROUND/AIM: The epidermal growth factor receptor (EGFR) is over-expressed in several types of cancer, and monoclonal antibody therapy has been the strategy that has shown the best results. This study focused on the construction of a humanized single chain antibody (huscFv) directed against EGFR (HER1). MATERIALS AND METHODS: The CDR grafting method was used to incorporate murine complementarity determining regions (CDRs) of cetuximab into human sequences. A dot blot assay was used to examine the affinity of the huscFv secreted by HEK293T for EGFR. The inhibitory effect on the viability of A549 cells was evaluated using the WST-1 assay. RESULTS: The incorporation of murine CDRs of cetuximab into human sequences increased the degree of humanness by 16.4%. The increase in the humanization of scFv did not affect the affinity for EGFR. Metformin had a dose-dependent effect, with an IC50 of 46 mM, and in combination with huscFv, the cell viability decreased by 45% compared to the 15% demonstrated by huscFv alone. CONCLUSION: The CDR grafting technique is efficient for the humanization of scFv, maintaining its affinity for EGFR and demonstrating its inhibitory effect when combined with metformin in A549 cells.


Asunto(s)
Receptores ErbB , Metformina , Anticuerpos de Cadena Única , Humanos , Metformina/farmacología , Receptores ErbB/inmunología , Receptores ErbB/antagonistas & inhibidores , Células A549 , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/inmunología , Células HEK293 , Cetuximab/farmacología , Supervivencia Celular/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Animales , Ratones , Regiones Determinantes de Complementariedad/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología
9.
J Biotechnol ; 387: 69-78, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582406

RESUMEN

Banana, a globally popular fruit, is widely cultivated in tropical and sub-tropical regions. After fruit harvest, remaining banana plant materials are low-value byproducts, mostly composted or used as fibre or for food packaging. As an aim to potentially increase farmer income, this study explored underutilised banana biomass as a novel plant tissue for production of a high-value product. Protein scFvTG130 used in this study, is an anti-toxoplasma single chain variable fragment antibody that can be used in diagnostics and neutralising the Toxoplasma gondii pathogen. Using detached banana leaves, we investigated the factors influencing the efficacy of a transient expression system using reporter genes and recombinant protein, scFvTG130. Transient expression was optimal at 2 days after detached banana leaves were vacuum infiltrated at 0.08 MPa vacuum pressure for a duration of 3 min with 0.01% (v/v) Tween20 using Agrobacterium strain GV3101 harbouring disarmed virus-based vector pIR-GFPscFvTG130. The highest concentration of anti-toxoplasma scFvTG130 antibody obtained using detached banana leaves was 22.8 µg/g fresh leaf tissue. This first study using detached banana leaf tissue for the transient expression of a recombinant protein, successfully demonstrated anti-toxoplasma scFvTG130 antibody expression, supporting the potential application for other related proteins using an underutilised detached banana leaf tissue.


Asunto(s)
Musa , Hojas de la Planta , Anticuerpos de Cadena Única , Musa/genética , Musa/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Proteínas Recombinantes/genética , Toxoplasma/genética , Agrobacterium/genética , Plantas Modificadas Genéticamente/genética , Agricultura/métodos
10.
Biotechnol Lett ; 46(3): 385-398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38607601

RESUMEN

BACKGROUND: Diphtheria can be prevented by vaccination, but some epidemics occur in several places, and diphtheria's threat is considerable. Administration of diphtheria antitoxin (DAT) produced from hyperimmunized animals is the most common treatment. Recombinant human antibody fragments such as single-chain variable fragments (scFv) produced by phage display library may introduce an interesting approach to overcome the limitations of the traditional antibody therapy. In the present study, B cells of immunized volunteers were used to construct a human single-chain fragment (HuscFv) library. MATERIALS AND METHODS: The library was constructed with the maximum combination of heavy and light chains. As an antigen, Diphtheria toxoid (DTd) was used in four-round phage bio-panning to select phage clones that display DTd bound HuscFv from the library. After panning, individual scFv clones were selected. Clones that were able to detect DTd in an initial screening assay were transferred to Escherichia coli HB2151 to express the scFvs and purification was followed by Ni metal ion affinity chromatography. Toxin neutralization test was performed on Vero cells. The reactivity of the soluble scFv with diphtheria toxin were done and affinity calculation based on Beatty method was calculated. RESULTS: The size of the constructed scFv library was calculated to be 1.3 × 106 members. Following four rounds of selection, 40 antibody clones were isolated which showed positive reactivity with DTd in an ELISA assay. Five clones were able to neutralize DTd in Vero cell assay. These neutralizing clones were used for soluble expression and purification of scFv fragments. Some of these soluble scFv fragments show neutralizing activity ranging from 0.6 to 1.2 µg against twofold cytotoxic dose of diphtheria toxin. The affinity constant of the selected scFv antibody was determined almost 107 M-1. CONCLUSION: This study describes the prosperous construction and isolation of scFv from the immune library, which specifically neutralizes diphtheria toxin. The HuscFv produced in this study can be a potential candidate to substitute the animal antibody for treating diphtheria and detecting toxins.


Asunto(s)
Anticuerpos Neutralizantes , Toxina Diftérica , Anticuerpos de Cadena Única , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/aislamiento & purificación , Animales , Humanos , Células Vero , Toxina Diftérica/inmunología , Toxina Diftérica/genética , Anticuerpos Neutralizantes/inmunología , Técnicas de Visualización de Superficie Celular , Biblioteca de Péptidos , Chlorocebus aethiops , Escherichia coli/genética , Escherichia coli/metabolismo
11.
Int Immunopharmacol ; 133: 112029, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640715

RESUMEN

Corneal wound healing requires epithelial reorganization and stromal extracellular matrix (ECM) remodeling, with ECM proteins such as Tenascin C (TnC) regulating and maintaining corneal homeostasis. The N-terminal globular domain and C-terminal fibrinogen-related domains of TnC are separated by epidermal growth factor (EGF)-like repeats, and upto fifteen fibronectin type III domains (Tn fn). Overexpression of Tn fn 1-5 and its splice variants occurs in varied pathologies. We have previously used Tn64 (a single chain variable fragment antibody cognate to Tn fn 1-5) to establish roles of Tn fn 1-5 in fibrotic pathologies such as rheumatoid arthritis and posterior capsular opacification. Here, we show that Tn64 binds to Tn fn repeats 3-5 (which constitute the major site for binding of soluble fibronectin within TnC). Unlike other Tn fn domains, Tn fn 3-5 displays no inhibition of fibronectin matrix assembly. Rather, the Tn fn 3-5 construct is pro-fibrotic and elicits increased expression of fibronectin. We examined corneal epithelial as well as stromal wound healing through Tn64 binding to Tn fn 3-5, using a human corneal epithelial cell (HCEC) line, primary cultures of human corneal fibroblasts (HCFs), and an ex-vivo corneal organ culture model. Tn64 enhanced proliferation and adhesion of corneal epithelial cells, while inhibiting the migration of corneal fibroblasts and myofibroblasts. Tn64 appears to attenuate inflammation through downregulation of TNF-α, prevent corneal fibrosis by limiting fibronectin polymerization, and promote regeneration of corneal epithelia and stroma, suggesting that it could be developed as a therapeutic agent for effective anti-fibrotic corneal wound healing.


Asunto(s)
Fibroblastos , Fibrosis , Anticuerpos de Cadena Única , Tenascina , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/efectos de los fármacos , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/genética , Tenascina/metabolismo , Tenascina/genética , Tenascina/inmunología , Fibronectinas/metabolismo , Fibronectinas/genética , Animales , Córnea/patología , Córnea/metabolismo , Células Cultivadas , Dominio de Fibronectina del Tipo III , Línea Celular
12.
Cell Chem Biol ; 31(5): 944-954.e5, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38653243

RESUMEN

Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.


Asunto(s)
Epítopos , Humanos , Epítopos/inmunología , Epítopos/química , Animales , Receptores del Factor de Necrosis Tumoral/agonistas , Receptores del Factor de Necrosis Tumoral/inmunología , Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptores OX40/agonistas , Receptores OX40/inmunología , Receptores OX40/metabolismo , Receptores OX40/antagonistas & inhibidores , Anticuerpos/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacología , Ratones
13.
Arch Virol ; 169(5): 112, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683226

RESUMEN

Previously, we reported a neutralizing monoclonal antibody, A8A11, raised against a novel conserved epitope within the hepatitis C virus (HCV) E2 protein, that could significantly reduce HCV replication. Here, we report the nucleotide sequence of A8A11 and demonstrate the efficacy of a single-chain variable fragment (scFv) protein that mimics the antibody, inhibits the binding of an HCV virus-like particle to hepatocytes, and reduces viral RNA replication in a cell culture system. More importantly, scFv A8A11 was found to effectively restrict the increase of viral RNA levels in the serum of HCV-infected chimeric mice harbouring human hepatocytes. These results suggest a promising approach to neutralizing-antibody-based therapeutic interventions against HCV infection.


Asunto(s)
Epítopos , Hepacivirus , Hepatocitos , Anticuerpos de Cadena Única , Proteínas del Envoltorio Viral , Internalización del Virus , Hepacivirus/inmunología , Hepacivirus/genética , Hepacivirus/fisiología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Hepatocitos/virología , Hepatocitos/inmunología , Animales , Humanos , Epítopos/inmunología , Ratones , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Hepatitis C/virología , Hepatitis C/inmunología , Anticuerpos Neutralizantes/inmunología , Replicación Viral , Anticuerpos Monoclonales/inmunología
14.
J Am Chem Soc ; 146(18): 12454-12462, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38687180

RESUMEN

Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.


Asunto(s)
Teoría Cuántica , Anticuerpos de Cadena Única/química , Nanotubos de Carbono/química , Pliegue de Proteína , Interleucina-6 , Humanos , Proteínas Intrínsecamente Desordenadas/química
15.
Viruses ; 16(4)2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675937

RESUMEN

Antibodies that specifically bind to individual human fragment crystallizable γ receptors (FcγRs) are of interest as research tools in studying immune cell functions, as well as components in bispecific antibodies for immune cell engagement in cancer therapy. Monoclonal antibodies for human low-affinity FcγRs have been successfully generated by hybridoma technology and are widely used in pre-clinical research. However, the generation of monoclonal antibodies by hybridoma technology that specifically bind to the high-affinity receptor FcγRI is challenging. Monomeric mouse IgG2a, IgG2b, and IgG3 bind human FcγRI with high affinity via the Fc part, leading to an Fc-mediated rather than a fragment for antigen binding (Fab)-mediated selection of monoclonal antibodies. Blocking the Fc-binding site of FcγRI with an excess of human IgG or Fc during screening decreases the risk of Fc-mediated interactions but can also block the potential epitopes of new antibody candidates. Therefore, we replaced hybridoma technology with phage display of a single-chain fragment variable (scFv) antibody library that was generated from mice immunized with FcγRI-positive cells and screened it with a cellular panning approach assisted by next-generation sequencing (NGS). Seven new FcγRI-specific antibody sequences were selected with this methodology, which were produced as Fc-silent antibodies showing FcγRI-restricted specificity.


Asunto(s)
Anticuerpos Monoclonales , Receptores de IgG , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Animales , Ratones , Humanos , Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/inmunología , Inmunización , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Biblioteca de Péptidos , Técnicas de Visualización de Superficie Celular , Hibridomas , Especificidad de Anticuerpos , Femenino , Ratones Endogámicos BALB C
16.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683232

RESUMEN

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Linfocitos T , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Antígeno de Maduración de Linfocitos B/inmunología , Humanos , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Linfocitos T/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Animales
17.
Anal Bioanal Chem ; 416(12): 2929-2939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491149

RESUMEN

Deoxynivalenol (DON) is a mycotoxin that widely distributes in various foods and seriously threatens food safety. To minimize the consumers' dietary exposure to DON, there is an urgent demand for developing rapid and sensitive detection methods for DON in food. In this study, a bifunctional single-chain variable fragment (scFv) linked alkaline phosphatase (ALP) fusion protein was developed for rapid and sensitive detection of deoxynivalenol (DON). The scFv gene was chemically synthesized and cloned into the expression vector pET25b containing the ALP gene by homologous recombination. The prokaryotic expression, purification, and activity analysis of fusion proteins (scFv-ALP and ALP-scFv) were well characterized and performed. The interactions between scFv and DON were investigated by computer-assisted simulation, which included hydrogen bonds, hydrophobic interactions, and van der Waals forces. The scFv-ALP which showed better bifunctional activity was selected for developing a direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for DON in cereals. The dc-ELISA takes 90 min for one test and exhibits a half inhibitory concentration (IC50) of 11.72 ng/mL, of which the IC50 was 3.08-fold lower than that of the scFv-based dc-ELISA. The developed method showed high selectivity for DON, and good accuracy was obtained from the spike experiments. Furthermore, the detection results of actual cereal samples analyzed by the method correlated well with that determined by high-performance liquid chromatography (R2=0.97165). These results indicated that the scFv-ALP is a promising bifunctional probe for developing the one-step colorimetric immunoassay, providing a new strategy for rapid and sensitive detection of DON in cereals.


Asunto(s)
Fosfatasa Alcalina , Grano Comestible , Ensayo de Inmunoadsorción Enzimática , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Tricotecenos , Tricotecenos/análisis , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Grano Comestible/química , Fosfatasa Alcalina/química , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Contaminación de Alimentos/análisis , Límite de Detección
18.
Acta Trop ; 254: 107199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552996

RESUMEN

BACKGROUND: Opisthorchis viverrini infection is a significant health problem in several countries, especially Southeast Asia. The infection causes acute gastro-hepatic symptoms and also long-term infection leading to carcinogenesis of an aggressive bile duct cancer (cholangiocarcinoma; CCA). Hence, the early diagnosis of O. viverrini infection could be the way out of this situation. Still, stool examination by microscopic-based methods, the current diagnostic procedure is restricted by low parasite egg numbers in the specimen and unprofessional laboratorians. The immunological procedure provides a better chance for diagnosis of the infection. Hence, this study aims to produce single-chain variable fragment (scFv) antibodies for use as a diagnostic tool for O. viverrini infection. METHODS: This study uses phage display technologies to develop the scFv antibodies against O. viverrini cathepsin F (OvCatF). The OvCatF-deduced amino acid sequence was analyzed and predicted for B-cell epitopes used for short peptide synthesis. The synthetic peptides were used to screen the phage library simultaneously with OvCatF recombinant protein (rOvCatF). The potentiated phages were collected, rescued, and reassembled in XL1-blue Escherichia coli (E. coli) as a propagative host. The positive clones of phagemids were isolated, and the single-chain variable (scFv) fragments were sequenced, computationally predicted, and molecular docked. The complete scFv fragments were digested from the phagemid, subcloned into the pOPE101 expression vector, and expressed in XL1-blue E. coli. Indirect ELISA and Western analysis were used to verify the detection efficiency. RESULTS: The scFv phages specific to OvCatF were successfully isolated, subcloned, and produced as a recombinant protein. The recombinant scFv antibodies were purified and refolded to make functional scFv. The evaluation of specific recognition of the particular epitopes and detection limit results by both computational and laboratory performances demonstrated that all three recombinant scFv antibodies against OvCatF could bind specifically to rOvCatF, and the lowest detection concentration in this study was only one hundred nanograms. CONCLUSION: Our produced scFv antibodies will be the potential candidates for developing a practical diagnostic procedure for O. viverrini infection in humans in the future.


Asunto(s)
Opisthorchis , Anticuerpos de Cadena Única , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Opisthorchis/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Opistorquiasis/inmunología , Catepsinas/inmunología , Epítopos/inmunología , Humanos , Proteínas Recombinantes/inmunología , Técnicas de Visualización de Superficie Celular , Epítopos de Linfocito B/inmunología , Ensayo de Inmunoadsorción Enzimática , Biblioteca de Péptidos
19.
Anal Methods ; 16(12): 1756-1762, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38440844

RESUMEN

Single-chain variable fragments (scFvs) are valuable in the development of immunoassays for pesticide detection. In this study, scFvs specific to thiamethoxam (Thi) were successfully isolated from a library generated by chicken immunization through heterologous coating selection. These scFvs were subsequently expressed with fusion with an Avi tag and alkaline phosphatase. After combination and optimization, a scFv-biotin based enzyme linked immunosorbent assay (ELISA) was developed for the detection of Thi, demonstrating an impressive half-maximum signal inhibition concentration (IC50) of 30 ng mL-1 and a limit of detection (LOD) of 1.8 ng mL-1. The immunoassay exhibited minimal cross-reactivity with other neonicotinoid insecticides, except for 7.5% for imidacloprid and 6.7% for imidaclothiz. The accuracy of the assay was confirmed by testing spiked samples of apple, pear, cabbage, and cucumber, which resulted in average recoveries ranging between 82% and 119%, closely aligning with the results obtained through high-performance liquid chromatography. Therefore, the chicken scFv-biotin based assay showed promise as a high-throughput screening tool for Thi in agricultural samples.


Asunto(s)
Insecticidas , Anticuerpos de Cadena Única , Animales , Tiametoxam , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/química , Pollos , Biotina , Insecticidas/análisis
20.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542884

RESUMEN

Cell-penetrating peptides (CPPs) are invaluable tools for delivering various substances into cells by crossing biological membranes. However, the effects of cell-penetrating peptide fusion proteins on the biological activity of antibodies remain to be fully understood. Here, we engineered a recombinant protein, LP-scFv, which combines the single-chain variable region of anti-human epidermal growth factor receptor-2 with a novel and non-oxic cell-penetrating peptide as a leader peptide. The introduction of this leader peptide led to a more than twofold increase in the internalization efficiency of the single-chain antibody, as confirmed using microscopic analysis and flow cytometry. The effects of the single-chain antibodies and LP-scFv on cell viability were evaluated using the MTT assay. Both the single-chain antibodies and LP-scFv reduced the viability of BT474 and NCI-N87 cells in a dose-dependent manner while exhibiting minimal toxicity towards MCF-7 and MCF-10A cells. Further investigation into LP-scFv's mechanism revealed that the induced leader peptide does not alter the MAPK-ERK1/2 and PI3K/AKT pathways of single-chain antibodies. An enhanced antitumor activity was also confirmed in an NCI-N87 tumor xenograft model in mice with a reduction of 45.2% in tumor growth inhibition (vs. 23.1% for scFv) with a 50 mg/kg dose after orthotopic injection administration, which was equivalent to that of trastuzumab (vs. 55.7% for trastuzumab). Overall, these results indicate that LP-scFv exhibits significant permeation activity in HER2-positive cells to enhance the intracellular dose effect on antitumor activity in vitro and in vivo. This research lays the foundation for designing novel antibody-based therapies for cancer.


Asunto(s)
Neoplasias de la Mama , Péptidos de Penetración Celular , Anticuerpos de Cadena Única , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/patología , Anticuerpos de Cadena Única/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Señales de Clasificación de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA